BASE 2.14.2 Documentation

BASE 2.14.2 Documentation

Version:
2.14.2 (build #5192)

Published
11/23/2009 09:27 AM

Table of Contents

Lo OVETVIEW ettt ettt ettt et et e et e e e et et et e e e e e et en e enraaenns 1
1. WHY USE BASE ...ttt ettt et et et et et et et e e et et ettt a e e e ens 2
) PP PT PP 2

2. BASE fEATUTIES ...iuiiiiiiiiiii et et e e ettt et aa e 3
2.1. Supported array platforms and raw data formatsc..ccoeoveiiiiiiiiiiiiiiiiiinnn. 3
2.1.1. Vendor specific and custom printing array platformsc..ccoceeeviiienennen. 3

2.1.2. Available raw data TYPES ..ccuieuiiniiiiiii e 4

3. OVErview Of BASE ...ttt e et e e e e e e e e eaenns 5
G 70 TP P PP PR PPPI 5

4. RESOUTCES .ueuiniininiitit ettt ettt et ettt et et e et et et et eneaen e et et eneantneatnenaeneaneaenns 6
4.1. BASE PIOJECT SITE ..euuininiiniiiiiiiiiti et 6
4.1.1. DOWIIOAA ..iniiniiiiiiiiiii ettt ettt et et et et et et ea et et eaeaeanas 6

4.1.2. TICKEL SYSLEINL ..uiuniiniiiiiiiiiiii ettt et ettt eae e e e eanen 6

4.1.3. ROAAIMIAD teuitniiniiniiniieieiei ettt ettt et ettt et et et et et etaeteanenesnesneaesaenneenns 6

4.1.4. DOCUMENTATIONL ...iuitinitiiiiiiiiiiiii et 7

4.2. Core plug-in configurationsceeeiiiiiiiiiiiiiiiiii e 7

4.3. BASE PIUZ-INS SITE .eeuiiniiiiiiiiiiiii ettt e e e ens 7

4.4, DEINIO SEIVET .euiuininininitiiiti ettt ettt ittt eaenentatataetettteenenenentaeaetstetatnenenenes 7

4.5, MailiNg LSS ...euniiiiiiiiii ettt ettt et ettt et e e e 8

4.6. BASE -NACKS ..iuiiiiiiiiiiiiiii ettt 8

II. User dOCUMENTATION ...uvuuiuniiiiiiiieiie ittt et et et et et et et et et et et et et et et e e eaneeneeneenens 9
5. Overview of user doCUumentationoveuviiiiiiiiiiir et ens 10
5.1. WorKking eNnVITONIMEITc.iiuiiuiiiiineiiiei ettt e e e e eeneeneeneaneens 10

5.2. Start working with BASE ..o 10
L5702 B € 15 A= (0) o V< PPN 11

6. Using the Webh CHEINTc.oouiiiiiiiiii ettt ettt e e e e e 13
6.1, INrOAUCHION ..vniiniiiiiiii ettt ettt et et et et e e e e e e e e e e e eanaens 13
6.1.1. LOZGING 1N ceirniniiiiiiiiiii ettt et e et et e e e eeaae 13

6.1.2. FOrgotten PASSWOIMc.ccuiiuiiuiiuiiuiiieiieiieiie it ettt ettt eneeneeneeneeneennes 13

6.1.3. The NOIME PALE ..evnieniiniiiiiiei ettt e e e e e e e e eaneans 13

6.1.4. Using the MeNuU DATc.oeuiiiiiiiiiiiiiiie e e eaean 15

6.1.5. GEtlNgG NeIP .uovniiiiiiiiiiii ettt et et e e eaaes 15

6.2. Configuring YOUT QCCOUINLiuniiniiniiiiiiiiii ittt et et et et et et etenenennennas 16
6.2.1. Contact informationcooiiiiiiiiiiiiiii e 16

6.2.2. Other INformationcoveiiiiiiii e e 16

6.2.3. Changing PASSWOTMeeuteuteuteuientin ettt ettt et et eeneeneaeaneeneens 17

B.2.4. PreflreIICES ...vuiiniiiii ittt e aa e 17

6.3. WorKking With IeIMScuiiniiiiiii e 19
6.3.1. Create @ NEW TLEII ...ouiininiiiiiii et e e 20

6.3.2. Edit an existing Itemceviuiiiiiiiiiiii e 20

6.3.3. DElete ILEIMS .uivuiiniiiiiiiiii ittt et et e eaaas 21

6.3.4. Restore deleted IteIMSoouviuiiniiniiiiiiiie e 21

6.3.5. Share items to Other USEISccoiuiiiiiiiiiiiiiiiii e, 21

6.3.6. Change owner Of iteIMSccveuviiiiiiiiiiiiii e 23

6.3.7. EXPOTIT ITEINIS ..euiuniniiiiiii et 24

6.4. LIStING TLEIMIS ..eutininiiniiiiiii ettt ettt e e e e e e e eaennen 24
6.4.1. Ordering the LStoouiieiiiiiiii e e 25

6.4.2. Filtering the LIStcooiiiiiiiii e 25

6.4.3. Configuring which columns to SHOWccoiiiiiiiiiiiiiiiiiiiieeen, 27

B.4.4. PIESEES ..uuniiiii ittt e e 28

6.5, TLaASHCAIL ...euiiiiii e et e as 31
6.5.1. Delete items permanentlyccoeeieeieiiiriiiiiri e eaeenean 32

6.5.2. View dependencies of a trashed itemccooviiiiiiiiiiiiiiiiiiiinieeen, 32

6.6. TEEIML OVETVIEW ...uininiiniiin ittt ettt ettt ettt et e et et e e enranenns 33
6.6.1. Validation OPLIONScuiuiiiiiiiiie ettt et e et ene e e ens 34

iv

BASE 2.14.2 Documentation

6.6.2. Fixing validation failuresccoooeiiiiiiiiiiiiiiiii e 35

7. Projects and the permission SYSTEIIccoiiiiiiiiiiiiiiii e 37
7.1. The permission SYSTEIMLc.iiuiiuiiiiiiiiii e e e e e eens 37
7.1.1. Permission LEVELScoiiiiiiiiiiiiiiiii e 37

7.1.2. Getting access to am IteIMocovviiniiiiiiiiiiiiiiiii e 38

7.1.3. PIug-in PErMUISSIOIIS ..euiuuiiniiiiii ittt et et e e e e e e enenaees 38

7.2, PTOJECES .eniniiiiiiii ittt ettt e 38
7.2.1. The actiVe PIOJECT ..euuniinii it e e e e ene 39

7.2.2. How to give other users access to your Projectcccceeeveeiiiiiiiiiiinennennes 40

7.2.3. Working with the items in the projectc.ccoiiiiiiiiiiiiiiiiiie, 41

8. File ManagemeEntc.viuiiiiiiiiiiiiiiii ettt ettt 43
ES T R O (SIS 51 1< o « SRR 43
8.1.1. Browse the file SYSteImc.ceiuiiiiiiiiiiiiiiii e 44

8.1.2. DiSK SPACE QUOLA ...euiuiiniiiiiiiii ettt e e 44

8.2. Handling fIleSccuuiiuiiiiiiiiiiiiie ettt et et et e ea e e 44
8.2.1. Upload a NEW fil€c.iiniiiiiiiiiii e 44

8.2.2. Edit @ fil€ ..coovniiiiiiii i e 46

8.2.3. MOVE flES .eeuiiiiiiiiiiie et eas 47

8.2.4. Viewing and downloading filesc..cieiiiiiiiiiiiiiiiiiiiiiic e, 48

8.2.5. DITECLOTIES ..utuiiniiniiiii ittt ettt et et et et et e e e e e e e e e e enens 49

LTS T O 1 (S 0 4 01 PSPPSR 50

1S TR 0] o = PN 51
1 B B & 0] 01 o b (S P PP PP UPPNN 51

1O, REPOTTEIS ..euieniniiiniiiii ettt ettt et e et e e et et e e et ea et ea et ea et en e e en e eneananeanan 54
) O B 051 o Ta U5 (el 5 10) o RPN 54
10.2. REPOTTET LYPES cueniniiniiniiiiiei ettt ettt et et ettt et e e e e e e e e e e eneenee 54
10.3. REPOTTEIS ..uiininiiniiiii ettt ettt e et e et et e e e et e e e en et ea et eneaneneanens 55
10.3.1. Import/update reporter from filesccocoviiiiiiiiiiiiiiiiiiririee e, 55

10.3.2. Manual management Of TEPOITEISc.cceuuiiuriinierniiriiiineinieieeieeeieenennnes 55

10.3.3. Deleting TFEPOTLETS ...vuiiuiiniinii ittt et et et e e e e e e 58

10.4. REPOTLET LSS ..iuiuiiiinii ittt e e eanen 58

11, ANNOTATIOIIS ..intininiiiiii ittt et et et et e e enees 60
11.1. ANNOtation TYPES ..ouniniiiiiiiiii et 60
11.1.1. PrOPEITIES ..oninininiiiiii ittt et e ettt et e e e e e e e aeneaens 61

) O S 0] 015 (0} s L R PPN 62

T1.1.3. TEEIM TYPES teuiniitinini ittt et et e e e e e e eaees 63

L1104, UIIES woniiiiiiiiiiiie ettt e e e e e e eaaes 64

11.1.5. Cat@LOTieS ..oeuieniiniiniiii ittt ettt 65

11.2. Annotation type CatEGOTIESc.iiiuiiiiiiiiiniiiiiiiiiiiiii et eneaee 65
11.3. Best Practices and Tab2Mage Export functionalityc.cccovieiiiiiiiiiiinenn.es 65
11.4. ANNOotating ITEIMSuiiniiiiii ittt 65
11.4.1. Inheriting annotations from other itemscccoeiiiiiiiiiiiiiiiiiiniinennnes 66

11.4.2. Mass annotation import plug-incccoeeiiiiiiiiiiiiii e 67

12. Experimental platforms and data file typesccoeeuiiiiiiiiiiiiiiiiiri e, 69
12,1, PLAtfOTTIS couniiniiiiiiiii ettt ettt e et et et et et e e e e e e eaaaes 69
12.1.1. Platform variantscoocoveiiriiieiiei e e 71

12.2. Data file tFPES .uieuiiiiiiiieii ettt ettt e en e e e 71

13. Protocols and ProtoCOl tYPES ...c.eeuieuiiuiiniiniiii ettt 74
13.1. ProtoCOl tYPES ..ueuerniiniiii ittt ettt et et ettt et et e et e enenenenaeas 74
DG T TR 0 o oo) L= PPt 75
13.2.1. ProtoCOl PIrOPEILIES ...c.ieuiuiininiiiiiiie ettt et e e e e eneenens 75

13.2.2. Protocol PArameEtersSoeuieriuiiiiiieiii ittt et et e et e e enas 75

T 5 - e = o PP 77
14.1. HardWare TYPES .eeueeuiunieiiiiiieiei ettt ettt ettt e e e e et e e e e e ean e eaneaneaneenens 77
14.2. HATAWATE ..euiniiniiiiiiei ettt et ettt ettt et et e et e e e e e e e e e ens 77

15, SOTEWATE ..uetuiiiniiieiie ettt ettt et et et e et e et e et e an e et e et e et e an e etn et e taeeneaneaaeeaneens 79
15.1. SOftWATE LYPES .uuerniinniiiiineii ettt et ettt et et et et e ea e et eeneeneeaneereeneenneen 79
15.2. SOFEWATES ..eeuiiiiiiiiieii et ettt e et et et e et e et e et een e ean e et e et aaneaneenanes 79

BASE 2.14.2 Documentation

16. ATTay LIMS ..ottt e e ettt et e e e e ettt et e e e e eans 80
)G B -1 = PP 80
JCIV NN § £\ s (515 T o TP PP 80

16.2.1. PrOPEITIES ..ouinininiiiiiiiit ettt ettt et e e e e e e e e eneaens 80
16.2.2. Importing features to an array designccocoveeniiiiiiiiiineiieiiieieenneens 81
16.3. Array DatCRIEScuiiii e e 81
16.3.1. Creating array batChesccooiiiiiiiiiiiii e, 81
16.3.2. PIrOPEITIES ..ouinininiiiiiiii ettt ettt et e e e e e e e aeeaens 82
16.4. ATTay SHAES ..ocniniiniiii e 82
16.4.1. Creating array SLAEScceoiuiiiiiiiiiiiiiiii e e 82
16.4.2. PIrOPEITIES ..ouinininiiiiiiiit ettt e ettt et e e e e eeeeaeneaens 83

17. BIiomaterialoouiiniiii ettt et et e e e e e aeneaaes 85
17.1. INTrOAUCHION ..euiinin i e ettt e e e e e e 85
17.2. BIOSOUICES ...euiiuiiniii ittt ettt et et et et et et et et e et e e e e e e e e e e e e e e e e eanennenneen 85

17.2. 1. PrOPEITIES ..ueuiniiiniii ittt ettt e e e et et et e et e e e e eaaneans 85
17.3. SAIMPLES ..oeniniiiii ettt e e e eana 86
17.3.1. Create SAIMIPLE ...o.oininiiiiiiii ettt et e anen 86
17.3.2. PrOPEITIES ..oninininiiiiiiii et ettt e e e e e e e e e eaens 87
17.4. EXITACES .iunininiiiiiii ettt e ee e 89
17.4.1. Create eXtracClcooviuiiiiiiiiiiiiiii e 89
17.4.2. PrOPEITIES ..oninininiiiiiiii ettt et ettt et e e e e e e e aenenens 89
17.5. LabELS .ouiiiiiiiiiii et ens 91
17.5. 1. PrOPEITIES ..ueuiuiininiiiniii et ettt et e e e et et et e et e e e e eaeneans 91
17.6. Labeled @XITacts ...c.ocuiieiiiiiiiiiii e e e e e 91
17.6.1. Creating labeled eXtractsc.ccoiiiiiiiiiiiiiiiiii e 91
17.6.2. PrOPEITIES ..oninininiiiiii ettt ettt et e e e e e e e aeeaens 92
17.7. BIOPIATE ..enniiiiiiii ettt et e e 93
17.7.1. PrOPEITIES ..ninininiiiiiiii ettt e ettt e e e e e e e e aeneaens 93
17.7.2. BIOWELL ...cniiini e 94
17.8. HybTIidiZAtiONS ...cuoeuiiniiiiiiiiii ittt ettt et et e eneenee 95
17.8.1. Creating hybridiZationscciiiiiiiiiiiiiiiiiii e 95
17.8.2. PrOPEITIES ..ninininiiiiii ettt ettt e e e e e e e eeaens 96

18. Experiments and analySiSccuiiiiiiiiiiiiiiiiii e eaee 98

18.1. Scans and IMAZEScoveuteutitiniiti ettt ettt eaens 98
18.1.1. SCAn PIrOPEITIES ...euininininin ittt e e e e e e e eeenenenen 98
18.1.2. TIMAGES .ueuinniniiiiii ittt ettt e e e 98

18.2. RAW DIOASSAYS euteuitniiniiniiiiti ettt ettt ettt et ettt et ettt e e e e ens 99
18.2.1. Raw bioassay PrOPETITIESc.vvuiiuiiuiiniiiiiiiiieiiiieie ettt eaennes 99
18.2.2. IMPOTrt 1AW data@ ...oeuiuiiniiiiiiiii e 100
18.2.3. RaW dat@ LY PES .eeuiiniiiiiiiiii e e e e ane 101
18.2.4. SPOL IMAGES ...ivniniiiniiiiiiiii e 101

18.3. EXPETIIMEIITS ...iuiniiiniiinitiiiie ettt et e e ettt e e e e eneaeaeanenans 103
18.3.1. EXPeriment ProPertiesc.cueuieieiiiiiiiiiii ettt eaeneeeeeenenen 103
18.3.2. Experimental factorsccoviiiiiiiiiiiiiiiiii e 104
18.3.3. Tab2Mage €XPOTIT ..cuuiuniiiiiiiiei ettt et et e e e e e e e eaneens 105

18.4. Analysing data within BASE ...t 106
18.4.1. Transformations and bioassay Setsccoeeevveiiiiiiiiieiineieiiieiieeieennees 106
18.4.2. Filtering datac.cc.ieuiiiiiiiiiiiiii e e e e e 107
18.4.3. Normalizing dataccoeeiiiiiiii e 107
18.4.4. Other analysis PIUZ-INScoiiiiiiiiiiiiiiii e 107
18.4.5. The PIOt t0O] ...ueniiiniiiiie ettt e e e 107
18.4.6. EXperiment eXPIOTETcccuiiiuiiiiuiiiiiiiieie ettt et e e eeneanenas 107

) K o1 0 To) o W) e - 1 - H PPN 108

19.1. General impOrt PrOCEAUTEc.viuiuiininiiiii ettt et e e e e e e eaenes 108
19.1.1. Select plug-in and file formatc..coeiiiiiiiiiiiiii e, 108
19.1.2. Specify plug-in parameterscceeeurienieiniiiieiineieei et eeereeneeieeenes 110
19.1.3. Add the import job to the job quUeueccoeiiiiiiiiiiiiii i, 111

19.2. Batch import of datacoooiiiiiiiiiiiiii e 112

BASE 2.14.2 Documentation

19.2.1. File fOrmatcouiiuniiiiiiiiieie ettt ettt e e e e e e e e 112

19.2.2. Running the item batch importercc.cooiiiiiiiiiiiiee 113

19.2.3. Comments on the item batch importerscc.coeoviiiiiiiiiiiininininan... 114

21O T 5-q o Yo} o o) il =1 - L 116
20.1. Select plug-in and configurationccoeeeviiiriiieineiirei e 116
20.2. Specify plug-in PAramMEtersc.ceeuiieuiiinieiiiiiei ettt ei et een e ean e enns 116
20.3. The table eXporter PIUZ-IN ...c.ccieuiiniiiiiiii e e 118

III. Admin doCUmENTAtIONcuiiniiniiiiii e ettt et e e e e e e enen 120
21. Installation, setup, migration, and upgrade instructionsc..ccoocevevieiiininienieneen.e. 121
21.1. Upgrade INStIUCHOIScuuiiuiiiiiiii it et e e e e e e e eeaees 121
21.2. Installing job Q@ENTScuuiiiiiiiiiiiii et 123
21.2.1. BASE application server side SEetUpccccoeiviiiiiiiiiiiiiiiniiiieieeeeans 123

21.2.2. Database SEIVET SELUD ...c.ituiuiininiiiiieieie ettt et e e e e e e eeeneanen 124

21.2.3. Job agent client SEUPccoviiiiiiiiiiiii e 124

21.2.4. Configuring the job a@entc.ccceeiuiiiiiiiiiiiiiii e 125

21.3. Installation INStIUCHONScuuieiiiiiii e 125
21.4. Server Configurationscceviuiiiiiiiiiiei ettt e eaaes 129
21.4.1. Sending a broadcast message to logged in USErScccevveuienienieneenenne 130

21.5. Migration INStruCtiONScoveuiiniiniiiiii e 131

22, PIUB-IIIS oeiiiiiiiiie ettt ettt et et et ea e ee 133
22.1. Installing PIUZ-INS .ueuniiiiii ittt ettt et e e e e e e eanes 133
22.1.1. Select installation methodcocoiiiiiiiiiiiii e, 133

22.1.2. PIUug-IN PIrOPEITIES ...uvnninniiiiiiiiieii ettt ens 134

22.1.3. Automatic installation of plug-inscccceeeiiiiiiiiiiiiiiiiireeeeennee 136

22.1.4. BASE version 1 plug-iNScoeviiiiiiiiiiiiee e 137

22.2. PIug-iN PEIMUISSIONIS ..euiiniiiiiiiiititi ettt ettt et en e e ens 137
22.3. JOD QGEIIES .eueiiiiiiiiii ettt e e e e e e ens 139
22.4. Plug-in configurationsccuiiiiiiiiiiiiiiie e et ee e 140
22.4.1. Configuring plug-in configurationscccecoiviiiiiiiiiiiiiniiniin e, 141

22.4.2. Importing and exporting plug-in configurationsc..ccceeveevieenneannenn. 143

22.4.3. The Test with file functionc..ccooiiiiiiiiiiiiiii e 143

23. EXTEINISIONIS .outiniiiiiiiiiiiiii ittt et ettt aae 148
23.1. Installing eXtENISIONS ...cuuiiuiinii ittt et et et e et et et et ee e e eaaeanes 148
23.2. Installing the X-JSP COMPILETccuiiiiiiiiiii e e 149
23.3. Configuring the extensions SYSteImMc.cciiiiiiiiiiiiiiiiiiiiiee e 149
23.3.1. SEUINES ..ienniiiiiii e 150

23.3.2. Disable/enable eXteIISIONScouiiriiiiiiiiii e eeaas 151

24. Account adminiSIrationcc.euiiiiiii ittt et e e e eaaes 152
24.1. Users adminiStrationc..coveiiiiiiiiiiii e 152
24.1.1. Edit USET ..iiiiiiiiiiiii et 152

24.1.2. Default group and role membershipcceeeuiiiiiiiiiiiiiiiiiiiieineeene. 154

24.2. Groups adminiStrationc.eeiveiiiiiriiiri e 155
24.2.]1. Edit SIOUPD uieuiiniiiii it e e e ans 155

24.3. Roles adminiStrationcoeeuiiiiiiiiiii e 156
24.3.1. Pre-defined SYSteImM TOleSccoviuuiiiiiiniiinieiieiieieei et et e e e enn 156

24.3.2. Edt TOIE ..ouniiiiiiiiiiii e 156

24.4. DisK SPACE/QUOLA ..euiuiininiiiiiiiiii ettt et anan 158
24.4.1. Edit qUOTA ..coonniiiiiiii e 158

24.4.2. DIiSK USAEE «.ovuieniiniiii ittt 159

IV. Developer doCUMENTAtIONc.iuiuiieiiiiii ettt e e e et et e ene e eneananns 160
25. Developer overview Of BASEioiiiiiiiiiiiiii et 161
25.1. Fixed vs. dynamic databasec.ccoieiiiiiiiiiiiiiiiii e 162
25.2. Hibernate and the DBENGINEcceviviiiiiiiiiiiiiei e 163
25.3. The BatCh APIoiiiiiiiii et ea e 163
25.4. Data classes vS. it ClaSSESccuviuiiiiiniiiiiiiiiiei e 164
25.5. The QUETY APooiiiiiii et eean 164
25.6. The Controller API ...ttt e e e e e e ens 165
25.7. PIUZ-INIS conniiiiiiii ettt e 165

BASE 2.14.2 Documentation

25.8. Client apPliCaAtiONS ..c.iuiniiiiiiiiii ettt et e et e et e e e eeeneanan 165
26. PIUZ-IN AEVEIOPET ...euiiiiiiiiii ittt e e e et e e e e e e e e e eneens 167
26.1. How to organize your plug-in Projectcoeeoveuiiuiiiiiiiniiiiieiei e, 167
26.1.1. USING AT .oeniiiiiiiiiii et e e e e e e e ens 167
26.1.2. With ECHPSE .euieniiniiniiii e e eae 169
26.1.3. Make the plug-in compatible with the auto-installation wizard 169
26.2. The PIug-in AP ...t e e e e e eens 170
26.2.1. The main plug-in interfacesc..ccoeeeiiiiiiiiiiiiiii e, 170
26.2.2. How the BASE core interacts with the plug-in when... 180
26.2.3. Using custom JSP pages for parameter inputc..ccoeeenviiiiinieenneannen. 182
26.3. IMPOTt PIUS-IIIS ceueiiiiiiiiiiiii ettt e e e e e e e e ens 184
26.3.1. Autodetect file formatsccoveiuiiiiiiiiiii e 184
26.3.2. The AbstractFlatFileImporter Superclasscccoeceeviieiiniiiininiineneenenen. 185
I T D> 4 10) o N) L BT | o L= TP 190
26.4.1. Immediate download of exported datac.coeeuviviiviiiiniiiiiniiniieeeennen, 190
26.4.2. The AbstractExporterPlugin Classc..cooeviiiiiiiiiiiiiiiiiiinneeenee, 192
26.5. ANAlysis PIUZ-INS c.ueeiniiiiiiiiei e e ane 193
26.5.1. The AbstractAnalysisPlugin classc.ccoviiiiiiiiiiiiiiiiiiii e 196
26.5.2. The AnalysisFilterPlugin interfacecc.ccoeeiiiiiiiiiiiiiiniiniieneennee, 196
26.6. Other PIUZ-IIS ..uiiuiiiiiiiiii ittt et et e et et e e e e e e eaeanee 197
26.6.1. Authentication plUG-iNScciiiiiiiiiiiiii e 197
26.6.2. Secondary file storage PlUGINSc.ccceuviiniiiiiiiiiiiiiiieiieei e eanes 199
26.6.3. File unpacker PIUZG-iNScieiiiiiiiiiiiiii e e 200
26.6.4. File packer PIUZ-IMSiuuiiiiiiiiiiiiiie e e 202
26.6.5. File validator and metadata reader plug-inscccccevevieiiiinieniennannen. 203
26.6.6. LoggIng PIUZ-INS ...cuuirniiiiiiiiiiii et 204
26.7. Enable support for aborting a running a plug-incccecceeeeiiiniiieinieneenneen. 206
26.8. How BASE load plug-in ClaSSEeScceiiiiiiiiiiiiiiiiii e e eeeeaes 207
26.9. Example plug-ins (with download)c..ccoeiiiiiiiiiiiiiiii e 208
27. EXteNSIONS AEVEIOPETc.iuiininiiiiii ettt e e e et e e e e e e e e eennas 209
D R @ 1 7 1< PPN 209
27.1.1. Download codeé eXamPlescceuiiiiuiiiniininiiiiieiieeiae e aenes 209
27.1.2. TErmINOLOZY ..ceueenitniiii ittt ettt ettt et et ettt et eaeaeeeaeaaennns 209
27.2. Hello world as an €XtEIISIONcuuieuiiniiniun ittt et et e eneaenaennens 210
27.3. Custom action fACtOTIESoiuuiiiiiiiiiiiiii et eeeeen e 211
27.4. Custom images, JSP files, and other resourcesccc.cceeeviviiieinneiieineeineennes 215
27.4.1. Javascript and stylesheetsccoiviiiiiiiiiiiiiii e 216
27.4.2. X-JSP flES .eniiiiiiiiii et e e 216
27.5. Custom renderers and renderer factoriescoocvveiiiiiiiiiiiiniiieiieineeeaneee, 217
27.6. EXTENSION POINTS ..euininiiiiiii ittt e e e e e e e e eeenenenen 218
27.7. CUSLOML SETVIEES ...iuiiniiiii ittt et e e e e e e e 220
28. WED SEIVICES ..euituiiniiiiit ittt ettt et ettt ettt ettt et et et et et e e eaa et et eeaeaaeaneeaeenennennns 223
28.1. Available SEIVICES ...ceiiuiuiiiiiiiiiiie et ens 223
28.1.1. SEIVICES .euiiiiniiiiniiiiii ettt ettt e e e aeaes 223
28.2. Client develOPIMENTiuiiniiii ettt et e e e e eanan 224
28.2.1. ReCeIVING fIl€S ...cuuiiiiiiiiiiiiiii ettt ei e 224
28.3. Services deVEIOPIMENTc.iiuiuiiiiii et 226
28.3.1. Generate WSDLAAlES ...c.iiuiiiiiiiiiiiiiii et e e 226
28.4. Example web service client (with download)cccoviiiiiiiiiiiiiiiiiiinieens 227
29. API overview (how to use and code eXamples)ccveiiuiiiiniiiiiiiiiiiiiiri e 228
29.1. The Public API of BASE ...ttt 228
29.1.1. What is backwards compatibility?ccccoiiiiiiiiiiiiiiiiiiiieeen, 228
29.2. The database schema and the Data Layer APIccccoieiiiiiiiiiiiiniiniininieennen. 229
29.2.1. Basic classes and interfacesccooeevvieiiiiiiiiiiiiiiii e, 230
29.2.2. User authentication and access CONtrolc..coeevveienieieieienienennenns 234
29.2.3. Hardware and SOftWAaTecc.oviiiiiuiiinieiiiiieineieeieei et e eeeenneens 237
29.2.4. REPOTTETS .uitiiiiiiiiiii ettt et et ettt et e e e e aeaeaneeaneaens 238
29.2.5. Quota and diSK USAZEceuieuiiniiniiiiiii e e 239

viii

BASE 2.14.2 Documentation

29.2.6. Client, session and SEttiNGSscccoveuviiiiiiiiiiiiiiiiieie e 240
29.2.7. Files and dir€CtOri€sccuviuiimiiiiimiiiiiiiie e 242
29.2.8. Experimental platformsccooiiiiiiiiiiiiiiiiiii e 244
29.2.9. PaTamMEETS ...ceiuiniiiiiiiiiiii e 246
29.2.10. ANNOTATIONS ...iuiiiiiiiiiiiiiiiiii e e aee 248
29.2.11. ProtOCOLS ...ueutiniiiiiiit et 251
29.2.12. Plug-ins, jobs and job agentscccceveiiiiiiiiiiiiiiiiiieee e 252
29.2.13. Biomateria LIMSccooiiiiiiiiiiiiiiiiiiiii e 256
29.2.14. Array LIMS - Plates ...ccoeuiiiiiiiiie e 258
29.2.15. Array LIMS - QITAYS .ttuitutiniintitiiiei ettt et et et een et eneeneeneenens 260
29.2.16. Hybridizations and raw datac..cceeeveiiiiiiiiiiiieee e 262
29.2.17. Experiments and analysSiScccciveiiiiiiiiiiiiiiiii e 264
29.2.18. OtRET ClaASSES ..ieuiiuiiiiiiiiiii ettt e a e ens 268
29.3. The Core API ...ttt et e e e e e e e ens 269
29.3.1. Using files to store datacoeeeuveiiiiiiiiiiiiiiiie e 269
29.3.2. Sending signals (to PIUZ-INS) ..ccuveuiiniiiiiiiiiiiiii e 274
29.4. The QUETY AP ... et e e e e ans 276
29.5. Analysis and the Dynamic and Batch APL:Scooiiiiiiiiiiiiiiceen, 276
29.6. EXtensions API ... 276
29.6.1. ThEe COTE PATT ..oeuiuieiniiii ittt et e e e e e enens 276
29.6.2. The web Client PATtcccuiiiniiiiiii e eaeaee 278
29.7. Other useful classes and methodsccoeeiiiiiiiiiiiiiii e, 281
30. Write doCumenNtationcoieiiuiiiiiiii ettt 282
30.1. User, administrator and developer documentation with Docbook 282
30.1.1. Documentation 1ayoutcooeiiiiiiiiiiiii e 282
30.1.2. Getting Startedcceiiuiiiiiiiii e 282
30.1.3. DOCDOOK tags T0 USE ..euienieniiniiniiniiiie it e e enee 287
30.2. Create UML diagrams with MagicDIawccceuiiiiiiiiiiiiiiiiiiiiiieneiieieeeeeeenes 293
30.2.1. OrganiSatiOnccoiuiiiiuiiiiniiiiiiiii et 293
B0.2.2. CLASSES .eeuituiiniiii ittt ettt ettt ettt ettt a e ans 294
S0.2.3. DIQZIAITIS ..ieuiniininiiiiii ettt 299
0.3, JAVAAOC ..entiniiiiitin ettt e e eaae 299
30.3.1. Writing JavadOoCceueeuiiniinii ittt e 300

K3 B 070) (ol (551 (6] 015 g 1S (&) = 0 Lo IR 302
31.1. Publishing @ NEW TElEASEiuuiiuiiniiiiiii it et ee e e e eeaees 302
31.2. Subversion / building BASE ...t 302
31.3. Coding rules and gUIideliNeScccoiiiiiiiiiiiiiiiiiiii e eeeaes 302
31.3.1. Development process and other important procedures 302
31.3.2. General coding style guidelinesc.ccceeveuiiiiiiiiiiiiiiiiieeeeee e, 303
31.3.3. API changes and backwards compatibilityccccoeiviiiiiiiiiiininnann.n. 303
31.3.4. Data-1ayer TULEScceiiiiiiiii it eaee 304
31.3.5. IEmM-Class TUIESiiuiiiiiiiiii it eeeaes 318
31.3.6. Batch-Class TUIESc.iouiiiiiiiii e 318
31.3.7. TeSt-Class TULESc.iiuiiiiiiiii et enee 318
31.4. Internals of the Core APIc.iiiiiiiiiiiii et eeeeanee 318
31.4.1. Authentication and SESSIONScceevenieniiiiiiiiiii e eeenenee 319
31.4.2. ACCESS PETTISSIOILS ..uvutninininininen ettt eneeeeeeeeetaeenenenenenaaaenans 319
31.4.3. Data validationcoeoiuiiiiiiiiiiiii e 319
31.4.4. Transaction handlingccceeiiiiiiiiiiiiiiii e 319
31.4.5. Create/read/write/delete operationsc..coeeveviiiiiiiiiniiiinininininenenne. 319
31.4.6. Batch OPerationsco.iiiiuiiiiniiii et eaeas 319
SL1.4.7. QUOLA enininiiiti e ans 319
31.4.8. Plugin execution / job QUEUEcccciiiiiiiiiiiiiiiiiiiiii e, 319

Y L\ PP 320
32. Frequently Asked Questions With anSWersccccoiiiiiiiiiiiiiiiiiiii e 321
32.1. Reporter related questions with anSWerscccceeiviiiiiiiiiiiniiiiniinieeaenee, 321
32.2. Array design related questions with answersccccovciviiiiiiiiiiiininineennen. 321
32.3. Biomaterial, Protocol, Hardware, Software related questions with answers 322

BASE 2.14.2 Documentation

32.4. Data Files and Raw Data related questions with answersc.cc.ccooeeienn.e. 323
32.5. Data Deposition to Public Repositories related questions with answers 324
32.6. Analysis related questions with answersc..covceviiiiiiiiiiicn i 325

AV BN 0] 015 o Lo U b QP PP PP PRSPPIt 326
YL () o 1 B B (s [PPSR 327
B. Core plug-ins shipped with BASE ..o e 331
B.1. Core analysis PIUS-INSceiiuiiiiiiiiiiiiiiiiiiii ettt e e e 331

B.2. Core exXport PIUZ-INS ..c.oeuiiuiiiiiiiii e 332

B.3. Core import PIUZ-iNS ..c.ueuuiiniiiiiiei e e 332
B.3.1. Core batch import plug-insccoieiiiiiiiiiiiiiiiiiiii e 334

B.4. Core intensity PIUG-INScoiiiiiiiiiii e e 334

B.5. Uncategorized COTre PIUG-INS ..ccuieuiiniiniiiiiiiiiii it enee 335

C. base.config TefeIreIICEcouuiiiiiiiiiiiii ettt e e e eans 336
D. extended-properties.Xml TefeTreNCec.viuiiiiiiiiiiiiiiiiie e e e e e eaneans 342
E. Platforms and raw-data-types.Xxml referenceccoceoveeiiiiiiiiiiiiiiiiine e, 346
E.1. Default platforms/variants installed with BASEccocoiiiiiiiiiiiiiiiiinceen, 346

E.2. raw-data-types.Xml TeferenCec.oiiuiiiiiiniiiiiiiiiiiei e et e eennes 346

F. WeDb.XIMNI TEIETEIICE ...uiuuitiiiiiii ittt ettt et ettt e e e e et e et e en e eaneeans 350
G. jobagent.properties TefereIICEc.iiiiiiiiiiiiiiiei ettt e et e e eaneenns 351
H. jobagent.Sh TefereIICEcuuiiiiiiiiiiiii ettt ettt et et e e e e e eenns 354
[. migrate.properties TefereIICEecc.viiuiiiiiiiiiiiieii ettt e e e et eeaeeenee 356
[.1. mysql-migration-queries.Sqlccoeviuiiniiiii e 356

J. Other configuration filesciiiiiiiiiiiiiii et e 357
J.1. mysql-queries.xml and postgres-queries.xmlccocoiiiiiiiiiiiiiiiiii e 357

J.2. 10B4 . PTOPETTIES ...eniniiniii ittt e e et e e e e e e ans 357
J.2.1. Migration 10ZZETcccciiiiiiiiiii et 357

J.3. hibernate.cfg.Xmloooiiiiiiii e 357

J. 4. €hcaChe. XMLooiniii e 357

K. API changes that may affect backwards compatibilityc.cccoeeeiiiiiiiiiiiiiiiniinineenn.. 358
K.1. BASE 2.13 TELEASE .uvvuiniiiiiiiiieiieie ittt ettt ettt et ettt e e e e ens 358

K.2. BASE 2.12 TELIEASE ..uevniuiiiiiiiiiieie ettt ettt et ettt et ea e ens 359

K.3. BASE 2.11 TELEASE .ueuniuiiiiiiiieiie ittt ettt ettt et et e e e ens 360

K.4. BASE 2.10 TELEASE .uvvuinniiiiiiiiiieiie ettt ettt ettt et e e e e e e e ens 360

K.5. BASE 2.9 TEIEASE ..euiuuiiiiiiiiiiiiiiii ittt ettt ettt e e e e e ans 360

K.6. BASE 2.7.1 TEIEASE ..ceuerniiniiiiiieiiiiie ettt ettt e e e e e e e e e e ens 360
K.7. BASE 2.7 TELEASE ..euiuuiiiiiiiiiiiiii ettt ettt ettt e e e e e e e e e e e e e eneens 361

K.8. BASE 2.6 TEIEASE ..euiuuiiiiiiiiiiiiiiii ettt ettt ettt et e e e e e e e e e e e ans 361

K.O. BASE 2.5 TEIEASE ..euieuiiiiiiiiiiiiiiii ettt et ettt et eneans 362
K.10. BASE 2.4 TELIEASE ..uevuiuniiiiiiiieiieie ittt ettt et ettt ettt e e e e ens 363
K.11. BASE 2.3 TEIEASE .uevuiniiiiiiiieiiei ettt ettt et ettt ettt et e e e e ens 364
K.12. BASE 2.2 TEIEASE .uevuinniiiiiiiieiieie ittt ettt et ettt et et e e e e ens 364

L. Things to consider when updating an existing BASE installationc..ccccoeeieenn.e. 365
L.1. BASE 2.9 TEIEASE ..cuuiuiniiniiniiitiiii ettt ettt e aneens 365

L.2. BASE 2.7.2 TELEASE ...evnininiiiiiiiiie ettt ettt ettt 365

L.3. BASE 2.7 TEIEASE ..c.euininiiniiiiiei ettt ettt et ans 366

L.4. BASE 2.4.4 TELEASE ...cvnininiiiiiiiiie ettt ettt ettt 366

Part I. Overview

This document is not finished but the most important chapters are concluded. Until the overview is
written there is only three pointers here; i) Early in your BASE experience you should get acquainted
with the permission and projects system (Chapter 7, Projects and the permission system (page

37)) since this will be helpful when you get going, ii) see Chapter 4, Resources(page 6)for
further BASE information resources, and iii) read this document.

Chapter 1. Why use BASE
1.1.

Chapter 2. BASE features

This chapter will explain the important features of BASE.

2.1. Supported array platforms and raw data
formats

BASE supports many different vendor specific and custom printing microarray platforms and data
formats, there are even users that use BASE for protein arrays. For 2 channel array platforms it
is straightforward to customize BASE for a specific array platform, the platform simply needs to be
adapted to the (BASE) Generic platform. The adaptation is to create a raw data format definition and
to configure raw data importers, or make use of already available raw data formats. However, it is not
always possible to make an natural mapping of a platform to the Generic platform. Platforms such as
Affymetrix and [llumina platforms cannot naturally be mapped on to the Generic 2 channel platform.
For Affymetrix, BASE comes with a specific Affymetrix platform and Illumina can be supported by
customizing BASE.

How to adapt new array platforms to the Generic platform format or how to create a new platform
type in BASE can be read elsewhere in this document. Here we list different array platforms used in
BASE and also list raw data types supported by BASE. However, not all platforms nor raw data types
listed below are available out-of-the box and a BASE administrator must customize his local BASE
installation for their specific need. What comes pre-configured when BASE is installed is indicated
in the lists below.

2.1.1. Vendor specific and custom printing array
platforms

Not all array platforms listed below are available by default. The comments to specific platforms
explain how to enable the use of the array platform in BASE. In some cases there is no confirmed
usage of a platform but we believe it has been tested by anonymous users.

Affymetrix
The Affymetrix platform comes pre-configured with a new BASE installation. Affymetrix platform
in this context are the Affymetrix expression arrays. So far there has been no reason for expand-
ing the Array platform to other chip-types. In principle any Affymetrix chip type can be stored
in BASE but current plug-ins will always assume that expression data is stored and analyzed.
This can be resolved by adding variants of the Affymetrix platform but the Lund BASE team
currently has no plans to create Affymetrix variants.

Agilent

Custom printing
The array layout options are endless and imagination is the only limitation ... almost. BASE can
import many in-house array designs and platforms. The custom arrays usually fall back on one
of the raw data types already available such as GenePix.

[lumina
There are several variants of the Illumina platform. Using several variants allows BASE to adapt
its handling of different Illumina chip types. Illumina platform support is not included in a

standard BASE installation but there is a Illumina plug—in1 available for seamless integration
of the Illumina array platform to BASE.

ImaGene
No successful use confirmed but ImaGene raw data is available in BASE.

1 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

BASE features

Unlisted
In principle any platform generating a matrix of data can be imported into BASE. Simply utilize
the available raw data formats and data importers.

2.1.2. Available raw data types

Raw data comes in many different formats. These formats are usually defined by scanner software
vendors and BASE must keep track of the different formats for analysis and plotting. BASE supports
many formats out the box, but some formats need to be added manually by the BASE administrator
(indicated in the list below).

Affymetrix
AIDA
Agilent
BZScan
ChipSkipper
GenePix
GeneTAC

Nlumina
The Illumina array platform usage is recommended to be based on the Illumina Bead Summary
(IBS) raw data format below.

INlumina Bead Summary (IBS)

Not available in BASE directly but it is added with the Illumina plug—in2 that adds Illumina
array platform support to BASE.

ImaGene
QuantArray Biotin
QuantArray Cy

SpotFinder

2 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

Chapter 3. Overview of BASE
3.1.

Chapter 4. Resources

There are several resources available for those who are using BASE or have some other kind of
interested in the BASE project. This chapter contains information about those resources and also
some short instructions on how to use each one of them.

4.1. BASE project site

The BASE project site is located at http://base.thep.lu.se. Here is a lot of useful information about
the project and the program, e.g. documentation/manuals, download-pages, contact information
and much more. The most important parts of the page are covered in this section.

4.1.1. Download

The download page is accessed from the download section, on the home page, by following the link

to Download Pagel. From this page you can download BASE releases as packaged tar.gz files or
checkout the source code directly from the Subversion repository. See the separate parts on the web
page to get more information how to proceed with each one of them.

Packaged BASE releases
Both source-packages and binary-packages are available for each release of the program.

Repository access
With this option the visitor can get the source code directly from Subversion. There are at least
three different version that are available to checkout from the repository.

* The latest production release. This will give you the same source code as one of the packaged
releases.

¢ The latest non-released bugfix branch. Use this if you are affected by a bug that has been
fixed but not yet released.

¢ Bleeding edge of the software, which is the latest revision of the program. The code is not
guaranteed to work correctly and it is recommended to backup important data in the database
before updating. Use this at your own risk, we cannot guarantee that you will be able to
upgrade the installation to another version or release.

4.1.2. Ticket system

A ticket is a note about a bug or a new feature that has not yet been implemented. To show the list of

outstanding tickets use the View Tickets® button on BASE web site. It is a good idea to have a look
at this list before reporting a bug or requesting a new feature. Perhaps someone has registered the
issue as a ticket already. This list can also be used to see how the BASE development is proceeding
and when some particular request is planned to be fixed.

To report bugs, add feature requests, and comment an existing ticket, you needs to be logged in to
the trac environment. This is done by clicking on the login-link to the right in the upper corner
on the home page. The Feedback-section, also on the home page, contains more information how
to proceed.

4.1.3. Roadmap

The roadmap of BASE is accessed from the Roadmap3 button on the home page. This page contains
information about the plans for future development, including the tickets that should be fixed for

3 http://base.thep.lu.se/roadmap

http://base.thep.lu.se
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/query
http://base.thep.lu.se/roadmap
http://base.thep.lu.se/roadmap

Resources

each milestone. Usually, only the next upcoming release has a date set. The BASE 2.x milestone is
used to collected tickets that we think should be fixed but are less important or require too much
work. Contributions are welcome.

4.1.4. Documentation

All documentation that are associated with the project can be found in the Documentation-section
on the start page.

Manuals
Useful information for the common user and the administrator, like user documentation, in-
stallation instructions and administration guide. These different documents will eventually be
replaced with this document when it includes the corresponding texts.

Specifications
This part contains specification for the separate divisions of the project, such as core specifica-
tion, web-client specification and more.

Developer information
Information for those who are interested to be involved in the development of BASE.

Future development
Link to a list of ideas for future development that are not covered and monitored in the milestones
on the road map page. In other words - ideas that are not planned to be done within nearest
6 to 12 month.

4.2. Core plug-in configurations

In the section called Plug-ins on the home page, is a link to a page that lists the core plug—ins4.
All plug-ins that are included in the installation of BASE are listed on this page, some together with
one or several examples of suitable configuration files. These configuration files can be downloaded
and imported with the plug-in configuration importer in BASE.

4.3. BASE plug-ins site

Plug-ins which are not included in the installation of BASE, have their own site, called BASE plug-ins

web site® which includes a download page for submitted none-core plug-ins. Here is also information
how to become a plug-in developer, with commit access to the repository, and how to submit a
plug-in to the download page. You will also be able to find example code for plug-ins, extensions,
web services, etc.

4.4. Demo server

There is a demo server up running for anyone who wants to explore BASE without having to install
it. Follow the link on BASE web site to the demo server or go directly to http://base2.thep.lu.se/

demo/ 6

Use base2 as login and base2 as password to login to the demo server. The base2 user account
has read privileges to all data on the demo server and can view almost every list page. If extended
privileges are wanted, please contact the administrator of the demo server (see the bottom of the
browser when visiting the demo server).

4 http://base.thep.lu.se/chrome/site/doc/historical/admin/plugin_configuration/coreplugins.html
5 http://baseplugins.thep.lu.se/
6 http://base2.thep.lu.se/demo/

http://base.thep.lu.se/chrome/site/doc/historical/admin/plugin_configuration/coreplugins.html
http://baseplugins.thep.lu.se/
http://baseplugins.thep.lu.se/
http://base2.thep.lu.se/demo/
http://base2.thep.lu.se/demo/
http://base.thep.lu.se/chrome/site/doc/historical/admin/plugin_configuration/coreplugins.html
http://baseplugins.thep.lu.se/
http://base2.thep.lu.se/demo/

Resources

4.5. Mailing lists

BASE project has three different mailing lists available for subscription. Visit the mailing list page
to get more information about each one of the mailing lists. All posted mails are saved in an archive
for each list, it can therefore be a good idea to have a look here before posting a new thread.

7

These are the available mailing lists, more details about each one of them can be found on the
mailing list page.

* basedb-users
* basedb-devel

* basedb-announce

4.6. BASE-hacks

There is a trac/subversion server keeping track of changes made to third party projects that are
changed to make them work with BASE. Open source project usually have a requirement that

changes are made public. On the BASE-hacks web site® you will find a list of modified packages
and information about the changes performed.

7 http://base.thep.lu.se/wiki/MailingLists
8 http://dev.thep.lu.se/basehacks

http://base.thep.lu.se/wiki/MailingLists
http://dev.thep.lu.se/basehacks
http://base.thep.lu.se/wiki/MailingLists
http://dev.thep.lu.se/basehacks

Part II. User documentation

Chapter 5. Overview of user
documentation

The 'User documentation' part is quite extensive and covers everything from how to Log in on a
BASE server and find your way through the program, to working with experiments and doing some
useful analysis. The intention with this chapter is to give an overview of the following chapters so it
will be easier for you to know where to look for certain information in case you don't want to read
the whole part from the beginning to the end.

5.1. Working environment

Before you start working with any big experiment or project in BASE it could be a good idea to get
to know the environment and perhaps personalize some behavior and appearance of the program.
When this is done your daily work in BASE will be much easier and you will feel more comfortable
working with the program.

Most of the things that have to do with the working environment are gathered in one chapter, where
the first subsection, Section 6.1, “Introduction” (page 13), gives a good guidance how to start
using BASE including a general explanation how to navigate your way through the program.

The second subsection, Section 6.2, “Configuring your account”(page 16), describes how to
personalize BASE with contact information, preferences and changing password. The preferences
are for instance some appearance like date format, text size or the look of the toolbar buttons.

The last two subsections, Section 6.3, “Working with items”(page 19) and Section 6.4, “Listing
items” (page 24), in the web client chapter explains how to work with BASE. No matter what
you are going to do the user interface contains a lot of common functions that works the same
everywhere. For example, how to list and search for items, how to create new items and modify and
delete existing items. Subsequent chapters with detailed information about each type of item will
usually not include descriptions of the common functionality.

5.2. Start working with BASE

There are some working principles that need to be understood by all users in BASE. These concern
the permission system and how to get the workflow to move on without any disturbance caused
by insufficient permissions. The key is to work in projects, which is covered in detail in Chapter 7,
Projects and the permission system (page 37) .

Understanding the permission system and how to work in projects will not only make it more simple
for you to work in BASE but also for your co-workers who want access to your data.

The next thing to do is to add some relevant data to work with. Most of the different items can be
created manually from the web client, but some items and data must be imported from files. Before
importing a file, it has to be uploaded on the BASE-server's file system. Chapter 8, File management
(page 43) gives you information about the server's file system and how to upload the files.

Chapter 19, Import of data(page 108) explains how the import is done and Chapter 20, Export
of data (page 116) covers how data later on can be exported from the database back into files,
often simple text files or xml files.

Each different item has it's own section in this part of the documentation, where more specific
information and also some screen shots can be found. Go back to the table of contents for this part
and look up the item you want to know more about.

10

Overview of user documentation

5.2.1. Get going

This description will guide you from the initiating tasks of creating the first account to running an
analysis plug-in. Most of the steps below ends with a reference to somewhere in the documentation
where more information can be found.

Administrative tasks

Most of the tasks in this section require more privileges than the normal user credentials. As always,
there are many ways to do things so steps presented here is the path to get going with BASE as fast
as possible without creating havoc in future use of the BASE server.

1. Log in as root using the password you set during BASE initialization. Create an account and
give it the administrator-role. Switch user to the new admin account and use this for all future
administrative tasks.

Note

The root-account should only be used to create the first administrator account and nothing
else.

2. First thing to do, when logged in as administrator, is to create other user-accounts and give them
appropriate roles, most of them should be assigned to the User-role.

Information related to user-accounts can be found at Chapter 24, Account administration (page
152) .

3. Next step for you as an administrator is to import reporter-map and corresponding reporters to
BASE. For import of Genepix data you can use the Reporter importer plug-in and Reporter
map importer plug-in that come with BASE. Go to Array LIMS Array designs or View Reporters
respectively and start the import from there. You can read more about data-import in Chapter 19,
Import of data (page 108)

User tasks

A normal user is not allowed to add array design, reporter information, and a lot of other information
to BASE. The reason for this is that a lot of information should only exist as one copy in the database.
For example, reporters should only exist in one copy because everyone uses the same reporters.
There is no need to store several copies of the same array design.

A user will normally upload experimental data to BASE for import into the database. To be able to
import the data, the array design which is used, must be available in BASE at import time. If the
array design is not available, a user with the proper credential must add the array design to BASE.

1. The first thing for an user to do is creating a project to work in and set this as active project
. This should be done before any other items are created. Section 7.2, “Projects” (page 38) tell
you more how working in project can help you and your co-workers.

2. Next step is to create raw bioassays and up-load raw data to BASE. This is done in the raw bioassay
section.(View Raw bioassays) . More information see Section 18.2, “Raw bioassays” (page 99)

3. Now when there are data to work with, you can create your first experiment. You reach the ex-
periment section through the menu View Experiments Further reading in Section 18.3, “Exper-
iments” (page 103)

4. a. The analysis often starts with the creation of a root bioassay set. Open the recently created
experiment and go to the Bioassay sets tab. Click on the New root bioassay set button to
start the creation.

b. With a root bioassay set you can now continue your analysis with different kinds of analysis
plug-in. To the right of the each listed bioassay set is a set of icons for the actions that can

11

Overview of user documentation

be performed. Section 18.4, “Analysing data within BASE”(page 106) goes to the bottom of
analysis in BASE.

This concludes the short step-by-step get going text. Far from all functionality in BASE has been
covered here. E.g. nothing about LIMS or biomaterials have been mentioned. But you should now
at least be familiar with getting to that point when it is possible to do some analysis.

12

Chapter 6. Using the web client

6.1. Introduction

6.1.1. Logging in

There are three things that you need to know before you can use BASE:
1. The address (URL) to a BASE server

2. A username to login with

3. A password

You may, for example, try the BASE demo server. Go to the URL http://base2.thep.lu.se:8080/de-
mo/ and enter base2 for the login and base2 for the password.

You need to get all three things from an administrator of the BASE server. If you know only the
address to the BASE server, you may check the front page if the administrator has added any in-
formation about how to get a username/password there. Look for the Get an account! link on the
front page.

Logging in is simple, just enter your login and password in the form on the front page and click the
Login button. There is a checkbox which allows you to encrypt the password before it is sent to
the BASE server. It is checked by default, and it is a good idea to leave it checked unless you have
problems logging in. If you are sure you are entering the correct login and password, but still cannot
log in, try unchecking the encryption option. If the checkbox is not visible, which happens if the
server is using an external authentication server, the password is not encrypted.

6.1.2. Forgotten password

If you forget your password you will need to get a new one. BASE stores the passwords in an encrypted
form that does not allow anyone, not even the server administrator, to find out the un-encrypted
password.

To get a new password you will have to contact the server administrator. There may be a Forgot your

password? link on the front page where the server administrator has entered information about
how to get a new password.

6.1.3. The home page

When you have been logged in the home page will be displayed. It displays some useful information.
You can also go to the home page using the View Home

13

http://base2.thep.lu.se:8080/demo/
http://base2.thep.lu.se:8080/demo/

Using the web client

Figure 6.1. The home page

") BASE 2.12.1 @ base2.thep.lu.se -- - Mozilla Firefox

File Edit wiew History Bookmarks Tools Help
L 2 - « % [. http:fbasez thep.lu.sejdemoj ‘v | [v 'Z'?f*] o ~
Bl BAsE 2.12.1 @ base2 thep.l... &3 ‘ v

| BASE | ‘ul'iew| Biomaterial LIMS | Array LIMS | ﬁ«dministrate| Extension5| He|p| % My lst Project = | f’gg- | = = | & base2? (BASE 2] « |

Welcome to BASE

% Projects (1) U/‘ Mews and announcements (1)

5 My 1st Project [active] 2009-06-26 Server upgraded to BASE 2.12.1
Welcome to your upgraded BASE server

[7] Mew messages (0)

Mo new messages.

@ Disk usage
Primary location Secondary location
- ; Used Assigned Used Assigned
‘g Help Total 0 bytes unlimited 0 bytes
& Help...)
ﬁ Repart a bug Files 0 bytes 0 bytes
Raw data 0 bytes 0 bytes
Experiment 0 bytes 0 bytes

& View details

The development of BASE is currently supported by Lund University through SCIBLU. Previous patrons of the BASE project were the Knut and Alice
Wallenberg Foundation and the Swedish Cancer Society. This server administered by: Martin Svensson

Done

New messages
Messages are sent by plug-ins to notify you about finished jobs. In the future, you may get
messages from other sources as well. As of today, messages are not used for communication
between users.

Projects
A list of projects that you are a member of. Projects are an important part of BASE and are the
best way to share data when you are cooperating with other users. We recommend that you
always use a project when working with BASE. For more information read Chapter 7, Projects
and the permission system (page 37).

Disk usage
An overview of how much disk space you have been assigned and how much you are using.

Help
Links for getting help and reporting bugs. The number of links displayed here may vary depend-
ing on the server configuration.

News and announcements
A list of important news and announcements from the server administrator. Here you may, for
example, find information about server upgrades and maintenance.

14

Using the web client

6.1.4. Using the menu bar

On the top of the home page is the Menu bar. This is the main navigation tool in BASE. It works
the same way as the regular menu system found in most other applications. Use the mouse to click
and select an item from the menu.

Most of the menu is in two levels, ie. clicking on a top-level menu will open a submenu just below it.
Clicking on something in the submenu will take you to another page or open a pop-up dialog window.
For example, the Biomaterial LIMS Samples menu will take you to the page listing samples and
BASE Contact information opens a dialog where you can modify your contact information details.

The menu bar also contains shortcuts to some often-used actions:

._.i:? Refresh page
Refresh/reload the current page. This is useful when you add or modify items in BASE. Most of
the time the page is refreshed automatically, but in some cases you will have to use this button
to refresh the page.

Warning

Do not use your browser's Refresh button. Most browsers will take you to the login page
again.

“= Recent items
Shortcut to the most recently viewed items. The number of items are configurable and you can
also make some item types sticky. This will for example keep the shortcut to the last experiment
even if you have viewed lots of other items more recently. See the section called “The Recent
items tab” (page 19) for configuration information.

11 Projects
A list of all projects you are a member of. Selecting a project in the list will make that project
the active project. The list can display a maximum of 25 projects. If you are a member of more
projects, the last menu entry will take you to the complete list of projects.

Tip

The sort order in the menu is the same as the sort order on the projects list page. If you,
for example, want to sort the newest project first, select to sort by the Registered column
in descending order on the list page. The menu will automatically use the same order.

& Logged in user
Displays the name of the currently logged in user and allows you to quickly log out and switch
to another user.

6.1.5. Getting help

Besides reading this document there are more ways to get help:
On-line context-sensitive help

Whenever you find a small help icon (“2) or button you may click it to get help about the part
of the page you are currently viewing. The icon is located in the title bar in most pop-up dialog
windows and in the toolbar in most other pages.

Using the Help menu
The Help menu contains links for getting on-line help. These links may be configured by a server
administrator, so they may be different from server to server. By default links for reporting a bug
and accessing this document are installed.

15

Using the web client

Mailing lists and other resources
See Chapter 4, Resources (page 6).

6.2. Configuring your account

6.2.1. Contact information

Use the BASE Contact information menu to bring up the user information dialog.

This dialog has three tabs, Contact information (selected), Password and Other information. The
logged in user can update the following contact information details.

Multi-user accounts

If you are using a multi-user account, for example a demo-account, you do not have permission
to change the contact information.

Full name
Your full name. You are not allowed to change this. If it is not correct, contact an administrator
to do it for you.

Email
Your email address (optional).

Organisation
The name of the organisation you work for or represent (optional).

Address
Your postal address as it should be printed on letters to you (optional).

Phone
Your phone number (optional). You may enter multiple phone numbers, for example your work
phone number and a mobile number.

Fax
Your fax number (optional).

Url
An URL to your home page or your organisation's home page (optional).

Press Save to save the changes or Cancel to abort.

6.2.2. Other information

Use the BASE Other information... menu to bring up the other information dialog.
This dialog has three tabs, Contact information , Password and Other information (selected) .

The look of the Other information tab can differ a bit between different servers, depending on what
settings the server is installed with. There are three inputs in a fresh BASE installation but it is
only the Description text area that is static, the others can be removed or more fields can be added
(managed by the server administrator). The three fields, included in a the BASE installation, are

Mobile
Your mobile number(Optional).

Skype
Your Skype contact information(Optional).

16

Using the web client

Description
Text area where you can put useful information that couldn't be stored anywhere else(Optional).

Press Save to save the changes or Cancel to abort.

6.2.3. Changing password

Use the BASE Change password menu to bring up the change password dialog.
This dialog has three tabs, Contact information, Password (selected) and Other information.

New password
Enter the new password.

Retype password
Retype the same password. You must do this to avoid spelling mistakes.

Multi-user accounts

If you are using a multi-user account, for example a demo-account, you do not have permission
to change the password.

Empty passwords

If you leave both fields empty the password will not be changed. It is not possible to have an
empty password.

6.2.4. Preferences

Use the BASE Preferences menu to bring up the preferences dialog. This dialog has three tabs,
Appearance, Plugins and Most recent.

The Appearance tab
This tab contains settings that affect the appearance of the web client.

Font size
Select a basic font size. You can choose between five sizes: extra small (XS), small (S), medium
(M), large (L) and extra large (XL). The default font size is medium.

Scale factor
The scale factor affects the size of pop-up windows. This setting exists because different browsers
render pages differently. If you often find that pop-up windows are too small you can change
this setting to make them bigger.

Note
The scale factor is automatically changed if the font size is changed.
Display long texts
This setting is used to control how long description texts are displayed in tables and other places
with limited space. There are three settings:

* Always: The full text is always displayed.

* On hover: A short version of the text is displayed and the full text is automatically displayed
when the mouse is moved over the text. Texts that are not fully visible are indicated with a
dotted line to the right.

17

Using the web client

* On click: A short version of the text is displayed and the full text is displayed when the mouse
is clicked somewhere on the short text. Texts that are not fully visible are indicated with a
grey line to the right.

Warning

The 'On click' mode may not perform so well if lots of items are displayed in a single list.
This is particularly so with Internet Explorer (version 7) which is 5-10 times slower than
Firefox to render the page. If you experience problems with this mode you should either
use a different mode or display less items on a single page.

Toolbar

You may choose if the toolbar buttons should have only images, only text or both images and
text. The default is that they have both images and text.

Ratio color range
Select three colors to use when displaying data that is suitable for color coding, for example
the intensity ratio in two-color experiments. The default setting is blue-black-yellow. The list of
presets contains other useful color combinations (for example, the BASE version 1 red-yellow-
green) and the most recently used color combinations.

Date format
A format string describing how dates should be displayed. We support all formatting options

supported by the Java language. For more information see: SimpleDateFormat documentation’
The most useful format patterns are:

* yy: two-digit year

* yyyy: four-digit year

MM: two-digit month

MMM: month name (short)

MMMM: month name (full)

dd: two-digit day in month
The list of presets contains the most commonly/recently used date formats.

Date-time format
A format string describing how dates with times should be displayed. We support all formatting
options supported by the Java language. For more information see: SimpleDateFormat docu-

mentations® The most useful time-format patterns are:
* HH: two-digit hour (0-23)

¢ hh: two-digit hour (1-12)

e a: AM/PM marker

* mm: two-digit minute

* ss: two-digit second

Decimals
The number of decimals to display for numeric values. The default is 2.

1 http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
2 http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

18

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Using the web client

The Plugins tab

This tab contains settings that affect plug-in execution.

Messages
Mark the checkbox if you want to have a message sent to you when a plug-in completes execution.
This setting can be overridden each time you start a plug-in.

Remove jobs
This checkbox should be marked if you want the jobs, done by import or export plug-ins, to be
marked as removed if they finished successfully. This setting can be overridden each time you
start a plug-in.

Show warnings
This checkbox should be marked if you want to show warning messages from plug-ins in the
Select plug-in dialog. Warning-level messages usually originates from plug-ins that are unre-
lated to the current task and are only of interest to plug-in developers. Error messages that are
related to the current task are always shown.

The Recent items tab

This tab contains settings that affect the Recent items menu.

Recently viewed items
The number of recently viewed items to remember. The default is to remember 6 items. The
remembered items will be displayed in the Recent items menu in the menu bar.

Recently used items
The number of recently used items to remember. The default is to remember 4 items. The re-
membered items will be displayed in edit dialogs where they have been used before. Each type of
edit operation has it's own list of remembered items. For example, there is one list that remem-
bers the most recently used protocols when creating a sample, and there is another list that
remembers the most recently used scanners when creating a scan.

Load the names of all items
If checked, the names of the items will be loaded and displayed in the menu, otherwise only the
ID and type of item is displayed.

Sticky items
Always remember the last viewed item of the selected types. For example, if you have selected
Experiment as a sticky item, the last viewed experiment will be remembered even if you view
hundreds of other items. Use the arrow buttons to move item types between the lists and sort
the sticky items list. Sticky items will be displayed in the Recent items menu in the menu bar.

6.3. Working with items

No matter what you are doing in BASE some things works more or less in the same way. This section
covers things that are common for most parts of BASE.

You mostly work with a single type of item at a time. This is reflected in the menu system. For
example, use Biomaterial LIMS Samples to work with samples, and View Experiments to work
with experiments. In most cases the list view for that type of item is displayed. The list view, as
the name says, is used to list all items. There are two more standard views, the single-item view
and the edit view.

List view
This view lists all items of a certain type. The view allows you to search and it is possible to
configure which information to show for each item. It also contains functions that can be used on

19

Using the web client

multiple items at the same time, for example, delete, share and export. See Section 6.4, “Listing
items” (page 24) for more information.

Single-item view
Displays information about a single item. Sometimes it is very little, sometimes it is very much
and the information may be divided into multiple tabs.

Edit view
This view is used for editing the information about a single item. It is always displayed as a
pop-up window.

6.3.1. Create a new item

New items are mostly created from the list view. For example, to create a new experiment go to the
View Experiments page. Here you will find a New... button in the toolbar. The button is disabled if
you do not have permission to create new experiments. Otherwise, click on it and enter any required
information in the pop-up dialog. Sometimes there are multiple tabs in this dialog. In the case
of experiments there are three tabs: Experiment, Publication and Experimental factors. As a
general rule, only the first tab has information that is required. The information in all other tabs
are optional.

In some places you will also find actions that create items directly in the list. For example in the list
of samples or on the single-item view for a sample you can create an extract using that sample as
the parent. If you use such links the parent item will in most cases be selected automatically, which
saves you a few clicks when creating new items.

Click on the Save button to save the new item to the database or on the Cancel button to abort.

Note

To speed up data entry when adding multiple new items there are a few tricks you can use
to make the web client supply default values for most properties. To find a default value the
following checklist is used in this order:

1. If the list have an active filter the filter values are used as default property values for the
new item. For example, if you are listing experiments with Genepix raw data type the new
experiment will automatically have Genepix selected. This trick should work for all proper-
ties except annotations, if it does not report it as a bug to the development team.

2. When you link to other items the same item will be used the next time. For example, if
you create an extract and selects an extraction protocol the same protocol is used the next
time you create another extract. In fact, BASE will remember as many items as specified by
the Recently used items setting (default is 4), allowing you to quickly select one of those
protocols. the section called “The Appearance tab’{page 17)contains more information
about the setting.

3. If you have a project active and that project has specified default values those values will
be used for new items. A project can specify defaults for protocols, hardware and software
and a few other settings.

6.3.2. Edit an existing item

On all single-item views there is an Edit... button in the toolbar that opens a pop-up dialog for
editing the properties of the item. This button is disabled if the logged in user does not have write
permission for the item.

You can also open the edit pop-up in most other places where the item appears, for example, in lists
or the single-item view of a related item. Press and hold one of the CTRL, ALT or SHIFT keys while
clicking on the link and the edit window will open in a pop-up. If you do not have write permission

20

Using the web client

on the item there is no meaning to open the edit pop-up and you will be taken to the single-item
view page instead.

Click on the Save button to save the changes to the database or on the Cancel button to abort.

6.3.3. Delete items

You can delete items either from the list view or from a single-item view. In both cases, deleted items
are only moved to the trashcan. No information is removed from the database. This allows you to
restore items if you later find out that you need them again. In fact, there is nothing special about
a removed item. It can still be used for the same things as any non-removed item can.

Important
To really delete items from the database you have two options:

1. Go to the trashcan View Trashcan and delete it from there. From the trashcan you can
delete several items in one go. See Section 6.5, “Trashcan” (page 31).

2. Click on the small trashcan icon in the list or single-item view. You can only delete one
item at a time.

To delete items from the list view you must first mark the checkbox for each item you want to delete.
Then, click on the Delete button. The list should refresh itself automatically. If you want to confirm
that the items have been removed use the view / presets dropdown and select the Removed option.
The removed items should now be displayed in the list with a small trashcan icon to indicate that
they are located in the trashcan.

To delete items from the single-item view, click on the Delete button in the toolbar. The page will
refresh itself automatically and a small trashcan icon should be displayed. If you do not have per-
mission to delete the item the delete button is disabled.

6.3.4. Restore deleted items

You can restore deleted items either from the trashcan, from the list view, or from the single-item
view. This section only covers the last two cases. The trashcan is described in another section (Sec-
tion 6.5, “Trashcan” (page 31)).

To delete items from the list view you must first make the deleted items appear in the list. This
is easy, just use the view / presets dropdown and select the Removed option. The list should
refresh itself automatically. The removed items are displayed in the list with a small trashcan icon
to indicate that they are located in the trashcan. Then, mark the checkbox for each item that you
want to restore and click the Restore button. The list should refresh itself automatically and the
trashcan icon should be gone from the restored items.

To restore items from the single-item view, click on the Restore button in the toolbar. The page
will refresh itself automatically and the small trashcan icon should be gone. If you do not have
permission to restore the item the restore button is disabled.

6.3.5. Share items to other users

Sharing data with other users is an important feature of BASE, which allows you cooperate in teams.
If you follow the instructions in Chapter 7, Projects and the permission system{page 37) you
will find that you almost never have to share items manually to other users. This is because whenever
you work with an active project each new item you create will automatically be shared to that project.
In most cases, this is all you need.

If you still need to manually share your data with other users, here is how to do it.

21

Using the web client

From a list view, mark the checkbox for each item you want to share. Then, click on the Share...
button. If you are on a single-item page, click on the Share... button on that page. In both cases,
this will open the Set access permissions dialog window.

Figure 6.2. Sharing items to other users

&) Set access permissions - Mozilla Firefox - |I:I|£|

Set access permissions -- Multiple items (2) &

Members

—Users - | Permissions) Add users

- Groups -- W Read | J

-- Projects -- Add groups...

My 1st project [RL US? | : ks J
Cwrite |) Add projects... J
[pelete |) = J
[Jset owner cmove

[l set permission

[] apply permissions to all subdirectories and
|| their files

| & ok ”BCanceIJ

Daone *

Members
The list displays the users, groups and projects that already has access to the items you selected.
The list shows the name and the permission level. The permission level uses a one-letter code
as follows:

* R = Read
e U ="Use

* W = Write

D = Delete

O = Set owner
* P = Set permission

Instead of a permission code, the word varying may be displayed. This happens if the items you
selected have been shared with different permission.

Permissions
When you select a user, group or project in the list, the checkboxes will display the current
permission. The exception is if the permissions are varying, in which case no checkboxes are
checked. To change the permissions just check the permissions you want to grant or uncheck
the permissions you want to revoke. You can select more than one user, group or project and
change the permissions for all of them at once.

Add users
Opens a pop-up window that allows you to select users to share the items to. In the pop-up
window, mark one or more users and click on the Ok button. The pop-up window will only list

22

Using the web client

users that you have permission to read. Unless you are an administrator, this usually means
that you can only see users that:

¢ you share group memberships with (the Everyone group doesn't count)
¢ are members of the currently active project, if any.

Users that already have access to the item are not included in the list. If you don't see a user that
you want to share an item to, you'll need to talk to an administrator for setting up the proper
group membership.

Add groups
Opens a pop-up window that allows you to select groups to share the items to. In the pop-up
window, mark one or more groups and click on the Ok button. Unless you are an administrator,
the pop-up window will only list groups where you are a member. It will not list groups that
already have access to the items.

Add projects
Opens a pop-up window that allows you to select projects to share the items to. In the pop-up
window, mark one or more projects and click on the Ok button. Unless you are an administrator,
the pop-up window will only list projects where you are a member. It will not list projects that
already have access to the items.

Remove
Click on this button to revoke access permissions from the selected users, groups and projects.

Apply permissions to all sub-directories and their files
This option shows up if at least one of the selected items is a directory. If this option is selected
the permissions given to the directory will recursively be copied to all files and sub-directories.
Existing permissions on those items will be overwritten with the new permissions.

Use the Save button to save your changes or the Cancel button to close the pop-up without saving.

6.3.6. Change owner of items

Sometimes it may be necessary to change the owner of an item. This can be done by everyone with
Set owner permission on the item. For a user to have the rights to change owner of an item, the
item must either be owned by or shared with Set owner permission to the user . See Section 6.3.5,
“Share items to other users” (page 21).

An user with Set owner permission can go to a list view (or the single-item view), mark the check-
boxes for the items to change owner of, and click on the Set owner button. A dialog window, like
the screen-shot below, will appear.

New owner
The user to be the new owner of selected item(s). By default the current user will be selected
but other users can be picked from the currently used part of the drop-down list or by clicking
on Select.

Use the Save button to set the new owner or the Cancel button to close the pop-up without saving.

23

Using the web client

Figure 6.3. Select a new owner

*) Set owner - Mozilla Firefox

Set owner of -- A labeled extract &

MNew owner | user j| Select..

€3 Cancel

Note

The original owner may not have access permissions to the items any longer. If that is desired,
the new owner must share the items to the original owner.

6.3.7. Export items

This has a chapter of it's own. See Chapter 20, Export of data (page 116).

6.4. Listing items

All pages that lists items are very similar in their appearance and functionality. In this section we
will describe the things that are common for most (if not all) list pages.

Use the menu to open a page listing items. Most list pages can only list one type of items. For example:
use the View Samples menu to list samples and the View Experiments menu to list experiments.

Tip
An example of a list page that can list items of several types is found by going to View All
items. This page lists all items that you are the owner of. It has a few limitations:

¢ [t support only a limited set of columns (type, name and description) since these are the
only properties that are common among all items.

* The list cannot be filtered (except by item type) or sorted. This is due to a limitation in the
query system used to generate the list.

There are also several similarities:

¢ [t supports all of the regular multi-item operations such as delete, restore, share and change
owner.

¢ Clicking on the name of the item will take you to the single-item view of that item. Holding
down CTRL, ALT or SHIFT while clicking, will open the edit pop-up.

24

Using the web client

Figure 6.4. A typical list page

Experiments

|- New... |5 Delete | (2 Restore | 4% Share... | 2 Take ownership... | =] Columns... |[= Export... (1]
1 (3 hits, |30 |per page) (2]

| - view [presets - E}j Name -~ & Raw data type Description Actions

3 e | =

1 - Affy experiment Affymetrix Analyze

- & Experiment A GenePix Analyze

3 - 3} Experiment B GenePix Analyze
1 (3 hits, [30 |per page) a

The typical list page contains the following important elements:

1. Toolbar
A toolbar with buttons for various actions such as New... for creating a new item, Delete for
deleting items and Columns... for configuring columns. Depending on the permissions of the
logged in user some buttons may be disabled (greyed out) or not shown at all.

2. Navigation bar
If there are many items the list will be divided into pages, each one showing a limited number of
items. The navigation bar allows you to move to other pages and specify how many items each
page should display. The navigation bar is repeated at the bottom of the list so you do not have
to scroll back to the top of a long list just to get to another page.

3. List of presets
A list with preconfigured settings which allows you to quickly switch between different layouts
(sort order, visible columns, filter settings, etc).

4. Column headers
The columns headers can be used for selecting sort order.

5. Filter bar
The filter bar allows you to search for items.

6.4.1. Ordering the list

Most lists are by default sorted by the name of the item. This can be changed by clicking on the
column header of another column. If you click on the same column twice the sort order is reversed.
A downwards or upwards pointing arrow is displayed next to the column header in the column that
is currently used for sorting. Column headers that are black cannot be used for sorting.

It is possible to use more than one column for sorting. Press and hold one of the CTRL, ALT or
SHIFT keys while clicking on another column header. The original sorting is kept and the new
column is used for sub-sorting the list. The procedure can be repeated with more columns if you
need to sort on three or more columns. To revert to sort by only one column again click a column
header without holding down any key.

6.4.2. Filtering the list

If the list contains many items you may need to use a filter to be able to find the item you are looking
for. The input boxes on the line below the column headers are used for filtering. Most columns are

25

Using the web client

filtered using a free-text input box, but some columns that can only take a few distinct values use
a selection list or radio buttons instead. The selection list and radio buttons are very simple to use.
Just select the alternative that you want to filter on. The list will be automatically updated when
the selection has been made.

The free-text filter is a bit more complex. By default, an exact match is required, use % as a wildcard
character that matches any character. For example, the filter

Experiment A

only matches the same exact string, but the filter

Exp%

matches

Experiment A, Experiment B, etc.

If you want to filter on several values at the same time, separate the values in the filter input box
with the “|” character. For example, a filter text like

Experiment Al C%

matches both “Experiment A” and values that begin with “C”.
You can also use operators to find items which has a value that is greater than, less than or not

equal to a specific value. This is mostly useful on numeric or date columns but also works on text
columns. The operator must be entered first in the free-text box, for example

<=10

to find items which has a value less than or equal to 10. Here is a list of the supported operators:

List of operators supported by the free-text filter

<
Less than
<=
Less than or equal to
>
Greater than
>=
Greater than or equal to
Equal to (useful to find items with a null value). Supports filtering on more then one value.
<>, I=
Not equal to (useful to find items with a non-null value). Supports filtering on more then one
value.

26

Using the web client

Same as = but interprets “1”, “%” and other special characters literally. Use this when you need
an exact string match.

Units

Some (numeric) columns have values with units. There are, for example, the Original quantity
and Remaining quantity columns for biomaterials, which have values in micrograms (ug), and
annotations which may have any unit.

When filtering on a column that has a unit, numeric values without units are interpreted as the
default unit for that column. But it is also possible to add a unit to the filter value. The examples
below are filtering on the original quantity column of a biomaterial:

>=0.5mg

matches biomaterials with an original quantity >=500ng.

=10012001300pg

matches biomaterials with exactly 100, 200 or 300 micrograms.

It is also possible to mix units in a single filter:
=10012001300ug|0.51 1mg

which matches 100, 200, 300, 500 and 1000 micrograms.

Be aware of rounding errors

All filter values with a unit that is different from the default unit are converted to the default
unit before being applied. Since numeric conversions are never exact down to the last decimal,
this may result in problems to filter with an exact match. The last example above could, for
example, be converted to: 100, 200, 300, 500.000001 and 999.99999998.

Hard-to-type characters
Some units contains hard-to-type characters. For example, the greek letter p in pg, and m<

and mi! for areas and volumes. In all those cases it is also possible to use ug, m2 and m3,
respectively.

Units are case-sensitive

All units are case sensitive. The main reason for this is that it must be possible to tell the
difference between milli (m) and mega (M) prefixes, for example, mJ and MJ.

6.4.3. Configuring which columns to show

Most lists show only a small subset of the columns it is capable of showing. Use the Columns...
button to open a dialog that allows you to select which columns to show and the order in which
they are shown.

27

Using the web client

Figure 6.5. Configuring which columns to show

@ httpuflocalhost: 8080 - Set column order and visibility - Mozilla Firefox -10] x|
Set column order and visiblity &

Visible columns Hidden columns

Name x Bytes

Raw data type Directary

Description Title

Actions Abstract

Affiliations

III Authors
Experiment type

Publication

Publication date

PubMedid

Owner

Permission

Experiment design

[=]
[~]

% = This column cannot be hidden

Presets
-- predefined -- j i) Save as...

iZ» Ok || € Cancel

Done

Visible columns
Shows the columns that are currently visible. Use the up/down arrow buttons to arrange the
order of the visible columns. The topmost column is shown to the left. Use the right arrow
button to move columns from this list to the hidden columns list. Columns marked with an X
are required and cannot be hidden. In most lists the Name column is the only column that is
required.

Hidden columns
Shows columns that are not currently visible in the list. Use the left arrow button to move
columns from this list to the visible columns list.

Presets
A dropdown list that allows you to select a set of preconfigured columns. You may also create
your own preset if you often need to switch between different configurations. The list of presets
is the same as the one described below, but if used from this dialog the presets does not affect
filters, sort order, etc.

Use the Save button to apply your changes or the Cancel button to close the pop-up without saving.

6.4.4. Presets

The view / presets dropdown has three main functions:

28

Using the web client

Figure 6.6. The view / presets dropdown

- view / presets - ¥

Saved preset #1
Saved preset #2
All columns
Required columns
Default columns
Other...
Removed
* Owned by me
Shared to me
® In current project
®* Owned by others
Clear filter
Save as..
Manage...

1. Switch between different configuration presets. The top of the dropdown contains user-defined
presets (Saved preset #1 and #2) and a few preconfigured presets. The user-defined presets are
used to store a complete table configuration, including:

* Which columns are visible and their order

¢ The column (or columns) used for sorting

¢ Filter settings

¢ The number of items per page and the current page

The preconfigured presets only affects the visible columns as follows:

e All columns - Show all columns.

¢ Required columns - Show only the required columns. Usually only the Name column is re-
quired.

¢ Default columns - Show the default set of columns.

¢ Other... - Open the configure columns dialog box, described in Section 6.4.3, “Configuring
which columns to show” (page 27).

2. Filter items by the removed status and the access permissions to an item.

* Removed - If checked, items that have been moved to the trashcan are shown, otherwise they
are hidden.

¢ Owned by me - If checked, items that the logged in user owns are displayed, otherwise they
are hidden.

¢ Shared to me - If checked, items that are owned by other users but shared to the logged in
user are displayed, otherwise they are hidden.

29

Using the web client

¢ In current project - If checked, items that are linked with the current project are displayed,
otherwise they are hidden. It does not matter if the logged in user is the owner or not. This
option is only available if a project is active.

* Owned by others - This option is only available to administrators and will display items that
are owned by other users.

The default is to display item that the current user owns and, if a project is active, items in that
project.

3. Administrate the presets
* Clear filter - Clears all filters.
* Save as... - Save the current configuration as a preset.

* Manage... - Opens a dialog where you can remove saved presets. You can also load saved presets
from the dialog, but it is quicker to just use the dropdown list for this.

Save a preset

If you select the Save as... option from the view / presets dropdown the Save preset as dialog
is opened.

Figure 6.7. Save preset as

©) http:/ilocalhost: 8080 - Save preset as... - Mozilla Firefox - O] x|
Save preset as... (®
For item Experiment
Name

Overwrite existing [
Public r
@ = reguired information

ip Ok || E¥Cancel

Daone

For item
The type of item the preset is saved for.

Name
The name of the preset. The name must be unique.

Overwrite existing
If a preset with the same name already exists, it is overwritten if this checkbox is checked.

Public
This options is only available for users which has the SHARE TO_EVERYONE permission. If
checked the preset is visible to all users.

Use the Ok button to save the preset or the Cancel button to close the pop-up without saving.

30

Using the web client

Manage presets

If you select the Manage... option from the view / presets dropdown the Manage presets dialog
is opened.

Figure 6.8. Manage presets

) http/flocalhost: 8080 - Manage pres - 0] x|

Manage presets for Experiment (&

er Delete. ..

3 | Name
1| [|Saved preset #1 Load
2| [| Saved preset #2 Load
3 Close
Done

From this dialog you can delete or load presets.

To delete presets, first mark the checkbox in front of each preset you want to delete. Then, click on
the Delete... button. You will get a warning about that the action cannot be undone. Unlike other
items, the presets are not moved to the trashcan. Click on Ok to delete the preset.

Edit a preset
It is not possible to edit a preset directly. To change an existing preset you must:
1. Load the preset.

2. Use the interface to change column settings, filter, sort order, etc.

3. Save the preset with the same name.

Use the Close button to close the pop-up.

6.5. Trashcan

All items that have been deleted, and are owned by you, are listed in your trashcan. This list page
is accessed with View Trashcan and it differs a bit from the other common list pages. The most
significant difference is that the trashcan page can contain more then one item type, actually all
removable item types in BASE can be listed in the trashcan. Items that neither can be removed or
deleted, i.e., items like sessions, nor clients' help texts since these are deleted from the database
immediately in list/item view will be shown in the trashcan page.

Warning

Some item types do not have any owner and these are listed in the trashcans for everyone with
delete permission on that specific item type.

Things that the trashcan page have in common with other list pages are the possibility to restore
and view/edit items, see Section 6.3.4, “Restore deleted items”(page 21) and Section 6.3.2, “Edit
an existing item” (page 20) . If an item is restored, it will of course disappear from the trashcan.

31

Using the web client

6.5.1. Delete items permanently

Items can be permanently deleted from BASE only if they are not used by other items. Items that

are used have the icon QI in the first column and by clicking on it you can get more information
about the dependencies, see Section 6.5.2, “View dependencies of a trashed item” (page 32) .

Note

This view is NOT the same view page as when clicking on the item's name, which brings you
to the item's view page.

To delete one or several items permanently from the trashcan you first have to select them and then
to click on the Delete button. Press then on either Ok (completes the deletion) or Cancel (no items
will be deleted) in the dialog window that appears.

Empty trashcan

If all items in the trashcan should be deleted permanently the Empty trash button can be used.
This function will remove all items that are listed in your trashcan, except those items which other
items, not marked for deletion or cannot be deleted, are dependent on.

6.5.2. View dependencies of a trashed item

This view can only be accessed from trashed items that are linked together with other items. Beside
the item's item type, name, and description there is a list at the bottom of the view page with
those items that are using the current item in some way.

Figure 6.9. Item view of a trashed item.

Trashcan F Extract: Extract A.ref
Properties
| Edit... | [Restore | £ Share... | & Help...
Permissions on this item: Read, Use, Write, Delete, Take ownership, Change permission

|3l This item has been flagged for deletion
3.5 This item is shared to other user, groups and/or projects

Q, This item is used by other items and can't be permanently deleted (1]
Type Extract
Name Extract A.ref @

Description

Items using Extract: Extract A.ref

x| Delete | |o» Restore (3]
>3 Name/ID Type Description
1 [Labeled extract A.ref Labeled extract
2 [Labeled extract A.ref (dye-swap) Labeled extract

1. This icon indicates that the item cannot be deleted permanently cause of some dependencies,
see #3 (page 32).

2. Common properties for all removable items.

3. A list of other items that are using the current item.

32

Using the web client

6.6. Item overview

With the Item overview function you can get an overview of all hybridizations, extracts, samples,
annotations, raw data sets, etc. that are related to a given item. In the overview you can also validate
the data to find possibly missing or incorrect information.

You can access the overview for an item by navigating to the single-item view of the item you are
interested in. Then, switch to the Overview tab that is present on that page. Here is an example
of what is displayed:

Figure 6.10. The item overview

Experiments [Experiment A

Properties | Bioassay sets | Owerwview

" Validate —_3':;‘ Walidation eptions. .. | & Help...

E‘@ Experiment A Path Experiment: Experiment &4 P Raw bicassay A.00h p
= } Raw bioassays (4) Scan: Scan A.00h P Hybridization: Hybridization & 00k
E'j Raw bicassay A.00h b cy3: Labeled extract A.00h P
B/ Scar: Scan A.00h Extract: Extract A.00h

El'j Hyhbridization: Hybridization A.00h
|_——_| Labeled extracts (2)

E| ’j cy3: Labeled extract A.00h
| B[Extract: Extract A.00h
i
: DD Protocal: Extraction A
: DD Protocol: Labeling A
D cy5: Labeled extract A.ref g Tirme = 0 h D
H- D Array slide: Array slide A1
|'_'|D Protocel: Hybridization A

Sample Sample: Sample & 00h
Errors {children) Lio
Warnings (children) 0©(0)

Deascription

:..; Sample: Sample A.00h

Annotations & protocol parameters

Failure details

|:| [Z] Hyb. station: Hybridization station A @ Missing value for parameter: Temperature
|:| D Protocol: Scanning A Checks if a parameter value has been specified for all protocel parameters
- D Scanner: Scanner & o Add walue for: Termperature

Annctations (3)

D Platform: Generic

D Generic raw data: genepix.mouse.v4. 37k 00h.gpr
D Array design: Array design A

D Protocol: Feature extraction &

- |Z] Software: Software A 1 error(s), 1 warning(s)
- 'j Raw bioassay A 00h (dye-swap)
[]---_D Raw bioassay & 24h

[]"'D Raw bioassay A.24h (dye-swap)
[~ Experimenrtal factors (2)

B-5-8-5-E-E

1% Missing value for parameter: Temperature Sample: Sample A.00h

2 /% Missing biosource Sample: Sample A ref

The page is divided into three sections:

* To the left is a tree displaying items that are related to the current item. The tree is loaded gradually
when you click your way through the sublevels. The only exception is after a validation has been
done, in this case the whole tree is loaded through the validation-process.

¢ The lower right shows a list of warnings and error messages that was found when validating the
data. This section is empty if no validation has been done. Click on the Validate button to validate
the data and load errors and warnings. In the example you can see that we have failed to specify
a value for the Temperature protocol parameter for one of the samples.

¢ The upper right shows information about the currently selected item in the tree. This part will
also contain more information about errors or warnings for this item, but only if a validation has
been done. It may also present you with one or more suggestions about how to fix the problem and
with a link that takes you to the most probable location where you can fix the error or warning.

No links?
If you do not have permission to change things no links will be shown.

33

Using the web client

6.6.1. Validation options

Click on the Validation options button in the toolbar to open the Validation options dialog.

Figure 6.11. Validation options

&) http:/flocalhost: 8080 - Validation options - Mozilla Firefox = 10] x|
Presets | -- predefined -- j| | &) Save as... || (&) Remove... |
Bl Project dafaults - setall in this group - jl

----- Use of non-default raw data type | Warning j
----- Use of non-default array design | Warning j
----- Use of non-default protocal Warning j
----- Use of non-default hardware Warning j

U

----- Use of non-default software Warning j

- Missing items - setallin this group - jl

- Annotations - set all in this group - jl

- Daniad accass - set all in this group - jl

- Other

- setallin this group - jl

Validation options

& Save || 39 Cancel |

Done

The validation procedure is highly configurable and you can select what you want to ignore, or
something should be displayed as an error or warning.

Presets
The list contains predefined and user defined validation options. Use the Save as... button to
save the current options as a user defined preset. The Remove... button is used to remove the
currently selected preset. Predefined presets cannot be deleted.

Project defaults
The options in this section are used to check if your experiment uses the same values as set
by the project default values of the currently active project (see Section 7.2, “Projects” (page
38)). If no project is active or if the active project does not have default values these options
are ignored.

Missing items
The options in this section are used to check if you have specified values for optional items. For
example, there is an option that warns you if you have not specified a protocol.

Annotations

The options in this section are used to check problems related to annotations. The most impor-
tant ones are listed here:

* Missing MIAME annotation value: Checks that you have specified values for all annotations
marked as Required for MIAME.

34

Using the web client

Missing factor value: Checks that you have specified values for all annotations used as ex-
perimental factors in the experiment. This is only checked when an experiment is selected
as the root item.

Missing parameter value: Checks that you have specified values for all protocol parameters.

Annotation is protocol parameter: Checks if an item has been annotated with a an anno-
tation that is actually a protocol parameter.

Annotation has invalid value: Checks if annotation values are correct with respect to the
rules given by the annotation type. This might include numeric values that are outside the
valid range, or values not in the list of allows values for an enumerated annotation type.

Inheriting annotation from non-parent: Checks if inherited annotations really comes from
a parent item. This might happen if you rearrange parent-child relationship because you found
that they were incorrectly linked.

Denied access

The options in this section are used to check if you do not have access (read permission) to an
item in the experiment hierarchy. If this happens the validation cannot proceed in that branch.
This might mask other validation problems.

Other
This section collects options that does not fit into any of the other sections. The most important
options are:

Array deign mismatch: Checks if the array design specified for a raw bioassay is the same
array design specified for the hybridization.

Multiple array designs: Checks if all raw bioassays in an experiment use the same array
design or not. This is only checked when the root item is an experiment.

Incorrect number of labled extracts: Checks if the number of labeled extracts match the
number of channels for the experiment. This is only checked when the root item is an exper-
iment.

Non-unique name: Checks if two items of the same type have the same name. A unique name
if important when exporting data in Tab2Mage format.

Circular reference to pooled item: If you have used pooling, checks that no circular refer-
ences have been created.

Click on the Save button to use the current settings. The display will automatically refresh itself.

6.6.2. Fixing validation failures

The overview includes a function that allows you to quickly fix most of the problems found during
the validation. The easiest way to use the function is:

1.

Click on an error or warning in the list of failures in the lower right pane. The tree in the left
pane and the item overview in the top right pane will automatically be updated to show the exact
location of the faulty item.

. The upper right pane should contain a list labeled Failure details with more information about
each failure and also one or more suggestions for fixing the problem. For example, a failure due
to a missing item should suggest that you add or select an item.

. The suggestions should also have links that takes you to an edit view where you can do the
changes.

35

Using the web client

4. After saving the changes you must click on the Validate button to update the interface. If you
want, you can fix more than one failure before clicking on the button.

36

Chapter 7. Projects and the
permission system

7.1. The permission system

BASE is a multi-user environment that supports cooperation between users while protecting all
data against unauthorized access or modification. To make this possible an elaborate permission
system has been developed that allows an user to specify exactly the permission to give to other
users and at the same time makes it easy to handle the permissions of multiple items with just a
few interactions. For this to work smoothly there are a few recommendations that all users should
follow. The first and most important recommendation is:

Always use a project!

By collecting items in a project the life will be a lot easier when you want to share your data
with others. This is because you can always treat all items in a project as one collection and
grant or revoke access to the project as a whole.

7.1.1. Permission levels

Whenever you try to create or access existing items in BASE the core will check that you have the
proper permission to do so. There are several permission levels:

Read
Permission to read information about the item, such as the name and description.

Use
Permission to use the information. In most cases this means linking with other items. For ex-
ample, if you have permission to use a protocol you may specify that protocol as the extraction
protocol when creating an extract from a sample. In the case of plug-ins, you need this permis-
sion to be able to execute them.

Write
Permission to change information about the item.

Delete
Permission to delete the item.

Change owner
Permission to change the owner of an item. This is implemented as a

Set owner

function in the web client (Section 6.3.6, “Change owner of items” (page 23)), where you can
change the owner of items that you have permission to do so on.

Change permissions
Permission to change the permissions on the item.

Create
Permission to create new items. This permission can only be given to roles.

Deny
Deny all access to the item. This permission can only be given to roles.

Note

An user's permissions need to be reloaded for the permissions that have been changed should
take effect. This is done either manually with the menu choice BASE Reload permissions or
automatically next time the user logs in to BASE.

37

Projects and the
permission system

7.1.2. Getting access to an item

There are several ways that permission to access an item can be granted to you. The list below is a
description of how the permission checks are implemented in the BASE core:

1. Check if you are the root user. The root user has full permission to everything and the permission
check stops here.

2. Check if you are a member of a role that gives you access to the item. Role-based permissions can
only be specified based on generic item types and is valid for all items of that type. The role-based
permissions also include a special deny permission that can prevents an user from accessing any
item. In that case, the permission check stops here.

3. Check if you are the owner of the item. As the owner you have full permission to the item and
the permission check stops here.

4. Check if you have been granted access to the item by the sharing system (cf. Section 6.3.5, “Share
items to other users” (page 21)). The sharing system can grant access to individual users, groups
of users and to projects. We recommend that you always use projects to share your items.

5. Some items implement special permission checks. For example:

* News: You always have read access to news if today's date falls between the start and end date
of the news item.

* Groups: You have read access to all groups where you are a member.

* Users: You have read permission to all users that share group membership with, excluding the
Everyone group. When a project is active, you also have read permission to all users that are
members of that project.

There are more items with special permission checks but we do not list those here.

7.1.3. Plug-in permissions

Another aspect of the permission system is that plug-ins may also have permissions of their own.
The default is that plug-ins run with the same permissions as the user that invoked the plug-in
has. Sometimes this can be seen as a security risk if the plug-in is not trusted. A malicious plug-in
can, for example, delete the entire database if invoked by the root user.

An administrator can choose to give a plug-in only those permissions that is required to complete
it's task. If the plug-in permission system is enabled for a plug-in the default is to deny all actions.
Then, the administrator can give the plug-in the same permissions as listed above. There is one
additional twist to the plug-in permission system. A permission can be granted regardless of if the
user that invoked the plug-in had the permission or not, or a permission can be granted only if the
user also has the permission. The first case makes it possible to develop a plug-in that allows users
to do things that they normally do not have permission to do. The second case is the same as not
using the plug-in permission system, except that unspecified permissions are always denied when
the plug-in permission system is used.

Note

Plug-in developers can supply information about the wanted permissions making it easy for
the administrator to just check the permissions and accept them with just a single click if
they make sense.

See Section 22.2, “Plug-in permissions” (page 137) for more information.

7.2. Projects

Projects are an important part of the permission system for several reasons:

38

Projects and the
permission system

¢ They do not require an administrator to setup and use. All regular users may create a project, add
items to it and share it with other users. You are in complete control of who gets access to the
project, the items it contains and which permission levels to use.

¢ All items in a project are treated as one collection. If a new member joins the team, just give the
new person access to the project and that person will be able to access all items in the project.

* When you create new items, they are automatically added to the active project so there is almost
no need to share items manually. All you have to remember is to set an active project, and this
is easy accessible from the menu bar.

¢ Filter out items that you do not want to see. When you have set an active project you may choose to
only see items that are part of that project and no other items (Section 6.4.4, “Presets” (page 28)).

¢ It's easy to share multiple items between projects. Items may be part of more than one project.
If you create a new project that builds on a previous one you can easily share some or all of the
existing items to the new project from one central place, the Items tab on the project's single-item
view.

7.2.1. The active project

The active project concept is central to the sharing system. You should always, with few exceptions,
have a project active when you work with BASE. The most important reason is that new items
will automatically be included in the active project. This considerably reduces the time needed
for managing access permissions. Without an active project you would have to manually set the
permission on all items you create. If you have hundreds of items this is a time-consuming and
boring task best to be avoided.

If you work with multiple projects you will probably find the filtering function that hides items that
are not part of the active project to be useful. As a matter of fact, if you try to access an item that
is part of another (not active) project you will get an error message saying that you do not have
permission to access the item (unless you are the owner).

Selecting an active project

Since it's important to always have an active project there are several ways to make a project the
active one.

* The easiest way and the one you will probably use most of the time is to use the menu bar shortcut.
Look in the menu for the project icon (“_1). Next to it, the name of the active project is displayed.

If you see 2.1 - no active project - here, it means that you have not selected a project to work
in. Click on the icon or project name to open a drop-down menu and select a project to set as the
active project. If another project is already active it will automatically be inactivated.

The drop-down menu can display a maximum of 25 projects. If you are a member of more projects,
the last menu entry will take you to the complete list of projects.

Tip
The sort order in the menu is the same as the sort order on the projects list page. If you,
for example, want to sort the newest project first, select to sort by the Registered column
in descending order on the list page. The menu will automatically use the same order.

* Use the BASE Select project menu and select the project from the submenu that opens up.

* Go to the homepage using the View Home menu and select a project from the list displayed there.

Note
Only one project can be active at a time.

39

Projects and the
permission system

Warning

If you change the active project while viewing an item that you no longer has access to in
the context of the new project an error message about missing permission will be displayed.
Unfortunately, this is all that is displayed and it may be difficult to navigate to a working page
again. In the worst case, you may have to go to the login page and login again.

Default permissions for the active project

When a project is active all new items you create are automatically shared to this project. By default
the permission are set to read, use, write and delete. It is possible to change the default permission
level by modifying the settings for the project. Simply open the edit-view page for the project and
select the permissions you want and save. From now on, all new items will be shared with the
specified permissions.

7.2.2. How to give other users access to your project

First, you will need to open the Edit project dialog. Here is how to do that:
1. Navigate to the single-item view of your project from the View Projects list.
2. Click on the Edit... button to open the Edit project dialog.

3. Switch to the Members tab. From this page you can add and remove users and change the access
levels of existing ones.

Figure 7.1. Manage members of a project

%) Edit project -- My 1st project - Mozilla Firefox - | I:I|5|
Edit project -- My 1st project &
Members
-- Users - || Permissions =
L + Add users...
UserA [RUWD-] W Read | & |
serB [RU----] = Add groups...
— Groups -- W use |) d P |
GroupC [RU----] [wirite | © Remove |
[pelete
[lset owner

[Jset permission

Project | Members | Defaults

| & save ||) cancel |

Daone »

Members
The members list contains users and groups that are already members of the project. The list
shows the name and the permission level. The permission level uses a one-letter code as follows:

* R = Read

40

Projects and the
permission system

e U ="Use
* W = Write
* D = Delete

* O = Set owner
¢ P = Set permission

Permissions
When you select an user or group in the list the current permission will be checked. To change
the permissions just check the permissions you want to grant or uncheck the permissions you
want to revoke. You may select more than one user and/or group and change the permissions
for all of them at once.

Note

In most cases, you should give the project members use permission. This will allow an
user to use all items in the project as well as add new items to it. If you give them write
or delete permission they will be able to modify or delete all items including those that
they do not own.

Note

The above note is not always true since the permission to an item in the project also
depends on the permission that was set when adding the item to the project. The default
permission is delete and the above note holds true. If the item's permission is manually
changed to for example, use, no project member can get higher permission to the item.

Add users
Opens a popup window that allows you to add users to the project. In the popup window, mark
one or more users and click on the Ok button. The popup window will only list users that you
have permission to read. Unless you are an administrator, this usually means that you can only
see users that:

* you share group memberships with (the Everyone group doesn't count)
¢ are members of the currently active project, if any.

Users that already have access to the project are not included in the list. If you don't see a user
that you want to add to the project, you'll need to talk to an administrator for setting up the
proper group membership.

Add groups
Opens a popup window that allows you to add groups to the project. In the popup window, mark
one or more groups and click on the Ok button. Unless you are an administrator, the popup
window will only list groups that you are a member of. It will not list groups that are already
part of the project.

Remove
Click on this button to remove the selected users and/or groups from the project.

Use the Save button to save your changes or the Cancel button to close the popup without saving.

7.2.3. Working with the items in the project

If you go to the single-item view for a project you will find that there is an extra tab, Items, on
that page.

Figure 7.2.

Properties | Items

E| Edit.. |&F Delete | & Take ownership.. | 2 Set

41

Projects and the
permission system

Clicking on that tab will display a page that is similar to a list view. However there are some differ-
ences:

¢ The list is not limited to one type of item. It can display all items that are part of the project.

* It support only a limited set of columns (name, description and owner) since these are the only
properties that are common among all items.

¢ The list cannot be filtered (except by item type) or sorted. This is due to a limitation in the query
system used to generate the list.

Note
The list only works for the active project. For all other projects it will only display items that
are owned by the logged in user.

There are also several similarities:

¢ It supports all of the regular multi-item operations such as delete, restore, share and change
owner.

¢ Clicking on the name of the item will take you to the single-item view of that item. Holding down
CTRL, ALT or SHIFT while clicking, will open the edit popup.

Tip

This list is very useful when you are creating a new project, in which you want to reuse items
from an old project.

¢ Activate the old project and go to this view.
¢ Mark the checkbox for all items that you want to use in the new project.

® Click on the Share... button and share the items to the new project.

If you have more than one old project, repeat the above procedure.

42

Chapter 8. File management
8.1. File system

Files in BASE are managed from the page at View Files. The basic layout on the page is the same
as for all the other list pages in BASE but there are some differences e.g. there is a navigation tree to
the left, used to browse the directory structure, and there are some buttons in the toolbar, that are
special for files and directories. The figure below is a representation of the files and directories-page
and is followed with a short description to some of the special functions.

Figure 8.1. The file page

BASE | Wiew | Biomaterial LIMS | Array LIMS | Administrate | Extensions | Help '?5 =) - .J'--'UOHE'- o &POt\EFEPOl\'EI' user) w

Files and directories

{E&m Ol'-le\\'direcbory... @Upload file... Q_‘ Delate _;} Restore E:}I'-'Ioue... g'}share... E.,Take ownership... _ICqurnns... ;}Export...
:—;;i; fhome/power)
rawdata - view / presets - ;I Name = Size Type Losatian Actions
ﬁ Other users @
B paver) = || H
I~ imagas
I~ projects
I~ raw data 6.0
D ' ,3} plates_and_reporters mouse. wl.37k et 7.9 MB Plate Primary B B
D I~ ,3} printmap.mouse.wl. 37k tam 1.0 MB Print map Offline @6
e

1. Home directory for current user
This is the logged in user's home directory with sub directories. It is visible if the current user
has a home directory and is then always located at the top of the navigation tree. More about this
can be read in the section called “Home directory - 'My home"(page 44) Click on a directory
to display it's contents to the right or click on the plus sign to expand the directory and view
the sub directories (no plus sign = no sub directories).

2. Other users
The other users' home directories that the current user has permission to read are listed here,
including his/her own.

3. Refresh button
This button, which is located at the bottom of the navigation tree, refreshes/updates the direc-
tory tree. It can for example be used to get a recently created directory to appear in the tree.

4. Current directory
Shows the full BASE path to current directory.

5. View a file's contents
A click on this icon will open the file's contents in a new window. If the browser does not has
support to view the file there will be a dialog window to download the file instead.

6. Download file
Download the file to a local computer with this icon. The download will start in a new dialog
window.

7. Re-upload a file
This icon is only visible for those files that have been moved offline and it can be used to re-upload
the file to the BASE. Start to upload the file to the same position by clicking on the icon.

43

File management

Replace an existing file

It is possible to re-upload file that are on-line, but this has to be done from the single-item
view.

8.1.1. Browse the file system

Browsing the BASE file system is done from the navigation bar by clicking on a directory in the tree
to view it's contents. Both sub directories and files in the selected directory are showed. A directory
with sub directories can be expand with a click on the plus-sign.

Browse a directory

A directory can only be open from the navigation tree and never from the list. A click on a
directory's name in the list will open the directory's edit window.

Navigation tree

The navigation tree contains of folders/directories that the logged in user has permission to read.
At the top is the current user's home directory and under it is a folder with all accessible home
directories.

The tree can be updated with the refresh-button at the bottom of the panel (the tree is not self-re-
freshing).

Home directory - 'My home'
To make it easier for the logged in user to find his/her directory without having to scroll through
the whole list of home directories, his or hers home directory is located at the top of the navigation

tree under the My home folder.

No home directory

Not all users have a home directory connected to their accounts. If My home is missing, it
most certainly depends on that the current user account have not got a home directory. Home
directories are managed by the administrator of the BASE server.

8.1.2. Disk space quota

Normally, a user is assigned limited disk space for files. More information about how much quota
the current account has and how much of it that is occupied can be found at the account's home
page, described in Section 6.1.3, “The home page” (page 13).

See Section 24.4, “Disk space/quota” (page 158) for more information about the quota system.

8.2. Handling files
8.2.1. Upload a new file

Uploading a file is started by clicking on Upload file... in the toolbar. The uploaded file will be placed
in current directory.

44

File management

Figure 8.2. Upload new file

@) BASE 2.9.0pre @ saramago.thep.lu.se -- Upload file - Mozilla Firefox - | EI|5|
Upload new file (&
Directory fhomefuser
File [| Browse... |

Replace existing [|
Write protected [|

Store compressed

Type | - none- j|
Character set | - nia- =
Description
“a

Max trans- 100.0 MBfs (approx.)
fer rate
Compressed file | j|

[lunpack file

|| overwrite existing files

[+] Keep the compressed file
@ = required information

File

| |2 Upload ” £ Cancal ‘

Daone »

Directory
Shows the current directory, where the file will be uploaded. This property cannot be changed
and is only for information.

File
This field is required and needs to have a valid file path for the local computer before the upload
is started. Use Browse... to choose which file to upload.

Replace existing
Tick this checkbox if you want to overwrite an existing file that has the same name as the one
you are going to upload.

Write protected
Mark this checkbox if you want the file to be write protected. A write protected file cannot be
deleted, moved offline or replaced with another file. It is still possible to change other metadata,
such as the name, description, file type, MIME type, etc.

Store compressed
You can select if you want BASE to store your file in a compressed format or in it's normal
format. Compressing the file may save a lot of disk space and it also uses less quota. There are
three options:

45

File management

¢ auto: Let BASE automatically decide if the file should be compressed or not. The file is com-
pressed if (1): it is uploaded to a directory that has the compress files flag set or (2): if the
matching MIME type has the compress files flag set.

¢ yes: Store the file in a compressed format.

e no: Store the file in it's normal format.

Type
This is the file-type that the uploaded file should get. The file-types to choose between from the
drop-down list are described in Section 8.3, “File types”(page 50). Select - none -if the file
should not be associated with any file type.

Description
A description about the uploaded file can be put into this text area. Use the magnifying glass to
edit the text in a pop-up window with a larger text area.

Max transfer rate
This shows the maximum transfer rate that the upload will approximately reach. The transfer
rate is set by the server admin and cannot be changed.

Compressed file
These settings are only active if you select a compressed file format that BASE knows how to
unpack. BASE ships with support for some of the most common compressed file formats, such
as zip and tar, but this can be extended by the use of plug-ins. See Section 26.6.3, “File unpacker
plug-ins” (page 200) for more information.

* Unpack file: Mark this checkbox if the compressed file should be unpacked after it had been
uploaded. The files will be unpacked with the same sub-directory structure as in the com-
pressed file.

* Overwrite existing files: Mark this checkbox if the unpacking is allowed to overwrite existing
files.

* Keep the compressed file: Mark this checkbox if you want to keep the compressed file after
upload. Otherwise, only the unpacked files are kept.

Finish the configuration by clicking on either Upload, which will start uploading the selected file,
or Cancel to abort the upload procedure.

Replace an existing file

It is possible to replace an existing file. This is done by clicking on the replace link on the single-item
view for the file you want to replace. If the file has been moved offline, you can also use the icon
in the actions-column, see number 7 in Figure 8.1, “The file page”(page 43) The procedure to
upload the file is the same as when uploading a new file, except that compressed files cannot be
unpacked. There is also an extra option, Validate MD5, that tells BASE to check that the file is the
same as the one it is replacing. This option is useful when you are re-uploading a file that has been
moved offline and want to be certain that it is the same file as the original.

You cannot replace a file which has been marked as write protected.

8.2.2. Edit a file

The edit window to set a file's property in can either be open with Edit... that is located in the
toolbar at the file's view page or by holding down CTRL, ALT or SHIFT when clicking on the file's
name in the list. It requires that the current user has write permission on the file to be able to edit
and set the properties.

46

File management

Path
This is the path where the file is located. This can only be changed by moving the file. Read more
about how this is done in Section 8.2.3, “Move files” (page 47).

Name
The file's name, which cannot be left empty and must be unique in current directory. The max-
imum length of the file name is 255 characters and it can contain blank spaces but not any of
~, \’ /’ L f?2,.<,>o0r l.

Write protected
Mark this checkbox if you want the file to be write protected. A write protected file cannot be
deleted, moved offline or replaced with another file. It is still possible to change other metadata,
such as the name, description, file type, MIME type, etc.

Type
Sets which kind of type the file is. Select the file type to use from the drop down list with available
types. The option -none- should be used if the file should not be associated with any kind of
file type.

MIME type
The file's content/media type. This is normally set automatically when uploading the file into
BASE but it can be changed by an user, that has write permissions, at any time.

Description
This text area can be used to store relevant information about file and it's contents. Use the
magnifying glass, located to the right under the text area, to edit the text in a larger window.

Finish the editing process by pressing either Save to save the properties to the database or Cancel
to abort and discard the changes.

8.2.3. Move files

These functions are used to manage the location of the files on the server. They are all accessed
from the Move button on the list view of from the single-item view. On the list view, you must first
select one or more files / directories.

Write protect your files!

If you mark a file as write protected it will not be possible to delete, move or replace the file.
Use this options for important data files that you do not want to loose by accident.

To another directory

Files and directories can be moved to other directories for re-organization. The user need write
permission on the target directory to be able to move the files/directories to it.

First, select all files and directories in the current path that should be moved and then click on
Move... To another directory in the toolbar to open a window with the directory tree where the
target directory can be picked.

Choose a directory which the selected items should be moved to. It is possible to create new sub-
directories with the New... button.

Click on Ok to carry out the move or Cancel to abort.

Offline

Moving a file offline means that the actual file contents is deleted from the server's disk space but
information about the file will still exist as an item in the database. This makes it possible to save
disk space but still be able to associated the file with other items in BASE.

47

File management

First, select all files in current path that should be moved offline and then click on Move... Offline
in the toolbar.

Warning

Be careful! The selected files will be removed from the server. The only way to recover the
contents again is to re-upload the files.

To the secondary storage

This option is only available if the server administrator has enabled it.

The secondary storage is a kind of storage were it is appropriate to store files that have been used
and no longer requires immediate access. Moving a file to and from the secondary storage is the job
of a plug-in, which is usually executed once or twice a day.

First, select all files in the current path that should be moved and then click on Move... To sec-
ondary location in the toolbar. The only thing that will happen is that BASE sets a flag on each file.
The next time the secondary storage plug-in is executed, the files will be moved to the secondary
storage. The actual file contents is deleted from the server's disk.

While the file is in the secondary storage BASE behaves in the same way as if the file is offline.
Th file cannot be used to import data from, or other things. To use the file again, the file must be
moved back to the primary storage.

To bring files back from the secondary storage, select the files and then click on Move... To primary
location in the toolbar. The files will be moved back the next time the secondary storage plug-in
is executed.

Do not forget to set quota for the secondary storage

The default installation does not assign quota for the secondary storage. Unless the adminis-
trator assigns quota the move will silently fail.

8.2.4. Viewing and downloading files

In Actions column in the list view there are icons you can click on to perform different kinds of
actions on a file, like downloading the file and viewing the file. The same icons appear on the sin-
gle-item view and in most other places where files are used. You cannot view or download files that
have been moved offline or to the secondary storage.

Download a file

This will let the user to download the contents of a file to a path on a local computer. The window that
opens contains the selected file's name, size e.t.c. and it will also open a download dialog window
where the user can choose what to do with the file locally.

Download does not start

Click on the file's path name in the pop-up window if the download dialog window does not
appears.

Close the pop-up window and return to file page with Close.

View the contents of file

A file's contents can be displayed directly in the web browser if the browser supports displaying that
kind of files. Typically all HTML, text files and images are supported. Click on the icon to view the
contents in a new window. If the type is not supported by the browser there will be a dialog-window
to download the file instead.

48

File management

Download/compress multiple files

You can download multiple files/directories at the same time. First, from the file browser, select
one or more files/directories. Then, click on the Export button. Select the Packed file exporter
plug-in and choose one of the file formats below it. On the Next page you can specify other options
for the download:

* Save as: The path to a file on the BASE file system where the selected files and directories should
be packed. Leave this field empty to download the files to your own computer.

* Overwrite: If you are saving to the BASE file system you may select if it is allowed to overwrite
an existing file or not.

* Remove files/directories: If you select this option the selected files and directories will be marked
as removed. You must still go to the Trashcan and remove the items permanently.

8.2.5. Directories

Directories in BASE are folders where files can be organized into. Click on New directory... in the
toolbar to create a directory in current path and edit the properties as described below.

Edit a directory

The window to edit a directory's properties is opened either by clicking on the directory's name in
the list or when creating a new directory.

Properties

Path
This property is read-only in the edit window but can be changed by moving the directory,
described in Section 8.2.3, “Move files” (page 47).

Name
The directory's name to identify it with in the list. This field must have a value and it has to be
an unique name for the current directory.

Compress files
Enable this option to let BASE store files that are uploaded to this directory in a compressed
format. This option only affect files that are uploaded later, it doesn't affect already existing files
or files that are moved between directories.

Share new files and sub-directories automatically
Enable this option to let BASE automatically share new files and directories with the same per-
missions as have been specified on this directory. This option is useful when you have assigned
a specific directory as a common area for a group of users and you want to make sure that all
users has access to all files. Some restrictions apply:

* Permissions for the Everyone group are not inherited if the logged in user doesn't have the
SHARE_TO_EVERYONE permission.

¢ If a project is active the new file/directory will be shared to the active project as well.

Description
Any relevant information about the directory can be written in this text area. The magnifying
glass down to the right can be used to edit the description text in a larger text area, just click
on the icon to open it in a separate pop-up window.

The editing process is completed with either Save, to save the properties into the database, or with
Cancel to discard the changes. Both of the buttons will close the edit window and if the directory
is updated the list will be reloaded with the directory's new properties.

49

File management

Note
The new directory does not appear in the navigation tree to the left automatically. You must
click on the Refresh button.

8.3. File types

A file can be associated with one of the file types that exists in BASE. File types make it possible
to filter the files depending of what kind of file it is. Here is a list of file types that are defined in
BASE. Administrate Types File types

File types

Image
Indicates that the file is an image file.

Plate
The associated file is a file with information about plate/plates.

Plate mapping
Files with information about plate mapping.

Print map
Print map files

Protocol
Files with protocol information

Raw data
Raw data files

Reporter
Files with information about reporters

Reporter map
Files of this type contain information about how the reporters are mapped.

Spot images
A zip-file containing generated spot images in JPEG format.

50

Chapter 9. Jobs

Job is a configured task performed by a plug-in.

Creating/configuring a job is made from a context, which is supported by the plug-in you want to
use. If no particularly context is needed, the job configuration is started from the plug-in's single
item view.

Some jobs can be configured to execute immediately (for a few plug-ins it is mandatory that the job
runs immediately), but normally jobs are placed in the job queue after they have been configured.
The jobs will then be picked out for execution depending on their priority and estimated execution
time.

9.1. Properties

Click on View Jobs to list your jobs.

Details of a single job is displayed in a pop-up window. This window opens either if you click on a
job's name from the list page of jobs or when a job configuration is finished. The window contain
two tabs, one with information about the job and another with the parameters for the plug-in used
in the job.

The values listed on the Parameters tab depends on what the plug-in needs from the user. If a
specific plug-in configuration was use, those parameters are also listed here.

The properties are set either when configuring the job or by the system. No parameters can be edit
after a job is created.

Name
The name of the job is set in the last step of a job configuration.

[Description |
A description of the job. Like the name-property it can be set in the job configuration.

Type
The type of job, which is depending on the plug-in that is used. It can be one of these five:

¢ Export
* Import
* Analysis
¢ Intensity
¢ Other

Priority
Priority the job has in the job queue.

Status
Shows the status of the job. A job can have one of following status.

* Not configured - The plug-in has not been configured properly and is not placed in the job
queue.

* Waiting - Job is waiting in the job queue.
* Executing - Job is being executed.

* Done - Indicates that the job is finished.

51

Jobs

* Error - The job was aborted cause of some error.
* Preparing - Doing some preparing tasks befor executing the job.
* Aborting - Job has received an abort signal and tries to abort the work.

Status message
A message, given by the plug-in, with more information about the status.

Percent complete
Progress of the job. How detailed this is depends on how often the plug-in reports it's progress.

Created
Date and time when the job was created and registerd in the database.

Started
Date and time when execution of the job started.

Ended
Date and time when the job stopped running. Either cause of it was finished, aborted or inter-
rupted by an error.

Running time
Time the job has been running.

Server
Name of the server, where the job was performed.

Job agent
The job agent the job is/was running on. It is also possible to set this value before a job is exe-
cuted. If that has been done only the selected job agent will accept the job. This options is nor-
mally only given to powers users and needs the Select job agent permission. See Section 24.3.2,
“Edit role” (page 156).

User/Owner
The user who created/configured the job.

Experiment
Name of the experiment which the job was configured within.

Plugin
The plug-in to use in the job.

Configuration
Name of the plug-in configuration that is used.

Depending on the status of the job, there may also be one or more buttons on the form.

Refresh
Update the page with the information. This button is available as long as the job has not finished.
This button is only for the impatient since the page will automatically refresh every ten seconds

anyway.

Abort
Aborts a job that is running or hasn't started yet. Jobs that hasn't started can always be aborted.
Jobs that are already eecuting can only be aborted if the plug-in supports it. The button will not
be visible if the plug-in doesn't supports being aborted.

Restart
Retry a failed job. Sometimes the reason that a job failed can be fixed. For example, by changing
the permissions on items the job needs to access. Use this button to place the job in the job

52

Jobs

queue again. It is not possible to change job parameters with one exception, if the job uses a
plug-in configuration and the configuration has been changed it is possible to select if the old
or new configuration values should be used.

Close
Close the window.

53

Chapter 10. Reporters

10.1. Introduction

Reporter, a term coined by the MAGE object model refers to spotted DNA sequence on a microarray.
Reporters are therefore usually described by a sequence and a series of database identifiers qual-
ifying that sequence. Reporters are generally understood as the thing biologists are interested in
when carrying out DNA microarray experiments.

In BASE, reporters also refer to Affymetrix Probeset ID but reporters can be used to describe genes,
transcripts, exons or any other sequence entity of biological relevance.

10.2. Reporter types

Reporter Type allows classification of reporters based on their usage and qualification defined
during the array design specification.

You can manage the reporter types by going to Administrate Types Reporter types.

Figure 10.1. Reporter type properties

©3 http:/localhost: B0OBO - Create reporter type - Mozilla F... E”E”‘S__q

Create reporter type &

MName r-Jeu.--.u reporker bp

Description

=
m = required information

Reporter type |

| & save || BCanceIl

— : : : : - @l

54

Reporters

Name
The name of the reporter type. It is advised to define the name so that it is compatible with the

MIAME requirements1 and recommendations issues by microarray data repositories. Alternately,
the local reporter type could be submitted to those repositories for term inclusion.

Description
A description of the reporter type.

10.3. Reporters

Go to View Reporter to view and manage the reporters.

10.3.1. Import/update reporter from files

Reporters are used to represent genes, transcripts, exons and therefore come in their thousands.
To solve this problem, BASE relies on Reporter import plug-ins. Those need to be specifically
configured to deal with a particular input file format. This input file can be typically be an Axon GAL
file or an Affymetrix CSV file which both provide information about reporters and their annotations.
See Chapter 19, Import of data(page 108) for more information about importing and Section 22.4,
“Plug-in configurations” (page 140) for more information about configuring file formats.

Exchanging plug-in configurations

As for any other plug-in, configuration parameters can be saved as an XML file and exchanged
with another BASE instance, thereby reducing configuration burden (provided the two in-
stances have identical extended-properties.xml files). See Section 4.2, “Core plug-in con-
figurations” (page 7) for information about available configuration files.

Dealing with Affymetrix probesets

In BASE, Affymetrix probesets should be treated as reporters. The probeset ID could be stored
in both the Name and the External ID fields of the reporter table. Storing the probeset ID
should be enough as most analysis tools allow retrieval of updated information based on the
probeset ID from web resources.

For some Affymetrix chips the associated CSV file does not list all reporters on the actual chip.
This will lead to problems in later use of the affected chip types. Simply use the associated CDF
file to import the missing probesets into BASE, make sure not to upgrade existing reporters
when starting the plug-in. The CDF file contains no annotation information and consequently
annotation information is removed if the CDF used to upgrade annotations.

10.3.2. Manual management of reporters

Reporters can also be created or edited manually one-by-one. This follows the same pattern as for
all other items and is described in general terms in Section 6.3, “Working with items” (page 19).

1 http://www.mged.org/Workgroups/MIAME /miame.html

55

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Reporters

Reporter properties

Figure 10.2. Reporter properties

©3 http:/flocalhost: B0BO - Edit reporter -- (clone PWHLC2-24) myosin ... |:||E|[z|

Edit reporter -- {clone PWHLC2-24) myosin light chain 2 &

MName |[-:I-:une FitHLCZ2-24] mypozin ight chain 2 |
External ID (4005157 |
Type | - NENE - W |

Gene symbol | |

Description

"'h
O = required information

Reporter | Extended properties |

| & Save ” BCanceIl

Dane @l

This tab shows core information that would be common to all BASE instances.

Name
The name of the reporter. This is often the same as the External ID.

External ID
The external ID of the reporter as it is defined in some database. The ID must be unique within
BASE. The external ID is what plug-ins uses to match reporter information found in raw data
files, array design files, etc.

Type
Optionally select a reporter type.

Gene symbol
The gene this reporter represents.

56

Reporters

Extended properties

Figure 10.3. Extended reporter properties

©) http://localhost:8080 - Edit reporter - (clone PWHLC2-24) myosin lig... [= |[B][X]

Edit reporter -- {clone PWHLC2-24) myosin light chain 2 ®

Species |
Cluster ID | |
Length |

Sequence

Yector

Tissue

Library

Feporter | Extended properties |
| & Save ” BCanceIl

Done @I

Reporters belong to a special class whose properties can be defined and extended by system admin-
istrators. This is done by modifying the extended-properties.xml file during database configu-
ration or upgrade. All fields on this tab are automatically generated based on this configuration
and can be different from one server to the next. See Section 21.3, “Installation instructions” (page
125) and Appendix D, extended-properties.xml reference (page 342) for more information.

Note

It is possible to configure the extended properties so that links to the primary external databas-
es can be made. For example, the Cluster ID is linked to the UniGene database at NCBIZ.

2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

57

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

Reporters

10.3.3. Deleting reporters

Deleted reporters cannot be restored

Reporters are treated differently from other items (e.g biosources or protocols) since they does
not use the trashcan mechanism (see Section 6.5, “Trashcan” (page 31)). The deletion happens
immediately and is an unrecoverable event. BASE will always show a warning message which
you must confirm before the reporters are deleted.

Reporters which has been referenced to from reporter lists, raw data, array designs, plates or any
other item cannot be deleted.

Batch deletion

A common problem is to delete reporters that has been accidentally created. The regular web inter-
face is usually no good since it only allows you to select at most 99 reporters at a time. To solve this
problem the reporter import plug-in can be used in delete mode. You can use the same file as you
used when importing. Just select the delete option for the mode parameter in the configuration
wizard and continue as usual. If the plug-in is used in delete mode from a reporter list it will only
remove the reporters from the reporter list. The reporters are not deleted from the database.

Note

It may be a bit confusing to delete things from an import plug-in. But since plug-ins can only
belong to one category and we wanted to re-use existing file format definitions this was our
only option.

10.4. Reporter lists

BASE allows for defining sets of reporters for a particular use, for instance to define a list of reporters
to be used on an array. There are two ways to do so:

1. Use the New reporter list button on the View Reporters page.

2. Use the New button on the View Reporter lists page.

58

Reporters

Figure 10.4. The Create reporter list called from the reporters page.

) http://localhost: 8080 - Create reporter list - Mozilla Firefox Z E|[z|
Create reporter list &
Mame r-Jau.--.- reporter lis |

External ID | |

Which reporters? (O celacted items
O current page
() 2l pages

Description

"i.‘l
m = required information

Reporter list |

| i) Save || BCanceIl

Dare @I

Name
The name of the reporter list.

External ID
An optional external ID. This value is useful, for example, for a tool that automatically updates

the reporter list from some external source. It is not used by BASE.

Which reporters
Select one of the options for specifying which reporters should be included in the list.

Note
This option is only available when creating a reporter list from the View Reporters page,
not when editing an existing list or creating it from the View Reporter lists page.

Tip

To add or remove reporters to the list use the Reporters tab on the single-item view page
of a reporter list. This tab lists all reporters in the list and there are functions for removing,
adding and importing reporters to the list.

Description
A description of the reporter list.

59

Chapter 11. Annotations
11.1. Annotation Types

BASE has been engineered to closely map the MIAME conceptsl. However, since MIAME is focused
on microarray processing workflow, information about the description biological samples themselves
was left out. BASE users are free to annotate biomaterials (and most BASE items) as they wish, from
basic free text description to more advanced ontology based terms. To accommodate the annotation
needs of users eager with detailed sample annotations and also the needs of very different communi-
ties, BASE provides a mechanism that allows a high level of annotation customization. BASE allows
to create descriptive elements for both quantitative annotation and qualitative annotation of Bioma-
terials via the Annotation Type mechanism. Actually, annotation types can be used to annotate
not only Biomaterials but almost all BASE items, from Plates to Protocols and BioAssaysets

Go to Administrate Types Annotation types to manage your annotation types.

To create a new annotation type, click on the New... button. This behaves differently than other

buttons found elsewhere and you must select one of the 8 different types which can be split in 4

main groups.

¢ Integer, Long, Float and Double for numerical annotation types.

¢ String and Text for textual annotation types. The difference is that String:s can have a maximum
length of 255 characters and can have an attached list of predefined value. Text annotation types
have no practical limit and are always free-text.

¢ Boolean for declaring annotation types that can take one TRUE/FALSE values.

* Date for declaring annotation types used as calendar/time stamps.

Note
These distinctions matter essentially to database administrators who need fine tuning of

database settings. Therefore, creation of annotation type should be supervised by system ad-
ministrators.

The Edit annotation type window is opened in a pop-up. It contains four different tabs.

1 http://www.mged.org/Workgroups/MIAME /miame.html

60

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Annotations

11.1.1. Properties

Figure 11.1. Annotation type properties

©) http:/flocalhost: 8080 - Edit annotation type — Temperatus - 0] x|

Edit annotation type -- Tampearature @

Value type Float

Name |Tem perature |

External ID | |

Multiplicity u ar empty = unlimited

Dafault value | |

Required for MIAME [
Protocol parameter [~

Dascription

5
[= required infarmation

Annotation type | Options | ltem types | Units | Categaories

i Save || 3 Cancel |

Done

Name
The name of the annotation type. See Section 18.3.3, “Tab2Mage export” (page 105) if you are
going to use this annotation type when exporting Tab2Mage files.

External ID

An ID identifying this annotation type in an external database. This value can be used by tools
that need to update annotation types in BASE from external sources. The value does not have
to be unique.

Multiplicity
The maximum number of values that can be entered for this annotation type. The default is 1.
A value of 0, means that any number of values can be used.

Default value
A value that can be used as the default when adding values.

Required for MIAME

If a value must be specified for this annotation type in order for the experiment to be compliant
with MIAME.

Protocol parameter
If the annotation type is a protocol parameter. As a protocol parameter an item can only be
annotated if a protocol that includes this parameter has been used. See Section 13.2.2, “Protocol
parameters” (page 75) for more information.

Description
A short textual description of the to clarify the usage.

61

Annotations

11.1.2. Options

Figure 11.2. Annotation type options

©) http:/flocalhost: 8080 - Edit annatation type — Temperatus - 0] x|
Edit annotation type -- Temperature @
Interface ¢ textbox © selectionlist € radiobuttons/checkboxes
Min value |n |empt'_.r=nnlimit
Max value |1nn |emptg,r=nn lirmit
Input box width
Values
]

One enumeration value perline

Annotation type | Options | ltem types | Units | Categories

& Save || 3 Cancel |

Done

The available options in this tab depends on the type of annotation type, eg. if is a string, numeric
or another type.

Interface
Select the type of graphical element to use for entering values for the annotation type. You can

select between three different options:
¢ text box: The user must enter the value in a free-text box.
¢ selection list: The user must select values from a list of predefined values.

¢ radiobuttons/checkboxes: The user must select values by marking checkboxes or radiobut-

tons.
The last two options requires that a list of values are available. Enter possible values in the

Values which will be activated automatically.
Tip
In term of usability, a drop-down list can be more easily navigated especially when the

number of possible values is large, and because selection-list and drop-down list allow
use of arrow and tab for selection.

Min/max value
Available for numerical annotation types only. Specifies the minimum and maximum allowed

value. If left empty, the bound(s) are undefined and any value is allowed.

Min/max value
Available for numerical annotation types only. Specifies the minimum and maximum allowed
value. If left empty, the bound(s) are undefined and any value is allowed.

62

Annotations

Max length
The maximum allowed length of a string annotation value. If empty, 255 is the maximum length.
If you need longer values than that, use a text annotation type.

Input box width/height

A suggested display width and height of the element used for input. These values are ignored
in the current implementation.

Values
A list of predefined values that the user is allowed to select from. This option is only activated
if the Interface option is set to selection list or radiobuttons/checkboxes. Actual values can
be supplied using one line for each value (a return entry is used as separator).

11.1.3. Item types

Figure 11.3. Annotation type items

&) http/flocalhost: 8080 - Edit annotation type - Temperaturs - O] x|
Edit annotation type -- Temperature @
Enabled for Disabled for
Sample] Array batch *

Array design
Array slide
Bioassay
Bioassayset

II' Biosource
Extract
Hybridization
Labeled extract
Plate
Plugin configur...
Plugin definiti...
Raw bioassay
Scan L 2

Annotation type | Options | Itam types | Units | Categories |

| & Save ” (%] Cancell

Done

On this tab you select the item types that you wish to annotate with the annotation type. Simply
use left and right buttons to move selection options between the Enabled for and Disabled for lists.

Note

If the annotation type has been marked as a Protocol parameter, these settings are ignored,
with one exception. If you wish to view parameter values in the list view for a specific item
type you must select the item type here. Otherwise the parameter will not be present as a
displayable column.

63

Annotations

11.1.4. Units

Figure 11.4. Annotation type units

©) http/flocalhost: 8080 - Edit annctation type - Temperatu - O] x|
Quantity | Temperature j|

Default unit | Celsius - °C j|

Changing the default unit triggers a conversion of existing annotation
A yalues to the new unit. This may result in loss of precision due to rounding
ortruncation.

Usa units Do not usa

Fahrenheit- °F
Celsius - °C
Kelvin - K

O = can't be changed later

Annotation type | Options | ltem types | Units | Categories

& Ssave || 3 Cancel |

Done

Numerical annotation types can optionally be given a quantity and unit.

Quantity
Select which quantity to use for the annotation type. If you don't want to use units, select the
do not use units option.

The quantity can't be changed later

Once a quantity has been selected and saved for an annotation type, it is not possible to
change it to another quantity.

Default unit
This list will be populated with units from the selected quantity. You must select one default
unit which is the unit that is used if a user leaves out the unit when annotating an item. The
selected unit is also the unit that is used internally when storing the values in the database.

Do not change the default unit

If you change the default unit for an existing annotation type, all annotation values that
exists for it, must be converted to the new unit. This may result in loss of precision due
to rounding/truncation errors.

Use units
By default, all units of the selected quantity can be used when annotating items. If you want, you
may force the users to use some specific units by moving units into the Use units list. This is
recommended since the range of available units is usually quite large. For example, if the weight
of something is normally measured in milligrams, it may make sense to leave out kilograms, and
only use microgram, milligram and gram.

64

Annotations

11.1.5. Categories

Annotation type can be grouped together by placing them in one or more categories. This enhances
display by avoid overcrowding the list of annotation types presented to users. It also allows to improve
the display of information.

The Categories list displays the currently associated categories. Use the Add categories button to
add more categories, or the Remove button to remove the selected categories.

11.2. Annotation type categories

Annotation Type Categories allow grouping of related Annotation Types, based on users require-
ments.

For managing categories go to Administrate Types Annotation Type categories.

Example 11.1. Annotation category examples

* A category Hematology Descriptors could be created to group together annotation types such
as Lymphocyte count and Hematocrite

* A category Plasma Clinical Descriptors could be created to group together annotation types
such as ALT activity (UI/mL) and LDH activity (UI/mL)

11.3. Best Practices and Tab2Mage Export
functionality

See Section 18.3.3, “Tab2Mage export” (page 105).

11.4. Annotating items

Entering annotation values follow the same pattern for all items that can have annotations. They
all have a Annotations & parameters tab in their edit view. On this tab you can specify values
for all annotation types assigned to the type of item, and all parameters that are attached to the
protocol used to create the item. Some items, for example biosources and array designs cannot
have a protocol. In their case the tab is labelled Annotations.

65

Annotations

Figure 11.5. Annotating a sample

) httpi/flocalhost: 8080 - Edit sample - Sample A.00h - Mazilla - O] x|
Categories | -all- j|

Temperature (Float)

X 5.8 |

¥ Time ihours)

¥ = Has value(s) < = Protocol parameter

Sample | Parents | Annotations & parameters | Inherited annotations

& Save || 3 Cancel |

Daone

Click on an entry in the list of annotation types to show a form for entering a value for it to the right.
Depending on the options set on the annotation type the form may be a simple free text field, a list
of checkboxes or radiobuttons, or something else.

Annotation types with an X in front of their names already have a value.
Annotation types marked with angle brackets (€¥) are protocol parameters.

Select an option in the Categories list to filter the annotation types based on the categories they
belong to. This list contains all available categories, and three special ones:

¢ all: Display all annotation types

* protocol parameters: Display only those annotation types that are parameters to the current
protocol.

* uncategorized: Display only annotation types that has not been put into a category.

11.4.1. Inheriting annotations from other items

An item may inherit annotations from any of it's parent items. E.g. an extract can inherit annota-
tions from the sample or biosource it was created from. This is an important feature to make the
experimental factors work. Annotations that should be used as experimental factors must be in-
herited to the raw bioassay level. See Section 18.3.2, “Experimental factors” (page 104) for more
information about experimental factors.

66

Annotations

Figure 11.6. Inheriting annotations from a parent item

£} http.//localhost: 8080 - Edit raw bioassay -- Raw bioassay A.00h - - O] x|

Edit raw bioassay -- Raw bioassay A.00h @

Annotation/parameter valuas
5.80

ElD I~ sample A.00h (Sample)

R ™ Time (hours) [0]

ElD [« Biosource A (Biosource)
B Drug resistance [medium]

'f:} = Annotation ¢ = Protocol parameter
{] = Mot a parent itern

Raw bioassay | Annotations & parameters | Inherited annotations

@& Save || 3 Cancel |

Done

On this screen is a tree-like structure in two levels. The first level lists all parent items which has at
least one annotations. The second level lists the annotations and protocol parameters for the item.
Selecting an item in the first level will inherit all annotations from that item, including those that
you maybe add later. Selecting an annotation or protocol parameter at the second level will inherit
only the selected one.

Note

¢ The inheritance is implemented by reference. This means that if you change the value of an
annotation the new value is automatically picked up by those inheriting it.

® You cannot inherit annotations from an item which does not have annotations.

¢ If you delete an annotation from a parent item, the inheritance will be lost, even if you later
add a value again.

Warning

If you rearrange links to parent items after you have specified inheritance, it may happen that
you are inheriting annotation from non-parent items. This will be flagged with a warning icon
in the list, and must be fixed manually. The item overview tool is an excellent help for locating
this kind of problems. See Section 6.6, “Item overview” (page 33).

11.4.2. Mass annotation import plug-in

BASE includes a plug-in for importing annotations to multiple items in one go. The plug-in read an-
notation values from a simple column-based text file. Usually, a tab is used as the delimiter between

67

Annotations

columns. The first row should contain the column headers. One column should contain the name
or the external ID of the item. The rest of the columns can each be mapped to an annotation type
and contains the annotation values. If a column header exactly match the name of an annotation
type, the plug-in will automatically create the mapping, otherwise you must do it manually. You
don't have to map all columns if you don't want to.

Each column can only contain a single annotation value for each row. If you have annotation types
that accept multiple values you can map two or more columns to the same annotation type, or you
can add an extra row only giving the name and the extra annotation value. Here is a simple example
of a valid file with comma as column separator:

'Time' and 'Age' are integer types

'Subtype' is a string enumeration

'Comment' is a text type that accept multiple values
Name, Time (hours),Age (years), Subtype, Comment

Sample #1,0,0,alfa,Very good

Sample #2,24,0,beta, Not so bad

Sample #2,,,,Yet another comment

The plug-in can be used with or without a configuration. The configuration keeps the regular ex-
pressions and other settings used to parse the file. If you often import annotations from the same file
format, we recommend that you use a configuration. The mapping from file columns to annotation
types is not part of the configuration, it must be done each time the plug-in is used.

The plug-in can be used from the list view of all annotatable items. Using the plug-in is a three-step
wizard:

1. Select a file to import from and the regular expressions and other settings used to parse the file.
In this step you also select the column that contains the name or external ID the items. If a
configuration is used all settings on this page, except the file to import from, already has values.

2. The plug-in will start parsing the file until it finds the column headers. You are asked to select
an annotation type for each column.

3. Set error handling options and some other import options.

68

Chapter 12. Experimental platforms
and data file types

12.1. Platforms

An experimental platform in BASE can be seen as an item representing the set of data file types
that are produced or needed by a given experimental setup. For example, the Affymetrix platform
(as defined in BASE) uses CEL files for raw data and CDF files for array design information.

The concept of a platform is also tightly coupled to the ability to keep data in files instead of importing
it to the database. When you have selected a platform for a raw bioassay or an array design, you
also know which files you should provide.

BASE comes pre-installed with two platforms; A generic platform and the Affymetrix platform. Other
platforms, such as Illumina, are available as non-core plug-in packages, see Section 4.3, “BASE

plug-ins site” (page 7). An administrator may define additional platforms and file types.

You can manage platforms going to Administrate Platforms Experimental platforms.

Figure 12.1. Platform properties

€} http/flocalhost: 8080 - Create platform - Mozilla Firefo - O] x|

Create platform (8

Name |New platfarm |

External ID | |

File-only & o C yes
Raw data type | - any - j|

Channels | |

De=scription

]
[= required information
O = can't be changed later

Platform | Data file types

& save || €3 cancel

Daone

Name
The name of the platform

External ID
An ID that is used to identify the platform. The ID must be unique and can't be changed once
the platform has been created.

69

Experimental plat-
forms and data file types

File-only
If the platform is a file-only platform or not. File-only platforms can't have it's data imported into
the database. This option can't be changed once the platform has been created.

Raw data type
If you have selected file-only=no, you may select a raw data type. This will lock this platform to
the selected raw data type. If you select - any -, raw data of any raw data type can be used. This
option can't be changed once the platform has been created.

Channels
If you have selected file-only=yes, you must enter the number of channels the platform uses.
This information is needed in the analysis module of BASE to create the proper database tables.
This option can't be changed once the platform has been created.

Description
A description of the platform.

Figure 12.2. Select data file types

©) http://localhost: 8080 - Edit platform - Affymetrix - Mozi - 10| x|

Edit platform -- Affymetrix {8

Data file types

) Add data file types...

CEL file [x]

@ Remove

= Required Iv"_

FPlatfarm | Data file types

iy save || €3 Cancel

Done

Data file types
This list contains the file types already associated with this platform. An [x] at the end of the
name indicates a required file.

Required
This checkbox will modify the required flag for the selected file types.

Note

The requried flag is not a hard requirement. It is only used for generating warnings when
validating an experiment.

Add data file types
Opens a popup window that allows you to add more file types to the platform.

70

Experimental plat-
forms and data file types

Remove
Removes the selected file types from the platform.

12.1.1. Platform variants

It is possible for an administrator to define variants of a platform. The main purpose for this is to
be able to select additional file types that are only used in some cases. The file types defined by the
parent platform are always inherited by the variants.

You can create new variants from the single-item view of a platform. This view also has a Variants
tab which lists all variants that has been defined for a platform.

12.2. Data file types

Each file type used by a platform must be registered as a data file type. For example, CEL and CDF
files are file types used by the Affymetrix platform. There are several purposes of a data file type:

¢ Describe the file type and make it identifiable. Each file type must have a unique ID which makes
it possible to find out if a specific file has been added to an item. For example, to find the CEL
file of a raw bioassay.

* Connect a specific file type with a generic file type. For example, the CEL file is used to store raw
data for an experiment. Another platform may use a different file type. Both file types are of the
generic type raw data. This makes it possible for client applications or plug-ins to find the raw data
for an experiment without actually knowing which file types that are used on various platforms.

* Make it possible to validate and extract metadata from attached files. This is done by plug-ins. A
data file type may specify which plug-in to use for validation and metadata extraction. Currently,
BASE ships with plug-ins for CEL and CDF files.

You can manage data file types by going to Administrate Platforms Data file types.

71

Experimental plat-
forms and data file types

Figure 12.3. Data file type properties

) http:/flocalhost: 8080 - Create data file type - Mozilla Firef - O] x|
Name |NEl.n.r data file type |
External ID | |
Item type | Array design j|
File extension | |
Generic file type | - hone - j|

Validator | |

Metadata reader | |

Description

-
[= required information

O = can't be changed later

Data file type

@ Save B Cancel

Done

Name
The name of the file type.

External ID
An ID that is used to identify the file type. The ID must be unique and can't be changed once
the file type has been created.

Item type
The type of item files of this file type can be attached to. This option can't be changed once the
file type has been created.

File extension
The commonly used file extension for files of this type. Optional.

Generic type
The generic type of data that files of this type contains. For example, CEL files contains raw data
and CDF files contains a reporter map (in BASE terms).

Validator
The name of the Java class that can be used to validate if a given file is a valid file of this type.
The class must implement the DataFilevValidator interface. See Section 26.6.5, “File validator
and metadata reader plug-ins” (page 203).

Metadata reader
The name of the Java class that can be used to extract metadata from a file of this type. The class
must implement the DataFileMetadataReader interface. See Section 26.6.5, “File validator and
metadata reader plug-ins” (page 203).

72

Experimental plat-
forms and data file types

Description
A description of the file type.

73

Chapter 13. Protocols and protocol
types

Information about laboratory standard operating procedure and protocols can be tracked in BASE
using two structures, the use of which is detailed in the following sections.

13.1. Protocol types

Protocol Type allows classification of protocols based on their usage and purpose in the laboratory
workflow. By default, BASE creates the 8 main Protocol types and those correspond to the main
protocol families identified by MIAME requirements and applied in a canonical DNA microarray ex-
periment meant for surveying gene expression. These 8 protocol types are namely Printing, Sam-
pling, Pooling, Extraction, Labeling, Hybridization, Scanning and Feature extraction.

New applications of DNA microarray technology, for instance DNA binding site identification, imposes
the creation of new protocol type in addition to those built-in in BASE.

Follow MIAME recommendations

It is advised to define the protocol type Name so that it is compatible with the MIAME require-
ments and recommendations issues by microarray data repositories.

You can manage the protocol types by going to Administrate Types Protocol Type.

Figure 13.1. Protocol type properties

) hitp:/flocalhost: 8080 - Edit protocel type — Ext - 0] x|
Name |E:tractinn |

Dascription [Protocols used for creating extracts.

=
[= required informatbion

Protocol type

2y Save || 23 Cancel |

Daone

Name
The name of the protocol type.

Description
A description of the protocol type.

74

Protocols and protocol types

13.2. Protocols

In BASE, protocols can be created by two routes. Either from the single-item view of a protocol type
or from the list view of protocols.

13.2.1. Protocol properties

Figure 13.2. Protocol properties

) http://localhost: 8080 - Create protocel - Mozilla Fire - 0] x|
Nama |New protocal |
Type | Extraction =l
File | -none - j” Select... |

Dascription

4
[= required information

Protocol | Parameters

@& Save || 3 Cancel |

Done

This tab allows users to enter essential information about a protocol.

Name
The name of the protocol.

Type
The protocol type of the protocol. The list may evolve depending on additions by the server
administrator.

File
A document containing the protocol description, e.g. pdf documents from kit providers to the
protocol. Use the Select button to select or upload a file.

Description
A description of the protocol.

13.2.2. Protocol parameters

BASE users may declare parameters attached to a particular protocol. Parameters are selected from
a list of annotation types which have been flagged as parameters. Annotation types which has been
selected as parameters show up in the regular annotation dialog whenever the protocol is used for
an item. For more information see Chapter 11, Annotations (page 60).

75

Protocols and protocol types

Figure 13.3. Protocol parameters

©) httpi/flocalhost: 8080 - Create pretocel - Mozilla Firefox - O] x|
Annotation types
+ | () Add annotation types... |
| (=] Remaove |
hd
Protocol | Parameters |

| @& Save || (%] Cancell

| Daone

Annotation types
This list contains the annotation types selected as parameters for the protocol.

Add annotation types

Use this button to open a pop-up where you can select annotation type to use for parameters.
The list only shows annotations types which has the Protocol parameter flag set.

Remove
Removes the selected annotation types from the list.

76

Chapter 14. Hardware

Information about laboratory equipment can be tracked in BASE using two structures, the use of
which is detailed in the following sections.

14.1. Hardware types

Hardware Type allows classification of hardware based on their usage and purpose in the laboratory
workflow. By default, BASE creates the 3 main hardware types and those correspond to the main

hardware families identified by MIAME requirements'. These 3 hardware types are Print Robot,
Scanner, and Hybridization station.

In case those built-in types are not enough, it is possible to create new ones.
You can manage the hardware types by going to Administrate Types Hardware types.
Figure 14.1. Hardware type properties

©) http://localhost: 8080 - Edit hardware type — Hybi - O] x|

Edit hardware type -- Hybridization station @

Name Hybridization station |
Dascription [Antomate the hpbridization of microarrcaps
on slides.
4
[= required information
Hardware type

i Save || 3 Cancel |

Daone

Name
The name of the hardware type.

Tip

It is advised to define the name so that it is compatible with the MIAME requirements and
recommendations issues by microarray data repositories.

Description
A description of the hardware type.

14.2. Hardware

In BASE, hardware can be created by two routes. Either from the single-item view of a hardware
type or from the list view of hardware.

1 http://www.mged.org/Workgroups/MIAME /miame.html

77

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Hardware

Figure 14.2. Hardware properties

©) httpi/flocalhost: 8080 - Create hardware - Mozilla Firefox

Creata hardware (8

Namea |New hardware |
Varsion | |
Type | Hybridization station j|

Dascription

&l
[= required information

Hardware

| @& Save || (%] Cancell

Done

Name
The name of the hardware.

Version
The version number or model of the hardware.

Type
The hardware type of the hardware. The list may evolve depending on additions by the server

administrator.

Description
A description of the hardware.

78

Chapter 15. Software
15.1. Software types

There is only one Software Type (Feature Extraction) in BASE and it is not possible to create new
types. This is a difference compared to the way hardware can be managed.

15.2. Softwares

In BASE, software can be created by 2 routes. Either from the single-item view of a software type
or from the list view of software.

Figure 15.1. Software properties
) httpi/flocalhost: 8080 - Edit software - GenePix Pro - 3] x|

Edit software -- GanaPix Pro {8

Name |GenEPi: Pro |

Version |5_u |

Type | Feature extraction j|

Dascription

~a
[= required information

Software

| i&» Save || BCancell

Done

Name
The name of the software.

Version
The version number of the software.

Type
The software type of the software.

Description
A description of the software.

79

Chapter 16. Array LIMS

Arrays are at the core of the BASE business and are essential elements to describe in order to be

MIAME! compliant. It is also critical to track and manage information about microarray design as
accurately as possible since mistakes could prove extremely costly in downstream analysis.

As a good practice, all array related information should be entered into BASE prior to work on
describing the sample processing and hybridizations events making up a microarray experiment
is begun.

BASE is engineered to support microarray printing facilities. The system therefore offers objects to
describe plates, their geometries, and the events (e.g., merging and printing) affecting them. The
first section of this chapter deals with this functionality as well as plate management. Users buying
arrays from commercial sources can ignore the plate management component and immediately jump
to Section 16.2, “Array designs” (page 80).

16.1. Plates

TODO

16.2. Array designs

Array designs should be understood as a plan which can be realized during a printing process
producing microarray slides. During the course of the printing process, reagents may run out leading
to the interruption of this process. All slides created during this printing process belong to the
same printing batch. It is the array slide that will eventually be used in a hybridization event. BASE
allows user to track those 3 entities with great details. This is an important functionality for users
producing their own arrays and for those caring for quality control and tracking of microarray slides
in a printing facility. The following sections detail how to use BASE to help in these tasks.

Tip

It's highly recommended to have read Section 6.3, “Working with items” (page 19) before con-
tinuing with this chapter.

Use Array LIMS Array designs to get to the list page with array designs.

16.2.1. Properties
Array design

Name
Provide an sensible name for the design (required).

Platform
Select the platform / variant used for the array design. The selected options affects which files
that can be selected on the Data files tab.

Arrays/slide
The number of sub-arrays that can be placed on a single slide. The default value is 1, but some
platforms, for example Illumina, has slides with 6 or 8 arrays.

Description
Provide other useful information about the array design in this text area.

1 http://www.mged.org/Workgroups/MIAME /miame.html

80

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Array LIMS

Click on the Save button to store the information in BASE or on the Cancel button to abort.

Annotations and inherited annotations

This allows you to input values associated to annotation types devised to refine array design de-
scription. Read more about annotations in Chapter 11, Annotations (page 60).

16.2.2. Importing features to an array design

Importing features is an important step in order to fully define an array design. It should be noted
that BASE does not enforce the immediate feature import upon creation of array design. However,
it is STRONGLY advised to do so when creating an array design. Performing the import enables use
of the array design in downstream analysis with no further trouble. It also matters when importing
raw bioassay data and matching those to the corresponding array design.

Depending on which platform and/or data files you selected when you created the array design
the process to import features is different. For example, if you selected the Affymetrix platform,
which is a file-only platform, the feature information has already been extracted from the CDF file
(if you selected one). If the selected platform doesn't extract information from the selected data file
automatically this may be done manually by executing an import plug-in.

From the array design item view, click on the Import button and use the reporter map importer
and an appropriate plug-in configuration when following the instructions in Chapter 19, Import of
data (page 108). If the import run is successful, go to the array design list view. The Has features
column will show Yes (db: x, file: y) where x is the number of features actually imported into the
database.

Note

The Import button only shows up if the logged in user has enough permissions.

Verify that probsets in a CDF file exist as reporters

File-only platforms, such as Affymetrix, require that all probesets must exist as reporters before
data can be analysed. For other platforms this is usually checked when importing the features
to the database. Since no import takes place for file-only platforms, another manual step takes
it place. Use the Import button in the array design item view and select the Affymetrix CDF
probeset importer plug-in. If you have enough permissions this function will also let you
create missing reporters.

16.3. Array batches
16.3.1. Creating array batches

Beside the common way of creating items in BASE, an array batch can also be created directly from
an array design, both in list view and single item view.

In list view of array design

Click on the “ icon available from the Batches column of the array design you want to use.
Tip

As default in BASE the Batches column is hidden and need therefore be made visible first,
see Section 6.4.3, “Configuring which columns to show” (page 27)

New batch... is the corresponding button in single item view. The current array design will auto-
matically be filled in the array design property for the new batch.

81

Array LIMS

16.3.2. Properties

Name
The name of the array batch (required).

Array design
Array design that is used for the batch.

Print robot
The print robot that is used.

Protocol
The printing protocol that was followed when producing the array batch

Click on the Save button to store the information in BASE or on the Cancel button to abort.

See Chapter 11, Annotations (page 60) for information about annotating items and inherit anno-
tations.

How many slides each batch has can be found in the Slides column, list view page.

16.4. Array slides

Use Array LIMS Array slides to get to the list page of array slides.

16.4.1. Creating array slides

In BASE, array slides can be created, except the common way, by 2 routes:

from the array batch list page

Clicking on the J icon in the Slides column for the batch you want to add a slide to. Corre-
sponding button in the view page of a batch is New slide... .

using a wizard to create multiple slides simultaneously
This can be started from three different places:

array batch list view by clicking on #3 in the Slides column of the batch that should be used.
* Using the Create slides in a single item view of an array batch.

¢ In the list page of array slides, using the Create multiple... button
The wizard is described further down in the section called “Multiple slides wizard” (page 83) .

82

Array LIMS

16.4.2. Properties

Figure 16.1. Create new array slide

€) hitpe/localhost:B080 - Create array slide - Mozilla Firefox

Create array slide

Mame |New array slide |

Barcode | |
Destroyed [

Array batch | || select...

Description

=
@ = required information

Array slide | Annotations | Inherited annotations

| & Save || 3 Cancel |

Daone

Name
The name of the array slide (required).

Barcode
Does the array slide have a barcode, it can be put here.

Destroyed
This check-box can be ticked to mark the slide as destroyed, lost or damaged.

Array batch
Array batch that the slide belongs to (required).

Index
The index of the array slide in selected array batch.

Description
Any information useful information about the slide can be in this field.

Click on the Save button to store the information in BASE or on the Cancel button to abort.

Multiple slides wizard

As mentioned above there is an alternative to create one slide at a time if you have many to add.
There is a wizard that can help you to create at the most 999 slides in one go. The wizard is in two
steps, both showed in the picture Figure 16.2, “Create multiple array slide” (page 84) .

1. The first step reminds alot of the normal edit window of an array slide, but there are some dif-
ferences:

83

Array LIMS

Quantity
Number of slides to create with this wizard (required and must be between 1 and 999)

Start at
The index number to start from when indexing the name of the slides.

Pad size
The index will be filled out with zeros in front to always have this length.
Press Next to continue to next step of the wizard.

Important

Be sure to get everything right before proceeding, because it is not possible to go back from
step 2.

2.In step 2 should the barcodes for the array slides be entered, for those which have one. The
autogenerated names of the slides can also be changed if that is wanted, as long as no name-field
is left empty.

Figure 16.2. Create multiple array slide

&) nttpiiocalhostB080 - Create array sldes - Mozilla Firefox &) nttpiiocalhostB0B0 - Create array sldes - Mozilla Firefox
Create array slides @& Create array slides @&
Name |New slides. | Name Barcode
Array batch | ~l|[select... 1 |Mew slides.01
Quantity 10 (1-999) 2 [Mew slides.02
Start at 1 Pad size | | 3 [Newslides.03
The index number will be padded with zeroes to 4 |Mew slides.04
this length (ie, 1 --> SIide_.OOl; 10_ --> Slide.010). 5 [Newslides .05
Leave empty for automatic selection. -
A 6 |Mew slides.06
Description
7 |Mew slides.07
8 |Mew slides.08
9 |Mew slides.09
a]
o = required information 10 [Mew slides.10
Array slides Names and barcodes
P Next || cancel | | @ save ||) cancel |
Daone Done

Fill in the necessary information as exhaustively as possible.
Click on the Save button to store the information in BASE or on the Cancel button to abort.

See Chapter 11, Annotations (page 60) for information about annotating items and inherit anno-
tations.

84

Chapter 17. Biomaterial

17.1. Introduction

The generic term biomaterial refers to any biological material used in an experiment. Biomaterial
is subdivided in 4 components, biosource, sample, extract and labeled extract. The order used in
presenting those entities is not innocuous as it represents the sequence of transformation a source
material undergoes until it is in a state compatible with the realization of a microarray hybridization.
This progression is actually mimicked in the BASE Biomaterial LIMS menu again to insist on this
natural progression.

Biosources correspond to the native biological entity used in an experiment prior to any treatment.

Samples are central to BASE to describe the sample processing. So samples can be created from
other samples if user want to track sample processing event in a finely granular fashion.

Extracts correspond to nucleic acid material extracted from a tissue sample or a cell culture
sample.

Labeled extracts correspond to nucleic acid materials which have undergone a marking procedure
using a fluorescent or radioactive compound for detection in a microarray assay.

BASE allows users to create any of the these entities fairly freely, however it is expected that users
will follow the natural path of the laboratory workflow.

Tip

It is highly recommended that you have read Section 6.3, “Working with items” (page 19) before
continuing with this chapter.

17.2. Biosources

17.2.1. Properties

Biosource

This tab allows users to enter essential information about a biosource.

Name

This is the only mandatory field. BASE by default assigns New biosource as name but it is
advised to provide unique sensible names.

External ID

An external reference identifiers (e.g. a patient identification code) can be supplied using this
field.

Description

A free text description can be supplied using this field.

85

Biomaterial

Figure 17.1. Biosource properties

=5] hitp:localhost:B080 - Create biosource - Mozilla Firefox

Create biosource

Mame |New hinsource |
External ID | |
Description

“a
@ = required information

Biosource | Annotations

| & save || 3 cancel |

Daone

Annotations

This allows BASE users to use annotation types to refine biosource description. More about anno-
tating items can be read in Section 11.4, “Annotating items” (page 65) .

17.3. Samples

Samples result from processing events applied to biosource material or other samples before they
are turned into an extract. In other words, samples can be created from biosource items or from
one or more sample items. When a sample is created from several other samples, a pooling event
is performed.

For every step of transformation from biosource to sample, it is possible to provide information about
the protocol used to perform this task. It is not enforced in BASE but it should serve as guidance
when devising the granularity of the sample processing task. Also, it is good practice to provide
protocol information to ensure MIAME compliance.

Use Biomaterial LIMS Samples to get to the list of samples.

17.3.1. Create sample

Beside the common way, using the New... button, a sample can be created in one of the following
ways:

from either biosource list- or single view- page.
No matter how complex the sample processing phase is, at least one sample has to be anchored

to a biosource. Therefore, a natural way to create an sample is to click on “ in the sample
column of the biosource list view. There is also a corresponding button, Create sample... in the
toolbar when viewing a single biosource.

from the sample list page
Pooled samples can also be created by first selecting the parents from the list of samples and
then press Pool... in the toolbar.

86

Biomaterial

17.3.2. Properties
Sample

Name
The sample's name(required). BASE by default assigns names to samples (by suffixing s# when
creating a sample from an existing biosource or New Sample otherwise) but it is possible to
edit at will.

External ID
An identification used to identify the sample outside BASE.

Original quantity
This is meant to report information about the actual mass of sample created.

Created
A date when the sample was created. The information can be important when running quality
controls on data and account for potential confounding factor (e.g. day effect).

Registered
The date at which the sample was entered in BASE.

Protocol
The protocol used to produce this sample.

Bioplate
The bioplate where this sample is located.

Biowell
Biowell that holds this sample. Bioplate has to be defined before biowell can be selected.

Description
A text field to report any information that not can be captured otherwise.

87

Biomaterial

Figure 17.2. Sample properties

) Create sample - Mozilla Firefox Hi=lE
Hame MNew sample
External ID
Original quantity iug)
Created
Registered 2009-01-21
Protocol - none - ﬂ
Bioplate - none - || select. .
Biowell - none - || select...

Description

a

[= reguired information

Sample Parents Annotations & parameters | Inherited annotations

i Sawve || E3 Cancel |

Done X 13

Parents

This is meant to keep track of the sample origin. BASE distinguished between two cases which are
controlled by the Pooled radio-button in the edit pop-up window.

¢ If the parent is a biosource the radio-button is set to No . This will make the biosource select
button active, which allows users to point to a biosource from which the sample originates from.

* When the parent is one or several other samples the radio-button is set to Yes . Upon selection,

the biosource select button is deactivated and the samples box and button are activated. This
allows users to specify one or more samples to be selected from a sample list view page.

Annotations & parameters

As seen in the biosource section, this tab allows users to further supply information about the
sample provided they have defined or shared annotation types to annotate sample items.

To learn more about annotation types and how to define a value for a type, please refer to Chapter 11,
Annotations (page 60)

Inherited annotations

This tab contains a list of those annotations that are inherited from the sample's parents. Informa-
tion about working with inherited annotations can be found in Section 11.4.1, “Inheriting annota-
tions from other items” (page 66) .

88

Biomaterial

17.4. Extracts

Extract items should be used to describe the events that transform a sample material into an extract
material. An extract can be created from one sample item or from one or more extract items. When
an extract is created from several other extracts, a pooling event is performed.

During the transformation from samples to extracts, it is possible to provide information about the
protocol used to perform this task. It is not enforced in BASE but it should serve as guidance when
devising the granularity of the sample processing task. Also, it is good practice to provide protocol
information.

17.4.1. Create extract

Beside the common way, using the New... button, an extract can be created in one of the following
ways:

from either sample list- or single view- page.
No matter how complex the extract processing phase is, at least one extract has to be anchored

to a sample. Therefore, a natural way to create an extract is to click on «J in the extracts column
for the sample that should be a parent of the extract.

There is also a corresponding button, Create extract... in the toolbar when viewing a single
sample.

from the extract list page
Pooled extract can also be created by first selecting the parents from the list of extracts and then
press Pool... in the toolbar. The selected extracts will be put into the parent property.

17.4.2. Properties

Extract

Name
A mandatory field for providing the extract name. BASE by default assigns names to extract (by
suffixing e# when creating an extract from an existing sample or New extract otherwise) but
it is possible to edit it at will.

External ID
The extracts identification outside BASE

Original quantity
Holds information about the original mass of the created extract.

Created
The date when the extract was created. The information can be important when running quality
controls on data and account for potential confounding factor (e.g. day effect)

Registered
This is automatically populated with a date at which the sample was entered in BASE system.

Protocol
The extraction protocol that was used to produce the extract.

Bioplate
The bioplate where this extract is located.

89

Biomaterial

Biowell
Biowell that holds this extract. Bioplate has to be defined before biowell can be selected.

Description
A text field to report any information that not can be captured otherwise.

Figure 17.3. Extract tab

™) Create extract - Mozilla Firefox H=1E
Hame Mew extract
External 1D
Original quantity (gl
Created /| Calendar...
Registered 2009-01-21
Protocol - none - j
Bioplate - none - || select...
Biowell - none - j Select...

Description

0 = reguired information
Extract Parents Annotations & parameters | Inherited annotations

) Save || i3 cancel |

i

Done %I

Parents

This important tab allows users to select the extract origin. BASE distinguished between two cases
which are controlled by the Pooled radio-button.

¢ If the parent is a sample the radio-button is set to No . The Sample select button is active and
allows users to point to the sample from which the sample originates.

* The parent is another extract and the radio-button is set to Yes . Upon selection, the samples

select button is deactivated and the extracts box and button are activated. This allows users to
specify one or more extracts to be selected from an extract list view page.

Annotations & parameters

As seen in the biosource and sample sections, this tab allows users to supply further information
about the extract, provided they have defined annotation types to annotation extract items or have
such elements shared to them.

To learn more about annotation types, please refer to Chapter 11, Annotations (page 60)

90

Biomaterial

Inherited Annotations

This tab contains a list of those annotations that are inherited from the extract parents. Information
about working with inherited annotations can be found in Section 11.4.1, “Inheriting annotations
from other items” (page 66) .

17.5. Labels

Before attempting to create labeled extracts, users should make sure that the appropriate label
object is present in BASE. To browse the list of labels, go to Biomaterial LIMS Labels

17.5.1. Properties

The label item is very simple and does not need much explanation. There are only two properties
for a label

Name
The name of the label(required).

Description
An explaining text or other information associated with the label.

17.6. Labeled extracts

Labeled extract items should be used to describe the event that transformed an extract material
in a labeled extract material. Labeled extracts can be created from extract items or from one or
more labeled extract items. When a labeled extract is created from several other labeled extracts,
a pooling event is performed.

During the transformation from extracts to labeled extracts, it is possible to provide information
about the protocol used to perform this task. It is not enforced in BASE but it should serve as
guidance when devising the granularity of the extract processing task. Also, it is good practice to
provide protocol information.

17.6.1. Creating labeled extracts

Beside the regular way of using the New... button in Biomaterial LIMS Labeled extracts , a labeled
extract can be created in one of following ways.

pooling selected labeled extracts
The toolbar at the list page of labeled extracts contains an addition Pool... button. This button
allows users to create pooled labeled extracts by selecting the list of labeled extracts used to
derived a new labeled extract and then click on the button.

This provides an easy and simple way to create pooled labeled extracts. The result of such process
is the creation of a new labeled extract, in which, when navigating to the parent tab, shows that
all the labeled extracts involved are already set and listed in the Labeled Extract box of the tab.

from the extract pages.
Following the laboratory workflow, a natural way to create a labeled extract from an extract is to

click on the & from the labeled extract column of the extract list view. Corresponding button,
New labeled extract is located on the single item view page for each extract. By creating a labeled
extract from an extract page will automatically set the extract as a parent.

from single item view of a label
Click on the New labeled extract... to use the current label and create a new labeled extract
with it pre-selected as Label .

91

Biomaterial

17.6.2. Properties

Labeled extract

Name
The name of the labeled extract (required). BASE by default assigns names to labeled extract(by
suffixing 1be# when creating a labeled extract from an existing extract or New labeled extract
otherwise) but it is possible to edit it at will

Label
Used to specify which dye or marker was used in the labeling reaction (required).

External ID
An id used to recognize the labeled extract outside BASE.

Original quantity
The mass of labeled extract that was created.

Created
A date should be provided. The information can be important when running quality controls on
data and account for potential confounding factor (e.g. day effect).

Registered
This is automatically populated with a date at which the labeled extract was actually entered
in BASE system.

Protocol
The labeling protocol that was used to produce the labeled extract.

Bioplate
The bioplate where this labeled extract is located.

Biowell
Biowell that holds this labeled extract. Bioplate has to be defined before biowell can be selected.

Description
A free text field to report any information that can not be captured otherwise.

Figure 17.4. Labeled extract properties

&) Create labeled extract - Mozilla Firefox Hi=1E3
Mame New labeled extract
External ID
Label o3 ﬂ
Original quantity {ug)
Created
Registered 2009-01-21
Protocol - none - j Select...
Bioplate - none - j Select...

Biowell -none - j

Description

a
& = reguired information

Labeled extract | Parents |Annotations & parameters | Inherited annotations

) Save || @ cancel |

Done J

92

Biomaterial

Parents

This important tab allows users to select the labeled extract origin. BASE distinguished between
two cases which are controlled by the Pooled radio-button.

¢ The parent is an extract

The radio-button is set to No . The Extract select button is active and allows users to point to one
and only one extract from which the labeled extract originates from.

* The parent is another labeled extract

The radio-button has to be set to Yes . Upon selection, the extract select button is deactivated
and the labeled extracts box and button are activated. This allows users to specify one or more
extracts to be selected from the labeled extract list view page.

Annotations & parameters

As seen in the biosource and sample sections, this tab allows users to further supply information
about the labeled extract provided they have defined annotation types to annotate labeled extract
items or have such elements shared to them.

Important

In order to use this feature, annotation type must be declared and made available. To learn
more about annotation types and how these are set, please refer to Chapter 11, Annotations
(page 60) .

Inherited annotations

This tab contains a list of those annotations that are inherited from the parents of the labeled extract.
Information about dealing with inherited annotations can be found in Section 11.4.1, “Inheriting
annotations from other items” (page 66) .

17.7. Bioplate

With bioplates it is possible to organize biomaterial such as samples, extracts and labeled extracts
into wells. Each plate has a number of wells that is defined by the plate geometry.

Use Biomaterial LIMS Bioplate to get to the list of bioplates.

17.7.1. Properties

Name
The bioplate name. The name does not unique but it is recommended to keep it unique. BASE
by default assigns New bioplate as name. This field is mandatory.

Plate geometry
Information about the plate design defining the number of rows and columns on the bioplate.
This field are mandatory and can only be set for new bioplates.

Freezer
The freezer where the bioplate is stored. Optional.

Barcode
Barcode of the bioplate. Optional.

Description
Other useful information about the bioplate. Optional.

93

Biomaterial

Figure 17.5. Bioplate properties

) Create bioplate - Mozilla Firefox HE=1E
Hame Mew bioplate

Plate geometry | 384-well (16 x 24) =]
Freezer - none - |

Barcode

Description

a

O = reguired information

Plate | Annotations

) Sawe ||) cancel |

Done X 1

Annotations

This allows BASE users to use annotation types to refine bioplate description. More about annotating
items can be read in Section 11.4, “Annotating items” (page 65) .

17.7.2. Biowell

Biowells existence are managed through the bioplate they belong to. Creating a bioplate will auto-
matically create the biowells on the plate, correspondingly deleting a plate will also remove the as-
sociated biowells. The only thing that can be changed for a biowell is the biomaterial it holds. Go

to the Wells-tab when viewing a bioplate and click on B in the biomaterial column for the specific

biowell you want to change. Assigning a biomaterial to a biowell can also be done when editing a
sample, extract or labeled extract item.

Properties

Bioplate
Shows which bioplate the biowell is located on. This property is read-only.

Coordinate
The biowell location on the bioplate in format [row,column]. This property is read-only.

Biomaterial type

The type of biomaterial stored in this biowell. This property must be selected before before a
biomaterial can be selected.

Biomaterial

Name of the biomaterial in this biowell. Before changing this you must select the appropriate
Biomaterial type.

94

Biomaterial

Figure 17.6. Biowell properties

) Edit biowell -- [0, 0] on bioplate Bioplate HE=1E
Edit biowell -- [0, 0] on bioplate Bioplate A &
Bioplate Bioplate A
Coordinate [0.0]
Biomaterial type |- none - ﬂ

Biomaterial - none - j

Biowell

) Sawe || £ Cancel |

Done

17.8. Hybridizations

A hybridization event corresponds to the application of one or more labeled extracts materials to

a microarray slide under conditions detailed in hybridization protocols. Use View Hybridizations
to get to the hybridizations.

17.8.1. Creating hybridizations

In BASE, there are two possible routes to create an hybridization object except the common way
with the New... button at hybridization list page.

from the labeled extract list view page

Select at least one labeled extract, to create a hybridization from, by ticking the selection boxes
before the name field.

Click on the New hybridization... from the toolbar of labeled extract list view.

from a labeled extract single item page

When viewing a label extract in single item view, click on the New hybridization... button from
the toolbar of the labeled extract item view.

95

Biomaterial

17.8.2. Properties

Hybridization

Figure 17.7. Hybridization tab

) hitp://localhost: 8080 - Create hybridization - Mozilla Firefox =] B
Create hybridization &
Name |NEl.n.r hybridization |
Arrays |1 |
Created |2UUB-UE-UB | || Calendar...
Registered 2008-02-08
Protocol | - none - j| Select..
Hardware | - none - j| Select..
Array slide | hone - j| Select...
Description

~a

[= required infarmation

Hybridization | Labeled extracts | Annotations & parameters | Inherited annotations

i) save || € Cancel

Done

Name
New hybridization is the BASE default name but it is strongly advise to provide a meaningful
and unique name (required).

Arrays
The number of sub-arrays on the slide that was used in this hybridization. The default value is
1, but some platforms, for example [llumina, has slides with 6 or 8 arrays. When the array-slide
property below is changed this value will be updated automatically to be consistent with the
number of sub-arrays on the used array-design.

Created
A date should be provided. The information can be important when running quality controls on
data and account for potential confounding factor (e.g. to account for a day effect)

Registered
This field is automatically populated with a date at which the hybridization was entered in BASE
system.

Protocol
The hybridization protocol that was used to do the hybridization.

Hardware
The hybridization-station that was used during the hybridization.

96

Biomaterial

Array slide
The array slide that was used in the hybridization.

Note

Ideally, The Array Slides should have been created but for those users with permission to
do, Array Slides could be generated at that point.

Description
A free text field to report any information that can not be captured otherwise

Labeled extracts

This important tab allows users to select the labeled extracts applied to an array slide, and specify
the amount of material used, expressed in microgram.

Use the Add labeled extracts button to add items and the Remove button to remove items. Select
one or several labeled extracts in the list and write the used mass and sub-array index in the fields
below.

Annotations & parameters

As seen in the biosource and sample sections, this tab allows users to supply further informa-
tion about the hybridization provided annotation types have been defined or shared to annotate
hybridization items.

Important

In order to use this feature, annotation type must be declared and made available. To learn
more about annotation types and how these are set, please refer to Chapter 11, Annotations
(page 60)

Inherited annotations
This tab contains a list of those annotations that are inherited from the labeled extracts. Information

about dealing with inherited annotations can be found in Section 11.4.1, “Inheriting annotations
from other items” (page 66) .

97

Chapter 18. Experiments and
analysis

18.1. Scans and images

When you have done your hybridization and scanned it, you can register information about the
scanning process as a Scan item in BASE. A scan item holds information about the scanning pro-
cess, such as which scanner and what settings you have used. It can also hold information about
the images that was produced as well as the actual image files.

Note
A scan does not have information about the spots or raw data. The process of analysing the
images is considered a separate step. This information is held by raw bioassays.

18.1.1. Scan properties

A scan has the following properties:

Name
The name of the scan.

Hybridization
The hybridization this scan comes from.

Scanner
The scanner that was used (optional).

Protocol
The protocol used for scanning (optional). Scanning parameters may be registered as part of the
protocol.

Description
A decription of the scan (optional).

A scan can have annotations. Read more about this in Chapter 11, Annotations (page 60).

18.1.2. Images

If you want you can upload the images from the scan to BASE. This is optional, but the images are
needed if you want to create spot images later on.

To upload images for a scan you must first go to the single-item view for the scan. On this page
you will find the Images tab which will take you to a list view of the images from this scan. New
images are created in the same way as any other item in BASE, by clicking the New... button. You
may add as many images as you like.

An image has the following properties:

Name
The name of the image. The name is automatically generated from the name of the scan, but
you may enter a different name.

File
The file containing the actual image data (optional). Use the Select button to select an existing
file or upload a new one.

Format
The image format (optional). You can select between TIFF, JPEG and Unknown.

98

Experiments and analysis

Preview
If the image is a preview image or the full scan.

Description
A description of the image (optional).

18.2. Raw bioassays

A Raw bioassay is the representation of the result of analysing one or more images from a Scan.
This typically generates a raw data file with lots of measurements for the spots on the hybridization.

Creating a new raw bioassay is a two- or three-step process:
1. Create a new raw bioassay item with the New button in the list view.
2. Upload the file(s) with the raw data and attach it/them to the raw bioassay.

3. The used platform may require that data is imported to the database. See Chapter 19, Import of
data (page 108). If the platform is a file-only platform, this step can be skipped.

Supported file formats
BASE has built-in support for most file formats where the data comes in a tab-separated

(or similar) form. Data from one hybridization must be in a single file. Support for other file
formats may be added through plug-ins.

18.2.1. Raw bioassay properties

Figure 18.1. Raw bioassay properties

) httpi/flocalhost: 8080 - Create raw bioassay - Maozilla Firsfex - O] x|
Name |NEI.n.r raw bicassay |

Array index |1 |

Platform | Affymetrix j|

Raw data type | j|

Array design | - none - j| Select...
Protocol | - none - j| Selact...
Scan | - none - j| Select...
Software | - none - j| Select...

Description

2
[= required information

Raw hioassay Data files | Annotations & parameters | Inherited annotations

@ Save B Cancel

Daone

99

Experiments and analysis

Name
The name of the raw bioassay.

Array index
The index of the sub-array on the hybridization this raw bioassay's data is linked with. The
default value is 1. With some platforms, for example Illumina, which has slides with 6 or 8 arrays
the value should be changed to reflect the correct sub-array. This information is important to
link the raw bioassay with the correct biomaterial entries.

Platform
Select the platform / variant used for the raw bioassay. The selected options affects which
files that can be selected on the Data files tab. If the platform supports importing data to the
database you must also select a Raw data type.

Raw data type
The type of raw data. This option is disabled for file-only platforms and for platforms that are
locked to a specific raw data type. This cannot be changed after raw data has been imported.
See Section 18.2.3, “Raw data types” (page 101).

Array design
The array design used on the array slide (optional). If an array design is specified the import
will verify that the raw data has the same reporter on the same position. This prevents mistakes
but also speed up analysis since some optimizations can be used when assigning positions in
bioassay sets. The array design can be changed after raw data has been imported, but this
triggers a new validation. If the raw data is stored in the database, the features on the new array
design must match the the raw data. The verification can use three different methods:

* Coordinates: Verify block, meta-grid, row and column coordinates.
¢ Position: Verify the position number.

¢ Feature ID: Verify the feature ID. This option can only be used if the raw bioassay is currently
connected to an array design that has feature ID values already.

In all three cases it is also verified that the reporter of the raw data matches the reporter of
the features.

For Affymetrix data, the CEL file is validated against the CDF file of the new array design. If the
validation fails, the array design is not changed.

Scan
The scan this raw bioassay is related to (optional). Changing this property will also update the
value in Array design, but only if the selected scan is connected to an array design and the
current user has permission to view it.

Software
The software used to analyse the image or images (optional).

Protocol
The protocol used when analysing the image(s) (optional). Software parameters may be registered
as part of the protocol.

Description
A description of the raw bioassay (optional).

A raw bioassay can have annotations. Read more about this in Chapter 11, Annotations (page 60).

18.2.2. Import raw data

Depending on the platform, raw data may have to be imported after you have created the raw bioassay
item. This section doesn't apply to file-only platforms. The import is handled by plug-ins. To start

100

Experiments and analysis

the import click on the Import... button on the single-item view for the raw bioassay. If this button
does not appear it may be because no file format has been specified for the raw data type used by
the raw bioassay or that the logged in user does not have permission to use the import plug-in or
file format. See Chapter 19, Import of data (page 108) for more information.

File-only platforms
File-only platforms, such as Affymetrix, is handled differently and data is not imported into
the database. See the section called “File-only platforms” (page 101).

18.2.3. Raw data types

A raw data type defines the types of measured values that can be stored for individual spots in
the database. Usually this includes some kind of foreground and background intensity values. The
number and meaning of the values usually depends on the scanner and software used to analyse
the images from a hybridization. Many tools provide mean and median values, standard deviations,
quality control information, etc. Since there are so many existing tools with many different data file
formats BASE uses a separate database table for each raw data type to store data. The raw data
tables have been optimized for the type of raw data they can hold and only has the columns that
are needed to store the data. BASE ships with a large number of pre-defined raw data types. An
administrator may also define additional raw data type. See Appendix E, Platforms and raw-data-
types.xml reference (page 346) for more information.

File-only platforms

BASE 2.5 introduced a generic way to keep the data in files instead of having to import it to the
database. In older BASE versions this ability was limited to the Affymetrix platform. The reason
for keeping the data in files is that the number of spots tend to grow, which may result in bad
performance if the database should be used. A typical Genepix file contains ~55K spots while an
Affymetrix file may have millions.

The drawback of keeping the data in files is that none of the generic tools in BASE can read it.
Special plug-ins must be developed for each type of data file that can be used to analyze and visu-
alize the data. For the Affymetrix platform there are implementations of the RMAExpress and Plier
normalizations available on the BASE plug-ins web site. BASE also ships with built-in plug-ins for
extracting metadata from Affymetrix CEL and CDF files (ie. headers, number of spots, etc).

Users of other file-only platforms should check the BASE plug-ins website for plug-ins related to
their platform. If they can't find any we recommend that they try to find other users of the same
platform and try to cooperate in developing the required tools and plug-ins.

18.2.4. Spot images

If you have uploaded the image or images from the scan you may create spot images. Spot images
allows you to view the image of each spot separately in the analysis. For this to work the raw data
must contain the X and Y coordinates of each spot.

After raw data has been imported into the database you will find that a Create spot images... button
appears in the toolbar on the single-item view for the raw bioassay. Click on this button to open a
window that allows you to specify parameters for the spot image extraction.

101

Experiments and analysis

Figure 18.2. Create spot images
) httpi//localhost: 8080 - Create spot images - Mozilla Firaff - 0] x|

Create spot images (&

X scale ICI Y scale ICI
X offset D Y offset ICI
Spot size |:| Gamma correction
Quatry

Red image file | none- || select..

Grean image fila | - none - j| Select...

Blue image file | none - j| Select...

Save as | | _ Browse... |

I_ Owerwrite existing file

[= required information

Spot image parameters

| Create || 3 Cancel |

Daone

X/Y scale and offset
For the spot image creation process to be able to find the spots, the X and Y coordinates from
the raw data must be converted into image pixel values. The formula used is: pixelX = (rawX
- offsetX) / scaleX

‘ Important
It is important that you get these values correct, or the spot image creation process may
fail or generate incorrect spot images.
Spot size
The spot size is given in pixels and is the width and hight around each spot that is large enough
to contain the spot without having too much empty space or neighbouring spots around it.

Gamma correction
Gamma correction is needed to make the images look good on computer displays. A value be-
tween 1.8 and 2.2 is usually best. See http://en.wikipedia.org/wiki/Gamma_correction for more
information.

Quality
The quality setting to use when saving the generated spot images as JPEG images. A value
between O = poor and 1 = good can be used.

Red, green and blue image files
You must select which scanned image files to use for the red, green and blue component of the
generated spot images. Use the Select... buttons to select existing images or upload new ones.
The original image files must be 8- or 16-bit grey scale images. Some scanners, for example
Genepix, can create TIFF files with more than one image in each file. BASE supports this and
uses the images in the order they appear in the TIFF file.

102

http://en.wikipedia.org/wiki/Gamma_correction

Experiments and analysis

Note

Avoid TIFF images which also contains previews of the full image. BASE may use the
wrong image with an error as the result. If you have multi-image TIFF files these must
only contain the full images.

Save as
Specify the path and filename where the generated spot images should be saved. The process
will create a single zip file containing all the images.

Overwrite existing file
If a file with the same name already exists you must mark this checkbox to overwrite it.

Click on the Create button to add the spot image creation job to the job queue, or on Cancel to abort.

18.3. Experiments

Experiments are the starting point for analysis. When you have uploaded and imported your raw
data, collected and registered all information and annotations about samples, hybridizations, and
other items, it is time to collect everything in an experiment.

To create a new experiment you can either mark one ore more raw biossays on the raw bioassays
list view and use the New experiment button. You can also create a new experiment from the
experiments list view.

18.3.1. Experiment properties

Figure 18.3. Create experiment

) http:/localhost: 8080 - Create experiment - Mozilla Fir - O] x|
Name | |
Raw data type | GenePix j|
Directory | - None - j” Select... |
Raw bioassays [+] |) Add raw bioassays... |
| =] Remove |

Dascription

&
[= required information

Exparimant | Publication | Experimmental factors

& Save || 3 Cancel |

Daone

Name
The name of the experiment.

Raw data type
The raw data type to use in the experiment. All raw bioassays must have raw data with this type.

103

Experiments and analysis

Directory
A directory in the BASE file system where plug-ins can save files that are generated during the
analysis. This is optional and if not given the plug-ins must ask about a directory each time they
need it. Use the Select button to browse the file system or create a new directory.

Raw bioassays
The raw bioassays you want to analyze in this experiment. If you created the experiment from
the raw bioassays list the selected raw bioassays are already filled in. Use the Add raw bioassays
button to add more raw bioassays or the Remove button to remove the selected raw bioassays
from the list.

Description
A description of the experiment.

Click on the Save button to save the changes or on Cancel to abort.

The publication tab

On this tab you can enter information about a publication that is the result of the experiment. All
of this information is optional.

PubMedId
The ID of the publication in the PubMed' database.

Title
The title of the publication.

Publication date
The date the article was published. Use the Calendar button to select a date from a pop-up
window.

Abstract
The article abstract.

Experiment design
An explanation of the experiment design.

Experiment type
A description of the experiment type.

Affiliations
Partners and other related organisations that have helped with the experiment.

Authors
The list of authors of the publication.

Publication
The body text of the publication.

Click on the Save button to save the changes or on Cancel to abort.

18.3.2. Experimental factors

The experimental factors of an experiment are the variables you are studying in the experiment.
Typically the value of an experimental factor is varied between samples or group of samples. Different
treatment methods is an example of an experimental factor.

1 http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.html

104

http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.html

Experiments and analysis

In the BASE world an experimental factor is the same as an annotation type. Since you probably
have lots of annotations on your items that are not relevant for the experiment you must select the
annotations types that should make up the experimental factors of the experiment.

Use the Add annotation types button to select the annotation types that should be used as exper-
imental factors. The Remove button removes the selected annotation types.

Click on the Save button to save the changes or on Cancel to abort.

To be able to use the values of the experimental factors in the analysis of your data the values must
be accessible from the raw bioassays. Since most of your annotations are probably made at the
sample or biosource level the raw bioassays must inherit those annotations. Read Section 11.4.1,
“Inheriting annotations from other items” (page 66) for more information about this.

Tip

Use the Item overview function to verify that all your raw bioassays has been annotated or
inherited values for all experimental factors. If not, you should do that before starting with
the analysis.

18.3.3. Tab2Mage export

Tab2Mage format? is a tab-delimited format veted by EBI's ArrayExpress3 repository for submission
microarray data. Tab2Mage format has been chosen by BASE to provide an easy way for data depo-
sition to public repository when submitting a manuscript and publishing experimental data.

BASE has been engineered to closely map the MIAME concepts and a number of BASE entities
can be mapped directly to Tab2Mage elements. However, since MIAME is focused on microarray
processing workflow, information about the biological sample is down to the user. To accommodate
the annotation needs of users, BASE provides a mechanism that allows annotation customization to
meet user specific requirements. BASE allows to create annotation type for quantitative annotation
and qualitative annotation

BASE can export an experiment to Tab2Mage format thanks to a dedicated export plug-in. For
the plug-in to work, it is important to understand that information recorded in BASE should be
formatted following a small number of rules. Failing to do so may impair the possibility of exporting
to ArrayExpress.

Note

The Tab2Mage export plug-in has not yet been included in the main distribution. Hopefully,
it will appear in the next (2.4) release.

Biomaterial annotations

Tab2Mage specifications only allow BioSource items to be annotated with BioMaterialCharacter-
istics.

Warning

All BASE Annotation Types used to annotate at the level of Sample and Extract items will be
lost during the export in Tab2Mage format in order to comply with the ArrayExpress Tab2Mage
parser.

Note

In the context of data exchange between BASE instances, the export function can be altered
to allow attachment of annotations to items other than biosources, therefore avoiding loss of
information.

2 http://tab2mage.sourceforge.net/
3 http://www.ebi.ac.uk/microarray/

105

http://tab2mage.sourceforge.net/
http://www.ebi.ac.uk/microarray/
http://tab2mage.sourceforge.net/
http://www.ebi.ac.uk/microarray/

Experiments and analysis

Annotation units

To associate units to BASE annotation types and remain compatible with Tab2Mage specifications,
users need to adhere to the following convention:

annotation_type_name (unit_name) as in body mass (kg) or concentration (mg/ml)

Warning

Only one unit can be specified at any one time for any given annotation type. In order to
enable Tab2Mage support, it might be necessary to declare several related Annotation Type in
order to report similar kind of information but expressed in a different unit. Specifying Age for
instance is a good example on how to deal with such cases: One should create several related
annotation types e.g. Age (week), Age (year) or Age (month) as those variations maybe be
necessary when reporting the age of a mouse or the age of a human volunteer.

Protocol parameters

In order to ensure MIAME compliance, Tab2Mage specifications cater for reporting parameters at-
tached to protocols and all parameters attached to a protocol should be declared in the protocol
section of a Tab2Mage file.

In BASE terms, Tab2Mage elements such as BioMaterialCharacteristics, Parameter or Factor-
Values are all annotation types. But, it is necessary to flag those annotations types meant to be
used as protocol parameters as such so that they can identified by the Tab2Mage exporter and
handled appropriately.

Warning

It is not possible to use the same annotation type Temperature for reporting a patient body
temperature (which is a Biomaterial Characteristic) and hybridization temperature (which
is a protocol parameter). Hence it will be necessary to declare 2 distinct annotation types:

* Annotation type to be used as BioSource characteristics: body temperature (degree_ C)

* Annotation type to be used as protocol parameter: hybridization temperature (degree_ C)

Experimental factors

It is a MIAME requirement to identify Experimental Variables when submitting data to Array-
Express (provided the study is an intervention study). Therefore, BASE users willing to use the
Tab2Mage export function will have to declare Experimental Factors using the the Experimental
Factor tab available when editing experiments. See Section 18.3.2, “Experimental factors” (page
104) for more information.

Values for the experimental factors are take from annotations. The annotation must exist at the raw
bioassay level, which probably means that you have to inherit the annotation from some other item,
for example, a biosource or a sample. It is also possible to use a protocol parameter as experimental
factor. See Chapter 11, Annotations (page 60) for more information about annotations.

18.4. Analysing data within BASE

TODO
18.4.1. Transformations and bioassay sets
TODO

The root bioassay set

TODO

106

Experiments and analysis

Overview plots

TODO

18.4.2. Filtering data
TODO

Formulas

TODO

18.4.3. Normalizing data

TODO

18.4.4. Other analysis plug-ins

TODO

18.4.5. The plot tool
TODO

Scatter plots

TODO

Histogram plots

TODO

Filtering plots

TODO

Save plots

TODO

18.4.6. Experiment explorer
TODO

Reporter view

TODO

Reporter search

TODO

107

Chapter 19. Import of data

In some places the only way to get data into BASE is to import it from a file. This typically includes
raw data, array design features, reporters and other things, which would be inconvenient to enter by
hand due to the large number of data items. There is also convenience batch importers for importing
other items such as biosources, samples, and extracts. The batch importers are described later in
this chapter after the general import description.

Normally, a plug-in handles one type of items and may require a configuration, for example, the
import plug-ins need some information about how to find headers and data lines in files. BASE
ships with a number of export plug-ins as a part of the core plug-ins package, cf. Section B.3, “Core
import plug-ins” (page 332). The core plug-in section links to configuration examples for some of
the plugins. Go to Administrate Plugins Definitions to check which plug-ins are installed on your
BASE server. When BASE finds a plug-in that supports import of a certain type of item an Import
button is displayed in the toolbar on either the list view or the single-item view.

Missing/unavailable button

If the import button is missing from a page were you would expect to find them this usually
means that:

¢ The logged in user does not have permission to use the plug-in.

¢ The plug-in requires a configuration, but no one has been created or the logged in user does
not have permission to use any of the existing configurations.

Contact the server administrator or a similar user that has permission to administrate the
plug-ins.

19.1. General import procedure

Starting a data import is done by a wizard-like interface. There are a number of step you have to
go through:

1. Select a plug-in and file format to use, or select the auto detect option.
2. If you selected the auto detection function, you must select a file to use.
3. Specify plug-in parameters.

4. Add the import job to the job queue.

5. Wait for the job to finish.

19.1.1. Select plug-in and file format

Click on the Import button in the toolbar to start the import wizard. The first step is to select which
plug-in and, if supported, which file format to use. There is also an auto detect option that lets you
select a file and have BASE try to find a suitable plug-in/file format to use.

108

Import of data

Figure 19.1. Select plug-in and file format

) http/flocalhost: 8080 - Import repaorters - Mozilla Fi - 0] x|

Import reporters (&

Please select a plugin and file format to use.

Plugin | - auto detect - j| % = Supports auto-detection

File format |-autn detect - j|

[= required information

| [Mext || aCanceI|

Done

Plugin
A list of all plug-ins that are available in the current context. The list only includes plug-ins that
the logged in user has permission to use. If you select a plug-in a short description of about it
is displayed below the lists. More information about the plug-ins can be found under the menu
choice Administrate Plugins Definitions

File format
A list of different file formats configurations supported by the selected plug-in. Administrate
Plugins Configurations.

File format vs. Configuration
A file format is the same thing as a plug-in configuration. It may be confusing that the
interface sometimes use file format and sometimes use configuration, but for now, we'll

have to live with it.

Proceed to the next step by clicking on the Next button.

The auto detect function

The auto detect function lets you select a file and have BASE try to find a suitable plug-in and file
format. This option is selected by default in both the plug-in and file format lists when there is at
least one plug-in that supports auto detection.

Support of auto detect

Not all plug-ins support auto detection. The ones that do are marked in the list with x.

Select the auto detect option either for both plug-ins and file formats or only for file formats to use
this feature. Continue to the next step by clicking on the Next button.

You must now select a file to import from.

109

Import of data

Figure 19.2. Select file for auto detection

) http/flocalhost: 8080 - Import reporters - Mozilla Firefox - 0] x|

Import reporters {®

|5electafile to import from. |

File | || _ Browse... |

Recantly used

[= required informatbion

| [Mext || (%] Cancell

Daone

File
Enter the path and file name for the file you want to use. Use the Browse... button to browse
after the file in BASE's file system. If the file does not exist in the file system you have the option
to upload it. Read more about this in Chapter 8, File management (page 43).

Recently used
A list of files you have recently used for auto detection.

Click on the Next button to start the auto detection.

If the auto detection finds a exactly one plug-in and file format the next step is to configure any
additional parameters needed by the plug-in. This is the same step as if you had selected the same
plug-in and file format in the first step. If no plug-in can be found an error message is displayed.

More then one compatible plug-in/file format

If more than one matching plug-in or file format is used you will be taken back to the first step.
This time the lists will only include the matching plug-ins/file formats and the auto detect
option is not present.

19.1.2. Specify plug-in parameters

When you have selected a plug-in and file format or used the auto detect function to find one, a form
where you you can enter additional parameters for the plug-in is displayed.

110

Import of data

Figure 19.3. Specify plug-in parameters

) http:/flocalhost: 8080 - Select a file to import reporters from - Mazilla Firefox - O] x|

Selecta file to import reparters fram {§)

Plugin Reporter importer Configuration Reporters for project A

|Here you select which file to import the reporters from, and if existing reporters should be updated or not. |

o T | ©i-

[Update existing reportars | | 7, Browse... |

® Characterset Recently used

¥ Decimal separator
-

Errar handling

|The file to impart the data from |

X[Default errar handling
String too lang
Missing a required valua
Invalid numeric value
Numeric value out of range

X = has valuais), [= required

|» Next || aCancell

Done

The top of the window displays the names of the selected plug-in and configuration, a list with
parameters to the left, an area for input fields to the right and buttons to proceed with at the
bottom. Click on a parameter in the parameter list to show the form fields for entering values for the
parameter to the right. Parameters with an X in front of their names already have a value. Parameters
marked with a blue rectangle are required and must be given a value before it is possible to proceed.

The parameter list is very different from plug-in to plug-in. Common parameters for import plug-ins
are:

File
The file to import data from. A value is already set if you used the auto detect function.

Error handling
A section which contains different options how to handle errors when parsing the file. Normally
you can select if the import should fail as a while or if the line with the error should be skipped.

Continue to the next step by clicking the Next button.

19.1.3. Add the import job to the job queue

In this window should information about the job be filled in, like name and description. Where name
is required and need to have valid string as a value. There are also two check boxes in this page.

Send message
Tick this check box if the job should send you a message when it is finished, otherwise untick it

111

Import of data

Remove job
If this check box is ticked, the job will be marked as removed when it is finished, on condition
that it was finished successfully. This is only available for import- and export- plugins.

Clicking on Finish when everything is set will end the job configuration and place the job in the
job queue. A self-refreshing window appears with information about the job's status and execution
time. How long time it takes before the job starts to run depends on which priority it and the other
jobs in the queue have. The job does not depend on the status window to be able to run and the
window can be closed without interrupting the execution.

View job status

A job's status can be viewed at any time by opening it from the job list page, View Jobs.

19.2. Batch import of data

There are in general several possibilities to import data into BASE. Bulk data such as reporter
information and raw data imports are handled by plug-ins created for these tasks. For item types that
are imported in more moderate quantities a suite of batch item importers available (Section B.3.1,
“Core batch import plug-ins” (page 334)). These importers allows the user to create new items in
BASE and define item properties and associations between items using tab-separated (or equivalent)
files.

The batch importers are available for most users and they may have been pre-configured but there
is no requirement to configure the batch importer plug-ins. Here we assume that no plug-in config-
uration exists for the batch importers. Pre-configuration of the importers is really only needed for
facilities that perform the same imports regularly whereas for occasional use the provided wizard
is sufficient. Configuring the importers follows the route described in Section 22.4, “Plug-in config-
urations” (page 140).

The batch importers either creates new items or updates already existing items. In either mode the
plugin can set values for

¢ Simple properties, eg., string values, numeric values, dates, etc.
* Single-item references, eg., protocol, label, software, owner, etc.

¢ Multi-item references are references to several other items of the same type. The labeled extracts
of a hybridization or pooled samples are two examples of items that refer to several other items; a
hybridization may contain several labeled extracts and a sample may be a pool of several samples.
In some cases a multi-item reference is bundled with simple values, eg., used quantity of a source
biomaterial, the array index a labeled extract is used on, etc. Multi-item references are never
removed by the importer, only added or updated. Removing an item from a multi-item reference
is a manual procedure to be done using the web interface.

The batch importers do not set values for annotations since this is handled by the already existing
annotation importer plug-in (Section 11.4.2, “Mass annotation import plug-in” (page 67)). However,
the annotation importer and batch item importers have similar behaviour and functionality to min-
imize the learning cost for users.

The importer only works one item type at each use and can be used in a dry-run mode where
everything is performed as if a real import is taking place, but the work (transaction) is not committed
to the database. The result of the test can be stored to a log file and the user can examine the
output to see how an actual import would perform. Summary results such as the number of items
imported and the number of failed items are reported after the import is finished, and in the case
of non-recoverable failure the reason is reported.

19.2.1. File format

For proper and efficient use of the batch importers users need to understand how the files to be im-
ported should be formatted. For users who wishes to get a hands-on experience there is an OpenOf-

112

http://base.thep.lu.se/attachment/wiki/DocBookSupport/batchimport_sample.ods?format=raw

Import of data

fice spreadsheet with sample sheets that work with the batch importers1 available for download.
This file can be used to import a set of data from the biosource level down to hybridizations with
proper associations and properties simply by using the batch importers.

The input file must be organised into columns separated by a specified character such as a tab or
comma character. The data header line contains the column headers which defines the contents of
each column and defines the beginning of item data in the file. The item data block continues until
the end of the file or to an optional data footer line defining the end of the data block.

When reading data for an item the plug-in must use some information for identifying items. De-
pending on item type there are two or three options to select the item identifier

* Using the internal id. This is always unique for a specific BASE server.

Using the name. This may or may not be unique.
* Some items have an externalld. This may or may not be unique.
* Array slides may have a barcode which is similar to the externalld.

It is important that the identifier selected is unique in the file used, or if the file is used to update
items already existing in BASE the identifier should also be unique in BASE for the user performing
the update. The plug-in will check uniqueness when default parameters are used but the user may
change the default behaviour.

Data for a single item may be split into multiple lines. The first line contains simple properties and
single-item references, and the first multi-item reference. If there are more multi-item references
they should be on the following lines with empty values in all other columns, except for the column
holding the item identifier. The item identifier must have the same value on all lines associated with
the item. Lines containing other data than multi-item references will be ignored or may be considered
as an error depending on plug-in parameter settings. The reason for treating copied data entries as
an error is to catch situations where two items is given the same item identifier by accident.

19.2.2. Running the item batch importer

This section discuss specific parameters and features of the batch importers. The general use of the
batch importers follow the description outlined in Section 19.1, “General import procedure” (page
108) and the setting of column mapping parameters is assisted with the Test with file function
described in Section 22.4.3, “The Test with file function” (page 143). The column headers are
mapped to item properties at each use of the plug-in but, as pointed out above, they can also be
predefined by saving settings as a plug-in configuration. The configuration also includes separator
character and other information that is needed to parse files. The ability to save configurations
depends on user credential and is by default only granted to administrators.

The plug-in parameter follows the standard BASE plug-in layout and shows help information for
selected parameters. The list below comments on some of the parameters available.

Mode
Select the mode of the plug-in. The plug-in can create new items and/or update items already
existing in BASE. This setting is available to allow the user to make a conscious choice of how
to treat missing or already existing items. For example, if the user selects to only update items
already existing the plug-in will complain if an item in the file does not exist in BASE (using
default error condition treatment). This adds an extra layer of security and diagnostics for the
user during import.

Identification method
This parameter defines the method to use to find already existing items. The parameter can only
be set to a set of item properties listed in the plug-in parameter dialog. The property selected by

1 http://base.thep.lu.se/attachment/wiki/DocBookSupport/batchimport_sample.ods?format=raw

113

http://base.thep.lu.se/attachment/wiki/DocBookSupport/batchimport_sample.ods?format=raw
http://base.thep.lu.se/attachment/wiki/DocBookSupport/batchimport_sample.ods?format=raw

Import of data

the user must be mapped to a column in the file. If it is not set there is obviously no way for
the plug-in to identify if an item already exists .

Owned by me, Shared to me, In current project, and Owned by others
Defines the set of items the plug-in should look in when it checks whether an item already
exists. The options are the same that are available in list views and the actual set of parameters
depends in user credentials.

When id is used as the Identification method, the plug-in looks for the item irrespective the
setting of these parameters. Of course, the user still must have proper access to the item ref-
erenced.

Column mapping expressions
Use the Test with file function described in Section 22.4.3, “The Test with file function” (page
143) to set the column mapping parameters.

When creating pooled items, the pooled property is used to tell the plug-in that an item is pooled.
Pooled in BASE language really means that the item parent is of the same type as the item itself.
If an item is not pooled then the parent is of another type following a predefined hierarchy in
BASE. In ascending order the BASE ordering of parent - child - grandchild - ... item relation
is biosource - sample - extract - labeled extract.

The values accepted for pooled are empty (' '), 0, 1, no, yes, false, and true. Any other
string is interpreted as the item is pooled. Sometimes all items in a file to be imported are pooled
but there is no column that marks the pooled status. This can be resolved by setting the pooled
mapping to a constant string '1' which make all items to be treated as pooled in the import (no
backslash '\' character, compare with column header mapping strings that contain backslash
characters like '\pool column\').

After setting the parameters, select Next. Another parameter dialog will appear where error handling
options can be set among with

Log file
Setting this parameter will turn on logging. The plug-in will give detailed information about how
the file is parsed. This is useful for resolving file parsing issues.

Dry run
Enable or disable test run of the plug-in. If enabled the plug-in will parse and simulate an import.
When enabling this option you should set the Log file also. The dry run mode allows testing of
large imports and updates by creating a log file that can be examined for inconsistencies before
actually performing the action without a safety net.

During file parsing the plug-in will look for items referenced on each line. There are three outcomes
of this item search

* No item is found. Depending on parameter settings this may abort the plug-in, the plug-in may
ignore the line, or a new item is created.

* One item is found. This is the item that is going to be updated.

* More than one item is found. Depending on parameter settings this may abort the plug-in or the
plug-in may ignored the line.

19.2.3. Comments on the item batch importers

The item batch importers are not designed to change or create annotations. There is another plug-in
for this, see Section 11.4.2, “Mass annotation import plug-in” (page 67) for an introduction to the
annotation importer.

There is no need to map all columns when running the importer. When new items are created usually
the only mandatory entry is Name, and when running the plug-in in update mode only the column

114

Import of data

defining the item identification property needs to be defined. This can be utilized when only one or
a few properties needs to be updated; map only columns that should be changed and the plug-in
will ignore the other properties and leave them as they are already stored in BASE. This also means
that if one property should be deleted then that property must be mapped and the value must be
empty in the file. Note, multi-item reference cannot be deleted with the batch importer, and deletion
of multi-item references must be done using the web interface.

When parent and other relations are created using the plug-in the referenced items are properly
linked and updated. This means that when a quantity that decreases a referenced item is used,
the referenced item is updated accordingly. In consequence, if the relation is removed in a later
update - maybe wrong parent was referenced - the referenced item is restored and any decrease of
quantities are also reset.

A common mistake is to forget to make sure that some of the referenced items already exists in
BASE, or at least are accessible for the user performing the import. Items such as protocols and
labels must be added before referencing them. This is of course also true for other items but during
batch import one usually follows the natural order of first importing biosources, samples, extracts,
and so on. In this way the parents are always present and may be referenced without any issues.

115

Chapter 20. Export of data

Before data stored in BASE can be used outside of BASE, the data must first be exported to a file.
When the export job finishes the file can be downloaded from the BASE file system or optionally
downloaded immediately. Exporting data is possible for almost all kind of data and the export is
done by a job that runs an export plug-in for the current context. An export job is started by clicking
on Export... in the toolbar, the click action will open a pop-up window allowing you to select plug-in
and specify parameters for it.

Normally, specific plug-ins handles different type of items, but some plug-ins, for example the table
exporter plug-in, can work with several types of items. BASE ships with a number of export plug-ins
as a part of the core plug-ins package, cf. Section B.2, “Core export plug-ins” (page 332). Go to
Administrate Plugins Definitions to check which plug-ins are installed on your BASE server. When
BASE finds a plug-in that supports export of a certain type of item an Export button is displayed
in the toolbar on either the list view or the single-item view.

Missing/unavailable button

If the export button is missing from a page were you would expect to find them this usually
means that:

* The logged in user does not have permission to use the plug-in.

¢ The plug-in requires a configuration, but no one has been created or the logged in user does
not have permission to use any of the existing configurations.

Contact the server administrator or a similar user that has permission to administrate the
plug-ins.

20.1. Select plug-in and configuration

This dialog is very similar to the dialog for selecting an import plug-in. See Figure 19.1, “Select
plug-in and file format” (page 109) for a screenshot example.

The first thing in the configuration process is to choose which plug-in to use and a configuration for
those plug-ins that require it. More information about the plug-ins can be found in each plug-in's
documentation.

Note
If there is only one plug-in and configuration available, this step is skipped and you are taken
directly to next step.

Plugin
Select the plug-in to use. Only plug-ins that supports the current context and that the logged
in user has permission to use are available in the list.

Configuration
Select the configuration that should be used together with the plug-in. Not all plug-ins supports
configuration and this option is only visible if the selected plug-in has this support.

Click on Next to show the configuration of parameters for the job.

20.2. Specify plug-in parameters

The top of the window displays the names of the selected plug-in and configuration, a list with
parameters to the left, an area for input fields to the right and buttons to proceed with at the
bottom. Click on a parameter in the parameter list to show the form fields for entering values for the

116

Export of data

parameter to the right. Parameters with an X in front of their names already have a value. Parameters
marked with a blue rectangle are required and must be given a value before it is possible to proceed.

The parameters list is very different from plug-in to plug-in. Common parameters for export plug-ins
are:

Save as
The path and file name in the BASE file system where the exported data should be saved. Some
plug-ins support immediate download to the local file system if you leave the file parameter
empty. For saving the exported data within the BASE file system, it's recommended to use the
Browse... button to get the right path and then complement it with the file's name.

Click on Next to proceed to next configuration window.

Immediate download of the exported data

If the selected plug-in supports immediate download and the file parameter were left empty a new
window with a Download button is displayed. Click on this button to start the plug-in execution. Do
not close the window until a message saying that the export was successful (or failed) is displayed.

Your browser should open a dialog asking you were to save the file on your local computer.

Figure 20.1. Download immediately

&) http//localhost: 8080 - Export help texts fi - 3] x|

Export halp texts for cliant application Web cliant

The configuration has been successfully completed. Use
@ the Download button to download the exported data.

Do not close this window until the download has finished.

|L;:5,annlnad || £3 Close |

| Daone

Saving the exported data in the BASE file system

If you choose to save the file within the BASE file system, there will be a window where the job
should get a name and optionally a description. There are also two check boxes in this window.

Send message
Tick this check box if the job should send you a message when it is finished, otherwise untick it

Remove job
If this is ticked, the job will be marked as removed when it is finished, on condition that it was
finished successfully. This is only available for import- and export- plugins.

By then clicking on Finish the configuration process will end and the job will be put in the job
queue. A self-refreshing window appears with information about the job's status and execution time.
The job is not dependent on the status window to run and it therefore be closed without interrupting
the execution of the job.

View job status

A job's status can be viewed at any time by opening it from the job list page, View Jobs.

117

Export of data

20.3. The table exporter plug-in

The table exporter is a generic export plug-in that works with almost all list views in BASE. It can
export the lists as an XML-file or a tab-separated text file. The table exporter is started, like the
other export plug-ins, by clicking on Export... in the toolbar.

Then select the Table exporter and click on the Next button. The plug-in selection step is only
displayed if there is more than one export plug-in that can be used in the current context. Usually,
the table exporter is the only plug-in and you will be take directly to the configuration dialog.

Unlike other plug-ins, the table exporter does not use the generic parameter input dialog. It has a
customized dialog that should be easier to use.

Figure 20.2. The table exporter configuration dialog

) httpi/flocalhost: 8080 - Export - Mozilla Firefox - |E||i|
Export options (¥
Format = Tab-separated text file
€ xmL
Which items? " selacted items
C Current page
* All pages
Which columns? Exported columns Not exported
Current j Title [%]| 4 | Help text [4]
External ID
Save as | || | Browse...

Leave empty to download immediately

|_ Owverwrite existing file

| & Ok ||aCanceI|

Daone

Format
The generated file can be either a tab-separated text file or an XML file. The XML-file option
will generate a tag for each item and these will contain a child tag with property value for each
selected column.

Which items?
This option decide which items that should be included in the exported data.

¢ Selected items: Only selected items will be exported. This options is not available if no items
have been selected on the list page.

¢ Current page: Exports all items viewed on the current list page.

118

Export of data

¢ All pages: Items on all pages will be exported.

Which columns?
Names of those columns that should be included in the export should be listed in the Exported
columns to the left. A column name is moved to the other list-box by first marking it and then
clicking on one of the buttons located between the list-boxes.

The order in which the columns should be exported in can be changed with the buttons to the
left of the list. Simply mark a name of a column and click on the buttons to move the name
either up or down in the list.

Using presets

Use the drop down list of presets, located under the option name, to easily get predefined
or own presets of column settings.

Save as
The path and file name where the exported data should be saved. Leave the text field empty if
the file is to be downloaded immediately or enter a path within the BASE file system to store
the file on the server. Check Overwrite existing file if an already existing file with the same
name should be overwritten.

Click on Ok to proceed when all options have been set for the export.

119

Part III. Admin documentation

Chapter 21. Installation, setup,
migration, and upgrade instructions

Note
| These instructions apply only to the BASE release which this document is a part of.

This chapter is divided into four parts. First, the process of upgrading a BASE server is described.
Followed by set up of job agents. (For these two first parts it is assumed that there is a running
server.) Then, the first time installation instructions follows, and the chapter is concluded with
information on how to migrate data from a BASE 1.2.17 server to a current BASE server.

The first time installation is only to be performed once, optionally followed by a migration. The
migration can only be done to a pristine (empty) BASE version 2 server with one exception; The
migration can be restarted if it fails during the RawBioAssaysData transfer. For all other failure
points the migration has to be restarted with an empty database. Migration from several BASE
version 1 installations to one BASE server is not supported.

The instructions here assume that Apache Tomcat 6' is used on the server side. Other servlet
engines may work but we only test with Tomcat.

21.1. Upgrade instructions

Important information for upgrading to the current release

This section list some important information that may or may not apply when upgrading from
the previous BASE release to the current release (eg. 2.8.x to 2.9.x). If you are upgrading from
a BASE installation that is older (eg. 2.7.x to 2.9.x) you should also read Appendix L, Things
to consider when updating an existing BASE installation (page 365).

BASE 2.9 must use a database that supports UTF-8

If you are upgrading from BASE 2.8 or lower and your existing database is not using UTF-8
you must convert the database to UTF-8 before you execute the . /updatedb. sh script.

BASE 2.9 includes a utility that can convert an existing MySQL database. After installing the
BASE 2.9 files, but before running the ./updatedb.sh script, execute the following on the
command line:

cd <base-dir>/bin
./onetimefix.sh utf8 -x

The -x option makes the script update the database immediately. You can leave this option out
to have it generate a SQL script file (convert-to-ut£8.sqgl) instead. The script will by default
not try to convert tables that it already thinks are using UTF-8. If the script for some reason
is incorrect when detecting this, you can use the option -f to force conversion of all tables.

The conversion utility only works with MySQL. PostgreSQL users should instead use a back-

up and restore using as described in the PostgreSQL manual?®. Eg. dump the existing BASE
database, create a new database that uses UTF8 and restore the backup into the new database.

As always, backup your database before attempting an upgrade. The BASE team performs extensive
testing before releasing a new version of BASE but there are always a possibility for unexpected

1 http://tomcat.apache.org/
2 http://www.postgresql.org/docs/8.1/static/backup.html

121

http://tomcat.apache.org/
http://www.postgresql.org/docs/8.1/static/backup.html
http://tomcat.apache.org/
http://www.postgresql.org/docs/8.1/static/backup.html

Installation, setup, migra-
tion, and upgrade instructions

events during upgrades. In upgrades requiring a change in the underlying database there is no
(supported) way to revert to a previous version of BASE using BASE tools, you need to use your
backup for this use case.

The strategy here is to install the new BASE release to another directory than the one in use. This
requires transfer of configuration settings to the new install but more on that below.

Shut down the Tomcat server
If the BASE application is not shut down already, it is time to do it now. Do something like sudo
/etc/init.d/tomcat6.0 stop

Notify logged in users!

If there are users logged in to your BASE server, it may be nice of you to notify them a few
minutes prior to shutting down the BASE server. See Section 21.4.1, “Sending a broadcast
message to logged in users” (page 130).

Rename your current server
Rename your current BASE installation mv /path/to/base /path/to/base_old.

Download and unpack BASE
There are several ways to download BASE. Please refer to section Section 4.1.1, “Download” (page
6) for information on downloading BASE, and select the item matching your download option:

Pre-compiled package
If you selected to download a pre-compiled package, unpack the downloaded file with tar
zxpf base-...tar.gz.

Source package
If you selected to download a source package, unpack the downloaded file with tar zxpf
base-...src.tar.gz. Change to the new directory, and issue ant package.bin. This will create
a binary package in the current directory. Unpack this new package (outside of the source
file hierarchy).

Subversion checkout
This option is for advanced users only and is not covered here. Please refer to Section 31.2,
“Subversion / building BASE” (page 302) for information on this download option.

Transfer files and settings
Settings from the previous installation must be transferred to the new installation. This is most
easily done by comparing the configuration files from the previous install with the new files. Do
not just copy the old files to the new install since new options may have appeared.

In the main BASE configuration file, <base-dir>/www/WEB-INF/classes/base.config, fields
that needs to be transferred are usually db.username, db.password, and userfiles.

Local settings in the raw data tables, <base-dir>/www/WEB-INF/classes/raw-data-
types.xml, may need to be transferred. This also includes all files in the <base-dir>/www/WEB-
INF/classes/raw—data-types and <base—-dir>/www/WEB—-INF/classes/extended-proper—
ties directories.

Updating database schema
It is recommended that you also perform an update of your database schema. Running the
update scripts are not always necessary when upgrading BASE, but the running the update
scripts are safe even in cases when there is no need to run them. Change directory to <base-
dir>/bin/ and issue

sh ./updatedb.sh [base_root_login] base_ root_password
sh ./updateindexes.sh

122

Installation, setup, migra-
tion, and upgrade instructions

where base_root_login is the login for the root user and base_root_password is the password.
The login is optional. If not specified, root is used as the login.

Remove Tomcat cache
As Tomcat user, remove cached files and directories. Do something like

cd /usr/share/apache-tomcat-6.0/
rm -rf work/Catalina

Start Tomcat
Start the Tomecat server: sudo /etc/init.d/tomcat6.0 start

Done! Upgrade of BASE is finished.

21.2. Installing job agents

It is important to understand that the BASE application can be spread on to several computers.
The main BASE application is serving HTTP requests, the underlying database engine is providing
storage and persistence of data, and job agents can be installed on computers that will serve the
BASE installation with computing power and perform analysis and run plug-in. In a straight forward
setup one computer provides all services needed for running BASE. From this starting point it
is easy to add computers to shares load from the BASE server by installing job agents on these
additional computers.

A job agent is a program running on a computer regularly checking the BASE job queue for jobs
awaiting execution. When the job agent finds a job that it is enabled to execute, it loads the plug-in
and executes it. Job agents will in this way free up resources on the BASE application server, and
thus allow the BASE server to concentrate on serving web pages. Job agents are optional and must
be installed and setup separately. However, BASE is prepared for job agent setup and to utilize the
agents, but the agent are not required.

A job agent supports many configuration options that are not supported by the internal job queue.
For example, you can

* Specify exactly which plug-ins each job agent should be able to execute.

* Give some plug-ins higher priority than other plug-ins.

Specify which users/groups/projects should be able to use a specific job agent.
¢ Override memory settings and more for each plug-in.

* Execute plug-ins in separate processes. Thus, a misbehaving plug-in cannot bring the main ap-
plication server down.

¢ Add more computers with job agents as needed.

All these options make it possible to create a very flexible setup. For example one job agent can be
assigned for importing data only, another job agent can be assigned for running analysis plug-ins
for specific project only, and a third may be a catch-all job agent that performs all low-priority jobs.

21.2.1. BASE application server side setup

Make sure the internal job queue doesn't execute all plug-ins
The setting jobqueue.internal.runallplugins should be set to false for the BASE server. This
setting is found in the <base-dir>/www/WEB-INF/classes/base.config file. The changes will
not take effect until the application server is restarted.

123

Installation, setup, migra-
tion, and upgrade instructions

Note

Prior to BASE 2.5 the internal job queue had to be disabled completely. This is no longer
the case since it is possible to enable/disable the internal job queue separately for each
plug-in.

Enable the job agent user account
During installation of BASE a user account is created for the job agent. This account is used
by the job agents to log on to BASE. The account is disabled by default and must be enabled.
Enable the account and set a password using the BASE web interface. The same password must
also be set in the jobagent .properties file, see item Edit the jobagent .properties file (page
124) below.

21.2.2. Database server setup

Create a user account on the database
This is the similar to granting database access for the BASE server user in the in the regular
BASE installation, cf. BASE (database engine) (page 126). You must create an account in the
database that is allowed to connect from the job agent server. MySQL example:

GRANT ALL ON base2.* TO db_user@job.agent.host IDENTIFIED BY 'db_password';
GRANT ALL ON base2dynamic.* TO db_user@job.agent.host;

Replace job.agent.host with the host name of the server that is going to run the job agent. You
should also set password. This password is used in item Edit the base.config file (page 124)
below in job agent server setup. You can use the same database user and password as in the
regular database setup.

21.2.3. Job agent client setup

Download and unpack a regular BASE distribution
You must use the same version on the web server and all job agents. You find the downloads
at http://base.thep.lu.se/wiki/DownloadPage

Edit the base.config file
The <base-dir>/www/WEB-INF/classes/base.config file must be configured as in regular
BASE installation, cf. BASE (configuration) (page 127), to use the same database as the web
server application. The most important settings are

¢ db.username: The database user you created in item Create a user account on the database
(page 124) above.

¢ db.password: The password for the user.
¢ db.url: The connection url to the database.
¢ userfiles: The path to the directory where user files are located. This directory must be ac-
cessible from all job agents, i.e., by nfs or other file system sharing method.
See the Appendix C, base.config reference (page 336) for more information about the settings
in the base.config file.
Edit the jobagent .properties file
The <base-dir>/www/WEB-INF/classes/jobagent.properties file contains settings for the

job agent. The most important ones to specify value for are

¢ agent.password: The password you set for the job agent user account in item Enable the job
agent user account (page 124) above.

¢ agent.id: An ID that must be unique for each job agent accessing the BASE application.

124

http://base.thep.lu.se/wiki/DownloadPage

Installation, setup, migra-
tion, and upgrade instructions

¢ agent.remotecontrol: The name/ip address of the web server if you want it to be able to
display info about running jobs. The job agent will only allow connections from computers
specified in this setting.

The jobagent .properties file contains many more configuration options. See the Appendix G,
Jjobagent.properties reference (page 351) for more information.

Register the job agent
From the bin directory, register the job agent with

./jobagent.sh register

Start the job agent
From the bin directory, start the job agent with

./jobagent.sh start &

See the Appendix H, jobagent.sh reference (page 354) for more information about what you
can do with the job agent command line interface.

21.2.4. Configuring the job agent

Before the job agent starts executing jobs for you it must be configured. The configuration is done
through the BASE web interface. See Section 22.3, “Job agents” (page 139)

Configure the plug-ins the job agent should handle
¢ Go to the Administrate Plugins dJob agents menu.
¢ Select the job agent and click on the Edit... button.

* On the Plugins tab you can specify which plug-ins the job agent should handle. Note that if
you have installed external plug-ins on the web server, those plug-ins must be installed on
the job agent as well. It is possible to specify different paths to the JAR file for each job agent.

Grant users access to the job agent
Use the regular Share functionality to specify which users/groups/projects should be able to
use the job agent. You must give them at least USE permission.

21.3. Installation instructions

Java
Download and install Java SDK 1.6 (aka Java 6), available from http://java.sun.com/.

Tomcat
Download and install Apache Tomcat 6.0.20 or later, available from http://tomcat.apache.org. It
is a good idea to specify the maximum allowed memory that Tomcat can use. The default setting
is usually not large enough. If you are using Tomcat 6.0.18 or higher you also need to disable
strict parsing of JSP files.

Unless you have manually downloaded and installed JAI (Java Advanced Imaging) native accel-
eration libraries (see https://jai.dev.java.net/) it is also a good idea to disable the native accel-
eration of JAI.

All of the above is done by setting Java startup options for Tomcat in the CATALINA_OPTS envi-
ronment variable. Basically add the next line (as a single line) close to the top of the catalina.sh
script that comes with Tomcat (directory bin):

CATALINA_OPTS="-Xmx500m
-Dorg.apache. jasper.compiler.Parser.STRICT_QUOTE_ESCAPING=false

125

http://java.sun.com/
http://tomcat.apache.org
https://jai.dev.java.net/

Installation, setup, migra-
tion, and upgrade instructions

—-Dcom.sun.media.jai.disableMediaLib=true"

For more information about Tomcat options see http://tomcat.apache.org/tomcat-6.0-doc/
index.html.

Set up SQL database
BASE utilize Hibernate® for object persistence to a relational database. Hibernate supports many
database engines, but so far we only work with MySQL4 and PostgreSQLS.

MySQL
Download and install MySQL (tested with version 5.0), available from http://
www.mysql.com/. You need to be able to connect to the server over TCP, so the skip-net-
working option must not be used. The InnoDB table engine is also needed, so do not disable
them (not that you would) but you may want to tune the InnoDB behaviour before creat-
ing BASE databases. BASE comes pre-configured for MySQL so there is no need to change
database settings in the BASE configuration files.

PostgreSQL
PostgreSQL 8.2 seems to be working very well with BASE and Hibernate. Download and
install PostgreSQL, available from http://www.postgresql.org/. you must edit your <base-
dir>/www/WEB-INF/classes/base.config file. Uncomment the settings for PostgreSQL
and comment out the settings for MySQL.

Note

PostgreSQL versions prior to 8.2 have a non-optimal solution for locking rows in cer-
tain situations. This may cause two seemingly independent transactions to lock if they
just reference a common database row. This may happen, for example, when import-
ing raw data that have references to the same reporters. The problem has been solved
in PostgreSQL 8.2.

BASE (download and unpacking)

Download BASE® and unpack the downloaded file, i.e. tar zxpf base-...tar.gz. If you prefer to
have the bleeding edge version of BASE, perform a checkout of the source from the subversion

repository (subversion checkout instructions at BASE trac site’).

If you choose to download the binary package, skip to the next item. The rest of us, read on
and compile BASE. If you downloaded a source distribution, unpack the downloaded file tar
zxpf base-...src.tar.gz, or you may have performed a subversion checkout. Change to the 'root'
base2 directory, and issue ant package.bin. This will create a binary package in the base2 'root'
directory. Unpack this new package (outside of the source file hierarchy), and from now on the
instructions are the same irrespective where you got the binary package.

This section is intended for advanced users and programmers only. In cases when you
want to change the BASE code and try out personalized features it may be advantageous
to run the tweaked BASE server against the development tree. Instructions on how to

accomplish this is available in the building BASE document®. When you return back

after compiling in the subversion tree you can follow the instruction here (with obvious
changes to paths).

BASE (database engine)
Instructions for MySQL and PostgreSQL are available below. The database names (base2 and
base2dynamic is used here), the db_user, and the db_password can be changed during the

3 http://www.hibernate.org/

4 http://www.mysql.com

5 http://www.postgresql.org/

6 http://base.thep.lu.se/wiki/DownloadPage
7 http://base.thep.lu.se/wiki/DownloadPage

126

http://tomcat.apache.org/tomcat-6.0-doc/index.html
http://tomcat.apache.org/tomcat-6.0-doc/index.html
http://www.hibernate.org/
http://www.mysql.com
http://www.postgresql.org/
http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/chrome/site/doc/historical/development/build.html
http://www.hibernate.org/
http://www.mysql.com
http://www.postgresql.org/
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/wiki/DownloadPage

Installation, setup, migra-
tion, and upgrade instructions

creation of the databases. It is recommended to change the db_password, the other changes
can be made if desired. The database names, the db_user, and the db_password are needed
in a later step below when configuring BASE.

Note
Note that the db_user name and db_password set here is used internally by BASE in
communication with the database and is never used to log on to the BASE application.

The database must use the UTF-8 character set

Otherwise there will be a problem with storing values that uses characters outside the
normal Latinl range, for example unit-related such as p (micro) and Q (ohm).

MySQL
Create a new database for BASE, and add a db_user with at least SELECT, INSERT, UP-
DATE, DELETE, CREATE, DROP, INDEX, and ALTER permission for the new database. To
do this, connect to your MySQL server and issue the next lines:

CREATE DATABASE base2 DEFAULT CHARACTER SET utf8;

CREATE DATABASE base2dynamic DEFAULT CHARACTER SET utf8;

GRANT ALL ON base2.* TO db_user@localhost IDENTIFIED BY 'db_password';
GRANT ALL ON base2dynamic.* TO db_user@localhost;

The <base-dir>/misc/sql/createdb.mysqgl.sql file contains the above statements and
can be used by the mysgl command-line tool (remember to edit the db_user, db_password,
and the database names in the script file before executing the command): mysql -uroot -p <
./misc/sql/createdb.mysql.sql. The header in the script file contains further information
about the script.

PostgreSQL
Create a new database for BASE, and add a db_user with the proper privileges. To do this,
log in as your PostgreSQL user and issue these lines (omit comments):

createuser db_user -P
this will prompt for an password for the new user, and issue two
more question that should be answered with character 'n' for no.
createdb --owner db_user --encoding UTF8 base2
psgl base2
this will start the psgl command line tool. Issue the next line
within the tool and quit with a '\qg'.
CREATE SCHEMA "dynamic" AUTHORIZATION "db_user";

The <base-dir>/misc/sql/createdb.postgresql.sql file contains the above statements
and can be used by the psgql command-line tool: psql -f ./misc/sql/createdb.posgres.sql
templatel The header in the script file contains further information about the script.

BASE (file storage setup)
An area for file storage must be setup. Create an empty directory in a proper location in your
file system, and set the owner to be the same as the one that the Tomcat server will be running
as. Remember this location for later use.

BASE (configuration)
Basic BASE configuration is done in <base-dir>/www/WEB-INF/classes/base.config:

¢ Uncomment the database engine section that match your setup.

* Modify the db.url, db.dynamic.catalog, db.username, and db.password settings to match
your choice above. (database host and database name (e.g. baseZ2), e.g. base2dynamic,
db_user, and db_password, respectively.)

¢ Modify the userfiles setting to match your choice above.
See the Appendix C, base.config reference (page 336) for more information about the settings
in the base.config file.

127

Installation, setup, migra-
tion, and upgrade instructions

Optional but recommended. You may want to modify extended properties to fit your
needs. Extended properties are defined in <base-dir>/www/WEB—INF/classes/extended-

properties.xml. There is an administrator document discussing extended properties9 avail-
able. If you plan to perform a migration of a BASE version 1.2 database you should probably
not remove any extended properties columns (this is not tested so the outcome is currently un-
defined). However, adding columns does not affect migration.

BASE (database initialization)
Change directory to <base-dir>/bin and execute the following commands:

./initdb.sh [base_root_login] base_root_password
./updateindexes.sh

The second command is important for PostgreSQL users since the Hibernate database initiali-
sation utility is not able to create all indexes that are required. BASE will still work without the
indexes but performance may suffer.

Important

The base_root_login and base_root_password you use here is given to the BASE web
application root user account. The base_root_login is optional. If not specified, root is
used for the login.
If the initialisation script fail, it is most probably a problem related to the underlying database.
Make sure that the database accepts network connection and make sure that db_user has
proper credentials.

BASE and Tomcat
Either move the <base-dir>/www directory to the Tomcat webapps directory or create a symbolic
link from the Tomcat webapps directory to the <base-dir>/www directory

cd /path/to/tomcat/webapps
In -s /path_to_base/www base2

If you plan to install extensions you should make sure that the <base-dir>/www/extensions
directory is writable by the user account Tomcat is running as.

Start/restart Tomcat, and try http://hostname:8080/base2 (change hostname to your host-
name) in your favourite browser. The BASE log-in page should appear after a few seconds.

BASE, Apache, and Apache/Tomcat connector
This step is optional.

If you want run the Tomcat server through the Apache web server, you need to install the Apache
version 2 web server, available from http://www.apache.org/, and a apache-tomcat connector,
available from http://jakarta.apache.org/tomcat/connectors-doc/index.html. So, we got you
there;-) To be honest, this step is not really well documented since we previously used SuSE 9.3
on our demo/test server, and apache/tomcat/mod_jk comes pre-installed. The current server
does not use the apache/tomcat connector. What you need to do is something like this

* Get that Tomcat server running in stand-alone mode.
* Get the Apache 2 server running.

¢ Install mod_jk. Note, different version are used for apache 1.3 and 2. In SuSE 9.3 this step
is done by installing mod_jk-ap20.

* Create a workers.properties file in the Tomcat base directory (commonly copied from a
template).

9 http://base.thep.lu.se/chrome/site/doc/historical /admin/extended-properties.html

128

http://base.thep.lu.se/chrome/site/doc/historical/admin/extended-properties.html
http://www.apache.org/
http://jakarta.apache.org/tomcat/connectors-doc/index.html
http://base.thep.lu.se/chrome/site/doc/historical/admin/extended-properties.html

Installation, setup, migra-
tion, and upgrade instructions

* Create a jk.conf file in the apache conf directory (commonly copied from a template), and
make sure that jk is added to the modules to be loaded when apache starts.

* In jk.conf add the lines below and change paths appropriately.

The following lines makes apache aware of the location of
the /base2 context

Alias /base2 "/srv/www/tomcat6/base/webapps/base2"
<Directory "/srv/www/tomcaté6/base/webapps/base2">

Options Indexes FollowSymLinks

allow from all

</Directory>

The following lines mounts all base2 jsp files to Tomcat
JkMount /base2 ajpl3

JkMount /base2/* ajpl3

The following lines prohibits users from directly accessing WEB-INF
<Location "/base2/WEB-INF/">

AllowOverride None

deny from all

</Location>

You must restart the Apache and the Tomcat server after above steps.

Setup done!
Happy BASEing. Now you can log on to your BASE server as user root (use the
base_root_password from the database initialization step above). You should begin with creat-
ing a couple user accounts, for more information on how to create user accounts please refer to
Chapter 24, Account administration (page 152).

If you are planning to perform a migration of data from BASE version 1.2.x please perform the
steps in Section 21.5, “Migration instructions” (page 131) before doing anything else with your
new BASE installation.

21.4. Server configurations

Some server configurations can be done when the installation process is finished and BASE is up
and running. Log into BASE with administration rights and then open the configuration dialog from
menu Administrate Server settings. Each tab in the configuration dialog-window is described below.

File transfer

Max transfer rate
This is a limit of how many bytes of data that should be transferred per second when up-
loading files to BASE. Prefixes like k, M or G can be used for larger values, just like described
in the tab. The limit is per ongoing upload and the default value is 100MB/s.

Unlimited
Check this to not limit the transfer rate. In this case, the Internet connection of the server
is the limit.

About

Administrator name
Name of the responsible administrator. The name is displayed at the bottom of each page in
BASE and in the about-dialog.

Administrator email
An email which the administrator can be contacted on. The administrator name, visible at
the bottom of each page, will be linked to this email address.

About
Text written in this field is displayed in the About this server section on the login page and
in the about-dialog window. We recommend changing the default Latin text to something
meaningful, or remove it to hide the section completely.

129

Installation, setup, migra-
tion, and upgrade instructions

Get account

A description what a none-registered user should do to get an account on the particular BASE-
server. This text is linked to the Get an account! link on the login page. We recommend that
the Latin text is replaced with some useful information, or that it is removed to hide the link.

Forgotten password

A description what an user should do if the password is forgotten. This text is linked to the
Forgot your password? link on the login page. We recommend that the Latin text is replaced
with some useful information, or that it is removed to hide the link.

Links
External configurable link-types inside BASE.

Note

Only link-types that have been set will be visible in the web client.

Help
Links to where the help text is located. By default this is set to the documentation for the
latest released BASE version on the BASE web site, http://base.thep.lu.se/chrome/site/

doc/html/index.htm1'°. If you want the documentation for a specific version you will have
to setup a site for that yourself and then change the link to that site. The documentation is
included in the downloaded package in the directory <basedir>/doc/html.

FAQ
Where frequently asked questions can be found. Empty by default.

Report a bug
Where the user could report bugs, feature request or perhaps other feedback that con-
cerns the program. As default this is set to the feedback section on BASE web site, http://
base.thep.lu.se/#Feedback. Note that users must login in order to submit information.

21.4.1. Sending a broadcast message to logged in
users

It is possible to send a message to all logged in user. Open the Administrate Broadcast message
dialog box.

This dialog allows you to specify a message that is sent to all logged in users as well as on the login
form. It is also possible to "disable" login.

Title
The title of the message. It should be a short and concise to avoid confusion. The title will be
displayed on a lot of places and a user may have to click on it to read the more detailed message.

Disable login
Mark this check-box to try to prevent new users from logging in. To avoid problems that can be
caused by blocking the server admin out, the login is not completely, disabled. Any user can still
login but only after by-passing several warnings.

Message
If needed, a longer message giving more information. Users may have to click on a link to be
able to see the complete message.

10 http://base.thep.lu.se/chrome/site/doc/html/index.html

130

http://base.thep.lu.se/chrome/site/doc/html/index.html
http://base.thep.lu.se/chrome/site/doc/html/index.html
http://base.thep.lu.se/#Feedback
http://base.thep.lu.se/#Feedback
http://base.thep.lu.se/chrome/site/doc/html/index.html

Installation, setup, migra-
tion, and upgrade instructions

Note

The message will be enabled until it is manually removed by saving an empty form, or until
the Tomcat server is restarted. Since the message is only kept in memory, a restart will always
remove it.

21.5. Migration instructions

The disclaimer section

We have made extensive testing of the migration from BASE version 1.2 (BASE1.2) to BASE ver-
sion 2 (BASE2). To our knowledge the migration works but we cannot guarantee perfect func-
tionality. The migration tool is supplied as is and usage is done at your risk. We are committed
to solve migration problems at the level of transferring data from BASE1.2 to BASE2, but can-
not resolve data loss issues in a running BASE2 server due to imperfect migration. When you
start the migration tool you are required to pass parameter "disclaimer_understood” to the
migrate_from_1.2.sh script. Remember to check that the migration performed well before
you decide to delete your 1.2 installation.

Since BASE 2.6 we no longer actively test or maintain the migration program. We still accept
bug reports and will try to fix critical bugs, but only if we get help with testing the fixes before
they are released. Supplying a patch for a bug will increase the chance of getting it fixed.

Verify that your new BASE installation is up and running before attempting migration. Preferably
try to log in using the root user through the web interface.

Make sure your BASE1.2 runs with the latest (pristine) schema version, i.e., the migration will
only support an unmodified BASE1.2 installation. If you have an out of date schema version, please
upgrade to the latest schema using BASE1.2 tools before migrating. If you have made local changes
to the BASE1.2 schema you need to patch the BASE2 schema as well as make proper changes to
the migration program. If there are added columns to the reporter table in your BASE1.2 database
you need to transfer the additional information after migration (even if you modified the BASE2
extended-properties.xml file).

The behaviour of migration is controlled through migration.properties file (see Appendix I,
migrate.properties reference (page 356)), but you should know what you do when you change
parameters in this file.

Migration can be restarted in one specific case only; If the migration fails during the RawBioAssay-
Data transfer simply restart the migration and the script will ask you to verify that a restart should
be attempted. For all other failure points the migration has to be restarted with an empty database.

Migration is performed with the following steps:

1. To transfer files from BASE1.2 (default migration behaviour), you must have file system access
to BASE1.2 files, i.e., the /BASE 1.2/data directory containing directories rawdata, uploads,
protocols, ...

2. Change settings in the file <base-dir>/dist/www/WEB-INF/classes/migrate.properties.
The available options are commented:

* Modify dbl.* parameters to match your BASE1.2 installation.

* Set userfiles (note, this is not the same parameter as in base.config) to point to the directory
containing the BASE1.2 files (defined in a previous step above).

* Set the pluginDir to point to the directory where your BASE1.2 plug-ins are installed. The
default is /usr/local/base/plugins.

* Modify root.password.

* Change the deletefiles setting wisely. If you set deletefiles=yes all BASE1.2 files will be phys-
ically removed when copied to the BASE2 server. Leave this options as deletefiles=no unless
you are absolutely sure of what you are doing.

131

Installation, setup, migra-
tion, and upgrade instructions

3. Run migration utility:

cd /path_to_base/dist/bin
./migrate_from_1.2.sh disclaimer_understood

If the migration fails during the RawBioAssayData transfer you can restart the migration at the
point of failure. Simply restart the migration and the script will ask you to verify that a restart
should be attempted. For all other failure points the migration has to be restarted with an empty
database.

4. Optional, depends on your BASE1.2 reporter table. Additional columns (as compared with a
pristine database schema) in the reporter table in the BASE1.2 schema are not transferred during
migration. You have to perform the transfer manually after migration. Simply export the reporter
information from BASE1.2, and import the data into the new BASE installation. In BASE1.2: i)
View the reporters, ii) Use "Get as tab-separated text™ to create a tab separated file (right click
and save). In BASE2, to import the file follow the instructions in Section 10.3.1, “Import/update
reporter from files” (page 55).

5. Migration done! Happy BASEing.

132

Chapter 22. Plug-ins

BASE can get extended functionality by the use of plug-ins. In fact, most of the hard work, such
as data import/export and analysis is done with plug-ins. BASE ships with a number of standard
plug-ins, the core plug-ins, which gives basic import/export and analysis functionality. See Chap-
ter 4, Resources (page 6) for more information about the core plug-ins and 3rd-party plug-ins.

22.1. Installing plug-ins

The first step is to install the plug-in on the web server. To make these instructions easier to read we
assume the plug-in comes as a single JAR file and that it does not depend on any other JAR files.

We recommend that you install the plug-in JAR file outside the web server's Classpath. Do not
put the plug-in in the <base-dir>/www/WEB-INF/1lib directory or any other directory where the
web server keeps it's classes. This makes BASE use it's own class loader that support unloading
of classes as well. This means that you can install new plug-ins and update existing ones without
restarting the web server.

We recommend that you create a separate directory for plug-ins and install all of them there. You
may use a sub-directory for each plug-in if you like, for example: <base-dir>/plugins/<name-of-
plugin>

Plug-ins that use other JAR files

Some plug-ins may depend on other JAR files. Normally, these JAR files should be put in the
same directory as the plug-in JAR file. This may, however, vary from plug-in to plug-in so
always check the plug-in documentation first.

When the plug-in is installed on the server you must register it with BASE. To register the plug-in
with BASE go to Administrate Plugins Definitions and click on the New... button. In the pop-up
window that appears you should first decide if you want to do a manual or an (almost) automatic
installation. An automatic installation scans the server disks for plug-ins and lets you select which
ones to install or update from a list in the web interface. In a manual installation you are required
to enter the path and class name of the plug-in yourself.

22.1.1. Select installation method

This window appears, like described above, when automatic installation/registration of plug-ins is
available.

133

Plug-ins

Figure 22.1. Select installation type

) Installation type - Mozilla Firefox

Installation type (&

|Se|ect how to install the pluginis]. |

Install Automatically =]

Directories

¥ Dedicated plug-ins directory (fhomefauster/nicklas
/projects/baseplugins)

¥| Extensions directory (fhomefauster/nicklas/program
ftomcat/webappsftrunk/WEB-INFfextensions)

Automatically install non-core plugins
The selected paths above will be scanned for plugins in jar-files.
Plugins that were found will be available for selection in the next step.

[p Mext || & Cancell

Done

Install
How to register the plug-in(s) with BASE.

Automatically

BASE will scan the selected directories for JAR files containing plug-ins. If it finds any,
you will have the option to select which ones to install from a list. The next step will be
Section 22.1.3, “Automatic installation of plug-ins” (page 136)

Manually

Class name and JAR path have to be entered manually by the administrator. Only one plug-in

can be registered at a time in this way. Next step will be Section 22.1.2, “Plug-in properties”
(page 134)

Directories (only when Automatically is selected)
Select the checkboxes were BASE should look for new plug-ins. For security reasons the only
options are the dedicated plug-ins directory that is configured in the base.config directory and
the extensions that directory that is normally used for extensions to the web client.

Note

The automatic installation doesn't allow you to set all properties that can be set in a manual
installation. If you for example, need to share the plug-ins to other users or assign them to job
agents this must be done after the auto-installation has been completed.

22.1.2. Plug-in properties

This section describes the manual installation of a plug-in.

134

Plug-ins

Figure 22.2. Installing a plug-in

) http://localhost: 8080 - Create plugin - Mozilla Firefox - — O] x|
Name Mew plugin
Class |nrg.cnmpan}r.MyNewPlugin |
Path |;'hc-rne;‘hase.-'plugins.-'curg;'cnmpan:.r;'l"-'lyNewPlugin| |
Max memory | |:uSe KB, MB or GB to specify units)
Trusted g yes

Allow immediate exection ¢, (" yes * Suto

[= required information

Plugin | Permissions | Job agents

& Save || 3 Cancel |

Done

Name
The name of the plug-in. This name is set automatically by the plug-in and cannot be changed.

Class
The Java class name of the plug-in.

Path
The path to the JAR file on the web server. If left empty the plug-in must be on the web server's
class path (not recommended).

Max memory
The maximum amount of memory the plug-in may use. This setting only applies when the
plug-in is executed with a job agent. If the internal job queue is used this setting has no effect
and the plug-in may use as much memory as it likes. See Section 22.3, “Job agents” (page 139)
later in this chapter.

Trusted
If the plug-in is trusted enough to be executed in an unprotected environment. This setting
has currently no effect since BASE cannot run in a protected environment. When this becomes
implemented in the future a no value will apply security restrictions to plug-ins similar to those
a web browser put on applets. For example, the plug-in is not allowed to access the file system,
open ports, shut down the server, and a lot of other nasty things.

Allow immediate execution
If the plug-in is allowed to bypass the job queue and be executed immediately.

* No: The plug-in must always use the job queue.

* Yes: The plug-in is allowed to bypass the job queue. This also means that the plug-in always
executes on the web server, job agents are not used. This setting is mainly useful for export
plug-ins that needs to support immediate download of the exported data. See the section called
“Immediate download of the exported data” (page 117).

Note
If a plug-in should be executed immediately or not is always decided by the plug-in.
BASE will never give the users a choice.

135

Plug-ins

¢ Auto: BASE will allow export plug-ins to execute immediately, and deny all other types of
plug-ins. This alternative is only available when registering a new plug-in.

Click on Save to finish the registration or on Cancel to abort.

22.1.3. Automatic installation of plug-ins

This section describes the automatic installation of plug-ins using a wizard.

Figure 22.3. Auto install plug-ins

&) http.//localhost: 8080 - Plugin autcinstaller - Mozilla Firefox - O] |
Plugins Install Trusted Immediate execution

A_]L illumina-plugins.jar (already installed)
El ri example-plugins.jar (2 new) Install all
..... ik Copy spot intensity no j il | no j auto -
. ik Example importer no 3{@ no 3{ autoa -
Lk = plug+n is already installed

= exists in a different AR file
,"] = configuratbion already exists

Available plugins

&) save || €3 cancel

Done

This window lists all the plug-ins that were found in JAR files, after scanning the selected directories
from the previous step. There are a few options to set for each plug-in before they can be registered.

The page has, for each plug-in, a row that is divided into four columns with information or settings.
These are explained more in details below. There is an icon in the Install column that displays
summarized information about the plug-in when the mouse pointer is held over it. Most of this
information is from the plug-in's About property but some, like 'Works with', 'Class' and 'Jar' is
from the installation file included in the JAR file. A plug-in can also be distributed with one or many
configurations that can be selected for import together with plug-in registration. The configurations
are by default hidden but can easily be viewed by expanding the configuration tree for a plug-in.

Plugins
The plug-in's name, from the plug-in class. Names of the configurations that comes with a
plug-in are also displayed in this column but in a tree under the plug-in they belong to.

Install
A selection list for each plug-in found when scanning the plug-in directory. There are at least
two option for each plug-in in this drop-down list. The default option no will not register the
plug-in to BASE while yes will register the plug-in when proceeding. If the plug-in also have
configurations the yes option is replaced with plugin only and plugin + configurations. If the
last option is selected all configurations for the specific plug-in will be imported.

136

Plug-ins

Each listed configuration can individually be defined if it should be imported or not. This is done
by selecting yes or no.

Note

Plug-ins that already are registered in BASE will be disabled in the list, unless the plug-in
comes from a JAR file in a different path than the one registered in BASE, or if the version
does not consist with the one registered in BASE. In these cases the drop-down list is
enabled for selection but the plug-in name is marked with an exclamation mark and the
plug-in will be re-registered and updated if any of the two install options are selected.

Note

If a configuration in the list has an identical name as a configuration in BASE and the
configurations are for the same plug-in, there will be a warning in the list beside the
install-select box. The already existing configuration will not be overwritten if the new
plug-in configuration is set to be imported, but there will be two configurations with the
same name and for the same plug-in.

Trusted

If the plug-in is trusted enough to be executed in an unprotected environment. See Sec-
tion 22.1.2, “Plug-in properties” (page 134)

Immediate execution

If the plug-in is allowed to bypass the job queue and be executed immediately. See Section 22.1.2,
“Plug-in properties” (page 134)

Click on Save to finish the registration or on Cancel to abort.

22.1.4. BASE version 1 plug-ins

BASE version 1 plug-ins are supported through the use of the BaselPluginExecuter plug-in. This
is itself a plug-in and BASE version 1 plug-ins are added as configurations to this plug-in. See
Section 22.4, “Plug-in configurations” (page 140). To install a BASE version 1 plug-in follow these
instructions:

1.

Install the BASE version 1 plug-in executable and any other files needed by it on the BASE server.
Check the documentation for the plug-in for information about what is needed.

. Upload the *.base file for the BASE version 1 plug-in. If you cannot find the file, you can let your

BASE version 1 server create one for you. In your BASE version 1 installation go to Analyze data
Plug-ins and use the Export function. This will create a configuration file for your BASE version
1 plug-in that you can upload to your new BASE server.

. Create a new plug-in configuration using, for example, the New configuration button in single-

item view for the Basel PluginExecuter plug-in.

. Start the configuration wizard and select the *.base file describing the BASE version 1 plug-in

and enter the path and file name to the location of the executable.

. To check that the new plug-in works correctly, you need to have an experiment with some da-

ta. Go to the single-item view for a bioassayset and click on the Run analysis button. Select
the BaselPluginExecuter plug-in. The list of configurations should include the newly installed
plug-in. Select it and click on Next.

. This will enter regular plug-in execution wizard and you will have to enter parameters needed

by the plug-in.

22.2. Plug-in permissions

When a plug-in is executed the default is to give it the same permissions as the user that started it.
This can be seen as a security risk if the plug-in is not trusted, or if someone manages to replace the

137

Plug-ins

plug-in code with their own code. A malicious plugin can, for example, delete the entire database
if invoked by the root user.

To limit this problem it is possible to tune the permissions for a plug-in so that it only has permission
to do things that it is supposed to do. For example, a plug-in that import reporters may only need
permission to update and create new reporters and nothing else.

To enable the permission system for a plug-in go the edit view of the plug-in and select the Permis-
sions tab.

Figure 22.4. Setting permissions on a plug-in

) Edit plugin -- Reporter importer - Mozilla Firefox

Edit plugin -- Reporter importer &

Use permissions @ yas (Jno

Item types Always grant Always deny Requested by plugin

|me F'ES [] create [Icreate File [-r--—--]
leponters

Reporter lists [-ruw---] [JRread [JRead Reporter type [CRU--]
Reporter types [CRL--] [Juse [Juse Reporter [cruwd]
EEF;DT?AL;E[EE?S[_____ ! [write [write Reporter list [-ruw--—-]
Data flle types [I Eoelete Moelcte Use requested permissio
Quantities [---] [set owner [Iset owner

Units [-----] - o

- Biomaterials & experiments] ?et pErmIssion L] _Set. pe_rrnlssmn

BioSource [----—] Capital letters = Permission is always granted

Samples -] Small letters = Permission is only granted if logged in user has t
Extracts [---—--] || permission

Labeled extracts [-----—--] =

Plugin | Permissions | Job agents

& save || €3 cancel

Done

Use permissions
Select if the plug-in should use the permission system or not. If no is selected, the rest of the
form is disabled.

Item types
The list contains all item types found in BASE that can have permissions set on them. The list
is more or less the same as the permission list for roles. See the section called “Permissions”
(page 157).

Always grant
The selected permissions will always be granted to the plug-in no matter if the logged in user
had the permission to begin with or not. This makes it possible to develop a plugin that allows
users to do things that they are normally not allowed to do. The reporter importer is for example
allowed to create and use reporter types.

138

Plug-ins

Always deny
The selected permissions will always be denied to the plug-in no matter if the logged in user had
the permission to begin with or not. The default is to always deny all permissions. Permissions
that are not always denied and not always granted uses permissions from the logged in user.

Requested by plug-in
To make it easier for the server administrator to assign permissions, the plug-in developer can
let the plug-in include a list of permissions that are needed. Plug-in developers are advised to
only include the minimal set of permissions that are required for the plug-in to function. Click
on the Use requested permissions button to give the plug-in the requested permissions.

22.3. Job agents

Job agents are used for executing plug-ins on external computers. Using job agents will free up
resources on the BASE application server, and allow the server to concentrate on serving web pages.
Job agents are optional and must be installed separately. See Section 21.2, “Installing job agents”
(page 123) for more information about setting up job agents. This section assumes that at least one
job agent is setup to serve your BASE installation.

A job agent will not execute a plug-in unless the administrator has configured the job agent to do so.
This can be done either from the plug-in pages or from the job agent pages. To register a plug-in with
one or more job agents from the plug-in pages, go to the edit view of the plug-in and select the Job
agents tab. To do the same from the job agent pages, go to the edit view of the job agent and select
the Plugins tab. The registration dialogs are very similar but only the plug-in side of registration is
described here, the job agent route is described in Section 21.2, “Installing job agents” (page 123).

Figure 22.5. Select job agents for a plug-in

) hitp:/flocalhost: 8080 - Edit plugin — Reporter imperter - Mezilla Firefox - 0] =]
Run this plugin on ™ internal job queue
-- Job agents -- [+] |) Addjob agents... |
Remote | (=] Remove |

Settings for the salected job agent

Jar path |
-use default & jintamaly

Max memory | | (Use KB, MB or GB to specify memaory)
-use default [(1 pytes)

Trusted & default (no) © yes (no

Priority boost ICI

Plugin | Permissions | Joab agants

& Save || 53 Cancel |

Done

Use this tab to specify which job agents the plug-in is installed and allowed to be executed on.

Run this plugin on
You may select if the internal job queue should execute the plug-in or not.

139

Plug-ins

Job agents
A list with the job agents where the plug-in is installed and allowed to be executed. Select a
plug-in in this list to display more configuration options for the plug-in.

Add job agents
Use this button to open a pop-up window for selecting job agents.

Remove
Remove the selected plug-in from the list.

The following properties are only displayed when a job agent has been selected in the list. Each job
agent may have it's own settings of these properties. If you leave the values unspecified the job agent
will use the default values specified on the Plugin tab.

Jar path
The path on the external server to the JAR file containing the plug-in code. If not specified the
same path as on the web server is used.

Max memory
The maximum amount of memory the plug-in is allowed to use. Add around 40MB for the Java
run-time environment and BASE. If not specified Java will choose it's default value which is
64MB.

Trusted
If the plug-in should be executed in a protected or unprotected environment. Currently, BASE
only supports running plug-ins in an unprotected environment.

Priority boost
Used to give a plug-in higher priority in the queue. Values between O and 10 are allowed. A higher
value will give the plug-in higher priority. The priority boost is useful if we, for example, want to
use one server mainly for importing data. By giving all import plugins a priority boost they will
be executed before all other jobs, which will have to wait until there are no more waiting imports.

22.4. Plug-in configurations

While some plug-ins work right out of the box, some may require configuration before they can
be used. For example, most of the core import plug-ins need configurations in the form of regular
expressions to be able to find headers and data in the data files and the BaselPluginExecuter uses
configurations to store information about the BASE version 1 plug-ins.

Configurations are managed from a plug-in's single-item view page or from the Administrate Plugins
Configurations page.

Click on the New... button to create a new configuration.

140

Plug-ins

Figure 22.6. Create plug-in configuration

©) http://localhost: 8080 - Create configuration - Mg - 0] x|
Plugin | Reporter importer j” Select... |
Name |New Reparter importer configuration |

Dascription

4
[= required information

Configuration

| &) Save || 1% Save and configure || £ Cancel |

Done

Plugin
The plug-in this configuration belongs to. This cannot be changed for existing configurations.
Use the Select... button to open a pop-up window where you can select a plug-in.

Name
The name of the configuration.

Description
A description of the configuration (optional).

Note
You cannot create configurations for plug-ins that does not support being configured.

Use the Save button to save the configuration or the Save and configure button to save and then
start the configuration wizard.

22.4.1. Configuring plug-in configurations

Configuring a plug-in is done with a wizard-like interface. Since the configuration parameters may
vary from plug-in to plug-in BASE uses a generic interface to enter parameter values. In short, it
works like this:

1. BASE asks the plug-in for information about the parameters the plug-in needs. For example, if
the value is a string or number or should be selected among a list of predefined values.

2. BASE uses this information to create a generic form for entering the values. The form consists
of three parts:

141

Plug-ins

Figure 22.7. The plug-in configuration wizard

) hitp/flocalhost: 8080 - Parser settings - Maozilla Firefox - 0] x|

Parser settings (8

Plugin Reporterimporter Configuration Mew Reporterimporter configuration

Enterthe regular expressions used to parse the text file and the column mappings
used to find matching properties forthe reporters.

Reporter type 4| Remove quotes

. not specified -
¢ true

. false

File parser regularexprassio...

Header
®[Data header

¥[Data splitter If true quotes (" or') around data

X value will be remaved.

lgnare
Data footer
¥ Min data columns
Max data columns
¥ Character set
x Decimal separator

Column mapping expressions

®X[E Mame

X[Reporter D

x Description

w (Gene svrmbnol

x = has valueis), @ = required

[«

| [Testwithfite... || next || @ Cancel

Done

* The top part: Displays the name of the selected plug-in and configuration.

* The left part: Displays a list of all parameters supported by the plug-in. Parameters with an
X in front of their names already have a value. Parameters marked with a blue rectangle are
required and must be given a value before it is possible to proceed.

* The right part: Click on a parameter in the list to display a form for entering values for that
parameter. The form may be a simple free text field, a list of checkboxes or radiobuttons, or
something else depending on the kind of values supported by that parameter.

3. When the user clicks Next the entered values are sent to the plug-in which validate the correct-
ness. The plug-in may return three different replies:

* ERROR: There is an error in the input. BASE will redisplay the same form with any additional
error information that the plug-in sends back.

¢ DONE: All parameter values are okay and no more values are needed. BASE will save the values
to the database and finish the configuration wizard.

* CONTINUE: All parameter values are okay, but the plug-in wants more parameters. The proce-
dure is repeated from the first step.

142

Plug-ins

Do not go back
It is not possible to go backwards in the wizard. If you try it will most likely result in an
unexpected error and the configuration must be restarted from the beginning.

22.4.2. Importing and exporting plug-in configura-
tions

BASE ships with one importer and one exporter that allows you to import and export plug-in con-
figurations. This makes it easy to copy configurations between servers. The BASE website also has

a page where you can download additional configurations1 not included in the main distribution.

Both the import and the export is started from the plug-in configuration list view: Administrate
Plugins Configurations

The importer supports auto detection. Simply upload and select the XML file with the configurations.
No more parameters are needed.

If you don't want to import all configurations that exist in the XML-file, there is an option that lets
you select each configuration individually. When the option to import all configurations is set to
FALSE in the first step of job-configuration, the following step after pressing Next will be to select
those configurations that should be imported, otherwise this step is skipped.

To use the exporter you must first select the configurations that should be exported in the list. Then,
enter a path and file name if you wish to leave the XML file on the BASE server or leave it empty
to download it immediately.

Note

The import and export only supports simple values, such as strings, numbers, etc. It does not
support configuration values that reference other items. If the plug-in has such values they
must be fixed manually after the import.

22.4.3. The Test with file function

The Test with file function is a very useful function for specifying import file formats. It is supported
by many of the import plug-ins that read data from a simple text file. This includes the raw data
importer, the reporter importer, plate reporter, etc.

Note
The Test with file function can only be used with simple (tab- or comma-separated) text files.
It does not work with XML files or binary files. The text file may have headers in the beginning.

As you can see in figure Figure 22.7, “The plug-in configuration wizard”(page 142) there is a Test
with file button. This will appear in the file format setup step for all plug-ins that support the test
with file function. For detailed technical information about this see Section 26.3, “Import plug-ins”
(page 184) in Chapter 26, Plug-in developer(page 167) Clicking on the Test with file button
opens the following dialog:

1 http://base.thep.lu.se/chrome/site/doc/historical/admin/plugin_configuration/coreplugins.html

143

http://base.thep.lu.se/chrome/site/doc/historical/admin/plugin_configuration/coreplugins.html
http://base.thep.lu.se/chrome/site/doc/historical/admin/plugin_configuration/coreplugins.html

Plug-ins

Figure 22.8. The test with file function

£} hitp//localhost: 8080 - Test with file - Mozilla Firefox

(=T

Test with file {§)

File to test |.|’h-:-me.l’user.l’genepix.mouse.uﬂ.:—l?k.ﬂﬂh.gpr

Lines to parse 100

|| e, Browse... ” Parse the file |

Character set

Header regexp [y 147008V = DV 1L A7 D T

| Predefined... | Min data columns I:I

Data splitter regexp |'\.t

| Predefined... | Max data columns I:I

Ignore regexp |

Data header regexp |"E.Icu:k"".t"CDIumn"".t"FlDw"".t"Name"\.t"ID".“|

Data footer regexp | |

| Fredefined... | Remove quotes [o

| 150-8859-1 :||

[E = required information

File data | Column mappings |
Line | Columns | Type Use as File data *
1 |2 Unknown ||| aTF 1.0
2 |z Unknown ||| 29 ag
3 2 Headear ;I Type GenePix Rasults 3
200&/05/16
N Header DateTime 13-1?I-r5§|Ir
5 2 Header j Settings settings.gps
=1 2 Header :I GalFile ITK_mouseVd gal
7|z Header ||| PixelSize 10
a2 2 Headear ;I Wavelengths 635 532
=] 2 Header ;I ImageFiles cy3.tif 1 E
g —] — #
| @ Ok || QCancel |

Done

The window consists of two parts, the upper part where the file to parse and the parameters used
to parse it are entered, and the lower part that displays information about the parsing.

File to test

The path and file name of the file to use for testing. Use the Browse button to select a file from
the BASE file system or upload a new file. Click on the Parse the file button to start parsing.
The lower part will update itself with information about the parsed file. The file must follow a

few simple rules:

¢ Data must be organised into columns, with one record per line.

¢ Each data column must be separated by some special character or character sequence not
occurring in the data, for example a tab or a comma. Data in fixed-size columns cannot be

parsed.

* Data may optionally be preceded by a data header, for example, the names of the columns.

¢ The data header may optionally be preceded by file headers. A file header is something that

can be split into a name-value pair.

144

Plug-ins

¢ The file may contain comments, which are ignored by the parser.

Lines to parse
The number of lines to parse. The default is 100 and rarely needs to be changed. One reason to
increase the number is when the data header line is beyond the default value.

Character set
The character set used in the file. The default is ISO-8859-1 (same as Latin-1). This list contains
all character sets supported by the underlying Java run-time and can be quite long.

Header regexp
A regular expression matching a header line. A header is a key-value pair with information about
the data in the file. The regular expression must contain two capturing groups, the first should
capture the name and the second the value of the header. For example, the file contains headers
like:

"Type=GenePix Results 3"
"DateTime=2006/05/16 13:17:59"

To match this we can use the following regular expression: " (.*)=(.*)".
Use the Predefined button to select from a list of common regular expressions.

Data splitter regexp
A regular expression used to split a data line into columns. For example, \t to split on tabs. Use
Predefined button to select from a list of common regular expressions.

Ignore regexp
A regular expression that matches all lines that should be ignored. For example, \#. * to ignore
all lines starting with a #. Use Predefined button to select from a list of common regular ex-
pressions.

Data header regexp
A regular expression that matches the line containing the data header. Usually the data header
contains the column names separated with the same separator as the data. For example, the
file contains a header like:

"Block"{tab}"Column" {tab}"Row" {tab}"Name" {tab}"ID" ...and so on

To match this we can use the following regular expression:
"Block"\t"Column"\t"Row"\t"Name"\t"ID".*,

The easiest way to set this regular is expression is to leave it empty to start with, click on the
Parse the file button. Then, in the File data tab, use the drop-down lists in the Use as column to
select the line containing the data header. BASE will automatically generate a regular expression
matching the line.

Date footer regexp
A regular expression that matches the first line of non-data after all data lines. In most cases
you can leave this empty.

Min and max data columns
If you specify values a data line is ignored if the number of columns does not fall within the range.
If your data file does not have a data header with column names you can use these settings to
find the start of data.

Remove quotes
If enabled, the parser will remove quotes around data entries.

145

Plug-ins

File data
Press the Parse the file button to start parsing the file. This tab will be updated with the data
from the file, organised as a table. For each line the following information is displayed:

Line: The line number in the file

Columns: The number of columns the line could be split into with the data splitter regular
expression.

Type: The type of line as detected by the parser. It should be one of the following: Unknown,
Header, Data header, Data or Data footer.

Use as: Use the drop-down lists to use a line as either the data header or data footer. BASE
will automatically generate a regular expression.

File data: The contents of the file after splitting and, optionally, removal of quotes.

Column mappings
After defining the data header you may need to press the Parse the file button to make this
tab visible because this tab is only displayed when data has been found in the file and a data
header was recognized. It allows you to easily select the mapping between columns in the file
and the properties in the database.

Figure 22.9. Mapping columns from a file

Fila data | Calumn mappings

e D o Tl WRE i Similarity score: ||:|.e.5 {0 = bad; 1 = good) L
Property Mapping expression File columns

Name Wame [| = =
Reporter ID |=co|¢'||::'] |@ | ;||

[z | | (%] | ;||

Bene symbal | |@ | ;||
| o | =

By e | |a | L||

Species | |a | L||

Cluster ID | [| | Ad

Mapping style: The type of mapping to use when you pick a column from the File columns
list boxes.

Property: The database property.

Mapping expression: An expression that maps the data in the file columns to the property in
the database. There are two types of mappings, simple and expressions. A simple mapping is a
string template with placeholders for data from the file. An expression mapping starts with an
equal sign and is evaluated dynamically for each line of data. The simple mapping has better
performance and we recommend that you use it unless you have to recalculate any of the
numerical values. In both cases, if no column matching the placeholder exactly is found the
placeholder is interpreted as a regular expression that is matched against each column. The
first one found is used. A few mapping examples are listed in Table 22.1, “Mapping expression
examples” (page 147).

146

Plug-ins

Table 22.1. Mapping expression examples

Expression Explanation

\Name\ Exact match is required.

N1\ Column with index 1 (the second column).

[\row\, \column\] Combining row and column to a single coor-
dinate.

=2 * col('radius') Calculate the diameter dynamically.

\F63(3|5) Median\ Use regular expression to match either F633
or F635.

constant_string Use constant_string as value for this col-
umn for each line.

Note
Column numbers are 0-based. We recommend that you use column names at all times
if they are present in the file.

Auto generate: Click on this button to let BASE try to automatically generate mappings based
on fuzzy string matching between the property names and file column headers. Each match
get a score between O and 1 where 1 indicates a better match. Use the similarity score to
limit the automatically generated mappings to matches with at least the given score. A value
between 0.7 and 0.9 is usually a good choice.

File columns: Lists of column found in the file. Select a value from this list to let BASE
automatically generate a mapping that picks the selected column.

147

Chapter 23. Extensions

The BASE web client has an extension system that can be used to add functionality to BASE. The
extension system should not be confused with plug-ins (Chapter 22, Plug-ins (page 133)). Extensions
are additions to the user interface, for example, additional menus, toolbar buttons, etc. Extensions
are for the web interface only, they can not be used on job agents, or by plug-ins. Plug-ins, on the
other hand, are used to perform some kind of work, for example, importing, exporing or analysing
data, and are not restricted to be used from the web client.

More reading
* Chapter 27, Extensions developer (page 209).

* Section 29.6, “Extensions API” (page 276).

23.1. Installing extensions

The first step is to install the actual extension code on the web server. Extensions are always pack-
aged as XML or JAR files. To install an extension put the XML or JAR file in the <base-dir>/www/
WEB-INF/extensions folder. This is the only place were extensions can be installed.

Make sure the extensions folder is writable by Tomcat

The extension you are installing may include resources such as HTML files, JSP scripts, im-
ages, etc. that needs to be extracted to the web application path before they can be used. This
extraction is automatically done by the extensions system, but you have to make sure that
the user account Tomcat is running as has permission to create (and delete) new files in the
<base-dir>/www/extensions directory.

If you have enabled automatic installation you just have to wait and the extensions will be installed
and registered automatically. Otherwise, you have to do a manual scan, using the following instruc-
tions.

Go to Extensions Manual scan...

Figure 23.1. Manual scan

) http.//localhost: 8080 - Start manual se - 0] x|

Perform manual scan {8

A manual scan will check the extensions directory
for new, updated or deleted extensions. If Force
update iz selected, extensions that are unchanged
will also be updated.

Force update [

[» start || €3 cancel

Done

Performs a manual scan for new, updated or deleted extensions. If Force update is checked, exten-
sions that have not been modified will also be re-registered. Leave this option unchecked unless
there is any problem with the extension system.

148

Extensions

Click on Start to start the scan.

If everything goes well you should get a report of what happend. The new XML or JAR file is hopefully
listed as Installed. Click on the + icons to show more details.

Figure 23.2. Scan results

©) http://lozalhost: 8080 - Manual sean result - O] x|

Status Success Started 2008-04-03 08:25:01

Scan type Manual Ended 2008-04-03 08:25:02

Summary 0 deleted extensions
1 new extensions
0 updated extensions

core-extensions.xml Already installed [#

extension-examples.jar Installed [=

* 3 resources extracted
successfully.
& 4 extensions registered.

a Close

| Done

23.2. Installing the X-JSP compiler

Some extensions may want to use custom JSP files that also uses classes that are stored in the
extension's JAR file. The problem with this is that Tomcat usually doesn't know to look for classes in
the WEB-INF/extensions directory. To solve this problem BASE ships with a X-JSP compiler that
can do this. This compiler has been mapped to files with a .xjsp extension, which are just regular
JSP files with a different extension.

The X-JSP compiler must be installed into Tomcat's internal library folder ($SCATALINA_HOME/1ib)
since this is the only place where Tomcat look for compilers. The installation is easy. Simply copy
<base—-dir>/bin/jar/base2-xjsp-compiler. jar to SCATALINA_HOME/lib and restart Tomcat.

X-JSP is experimental

This is an experimental feature that depends on functionality in Tomcat. It may or may not
work with future versions of Tomcat. The compiler will most likely not work with other servlet
containers.

23.3. Configuring the extensions system

Go to Extensions Installed extensions to display an overview of all installed extensions.

149

Extensions

Figure 23.3. Installed extensions

Installed extensions

E‘ —| By extension point ~,$! Settings. .. “@; Manual scan... | & Help..

¥ Bioassay set; Tools

E| '3' Menu: extensions Automatic scan Disabled
""" @ Hello world Last scan Successful

""" £ Hello factory world - ended 2008-04-03 08:41:21
----- 4@ Greetings user

R L..£88 Hello |SP world

E| _| By file
- 2] core-extensions.xml
-] extension-examples jar

- summary 0 deleted extensions
0 new extensions
0 updated extensions

= Maore details. ..

The left-hand side of the screen shows you a tree with all installed extensions, sorted by extension
point and by file. Use the + and - icons to expand and collapse parts of the tree. Click on an item in
the tree to display detailed information about it on the right-hand side of the screen.

23.3.1. Settings

Click on the Settings... button to display a popup dialog that allows you to changes some global
settings.

Figure 23.4. Extension settings

&) http://localhost: 8080 - Extension settings - Mozill - 0] x|
Auto-installation interval |u | ceconds
(0 = disabled)

Settings |

@ Save a Cancel

Done

Auto-installation interval
The number of seconds between each check by the automatic installer. Enter O to disable auto-
matic installation. The automatic installation performs the same steps as a manual scan with
the Force update option unchecked. The default setting is to have the automatic installation
disabled and we don't recommend enabling it in a production environment.

Click on Save to save the settings.

150

Extensions

23.3.2. Disable/enable extensions

It is possible to disable specific extensions and/or entire extension points without uninstalling the
XML or JAR file. When you click on an extension or extension point in the tree on the left-hand side
of the screen a lot of detailed information about it will show up on the right-hand side.

The right-hand side will also have a Disable button. Click on that button to disable the extension
or all extensions for an extension point. The button will change to Enable which lets you enable
the extension (point) again.

151

Chapter 24. Account administration

Read Chapter 7, Projects and the permission system (page 37)

This chapter contains important information about the permission system BASE uses. It is
essential that an administrator knows how this works to be able to set up user, groups and
roles smoothly.

24.1. Users administration

The user list is accessed with Administrate Users and from here are the users' account and contact
information managed.

24.1.1. Edit user

The pop-up window where information and settings for a user can be edited has three tabs, one
for the account related, one with information about the user and one that shows the user's mem-
berships.

Properties

These are the properties for a user account.

Name
The full name of the user that is associated with the account.

Login
A login name to use when logging in to the account. The login must be unique among all users.

[External ID]
An id that is used to identify the user outside BASE (optional). If a value is given it must be
unique among all users.

New password
This is used together with the login name to log in to the account. This is a required field for
a new user or if the password should be changed. If the field is left empty the password will
be unchanged

Retype password
Retype the password that is written in New password.

[Quota]
Set disk quota for the account.

[Quota group |
Set this if the account should belong to a group with specified quota (optional). With this set
the user's possibilities to save items to disk will also depend on how much the rest of the group
has saved.

[Home directory |
Set the account's home directory (optional). A new directory, either empty or from a template,
can be created if editing a new user. Select - none - if there should not be any home directory
associated with the account.

[Expiration date]
Define a date in this field if the account should expire on a certain day (optional). The account
will be disabled after this date. Leave this empty if the account never should expire.

152

Account administration

Tip
Use the Calendar... button to pick a date from a calendar in a pop-up window.

Multi-user account
This checkbox should be checked if the account should be used by more one user. This will
prevent the users from changing the password, contact information and other settings. It will
also reset all list filters, column configurations, etc. when the user logs out. Normally, these
settings are remembered between log ins.

Disabled
Disable the account.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

Contact information

Information about how to get in contact with the user that is associated with the account. All fields
on this tab are optional and do not necessarily need to have a value but some can be good to set,
like email or phone number.

[Email]
User's email address. There is some verification of the value but there is no check if the email
really exists.

[Organization |
The company or organization that the user works for.

[Address |
User's mail address. Use the magnifying glass down to the right, to edit this property in a larger
window.

[Phone]
User's phone number(s)

Note

There is no special field for mobile phone, but it works fine to put more then one number
in this field.

[Fax]
User's fax number.

[Url]
A URL that is associated with the user.

[Description |
Other useful contact information or description about the user can be written in this field. Use
the magnifying glass to edit the information in a pop-up window with a larger text-area.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

Additional information

This tab contains fields that hold various information about the user. There are by default two fields
in BASE but this could easily be changed by the server administrator. How this configuration is
done can be read in Appendix D, extended-properties.xml reference (page 342)

Note

The Additional info tab is only visible if there is one or more property defined for UserData
in the configuration file for extended properties.

153

Account administration

These are the fields that are installed with BASE

Mobile
The user's mobile number could be put in this field. This field could be left empty.

Skype
Skype contact information, if the user has a registered Skype account. This field could be left

empty.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

Group and role membership

On this tab, the group and role membership of a user can be specified. The membership can also
be changed by editing the group and/or role.

Note

When adding a new user, the user is automatically added as a member to all groups and roles
that has been marked as default. In the standard BASE distribution the User role is marked
as a default role.

Member in
Lists the groups and roles the user already is a member of.

Add groups...
Opens a pop-up window that allows you to select groups. In the pop-up window, mark one or
more groups and click on the Ok button. The pop-up window will not list groups that the user
already is a member of.

Add roles...
Opens a pop-up window that allows you to select roles. In the pop-up window, mark one or more
roles and click on the Ok button. The pop-up window will not list roles that the user already
is a member of.

Remove
Use this button to remove the user from the selected groups and/or roles. The selected items
will then disappear from the list of memberships.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

24.1.2. Default group and role membership

It is possible to automatically let BASE add new users as a member of a pre-defined list of groups
and/or roles. This is done by marking those groups and roles as default groups and roles. There
are two ways to do this.

1. Change the flag in the edit-dialog for each of the groups/roles that you want to assign as default.

2. Use the Default membership button on the Administrate Users page and select groups and roles
in a pop-up dialog. The dialog lists all groups and roles that are currently assigned as default.
Use the Add groups and Add roles buttons to select more groups and roles. Use the Remove
button to remove the selected groups/roles.

Note

Changing which groups and roles that are the default does not affect existing user accounts.
They are only used to assign membership to new users.

154

Account administration

24.2. Groups administration

Groups in BASE are meant to represent the organizational structure of a company or institution.
For example, there can be one group for each department and subgroups for the teams in the
departments. The group-membership is normally set when the user is added to BASE and should
not have to be changed later, except when the company is re-organizing.

There is one pre-installed group in BASE, a system group, called Everyone. It is, like the name says,
a group in which everyone (all users) are members. The users that are allowed to share to everyone
can easily share items to all users by sharing the item to this group.

24.2.1. Edit group

The pop-up window where a group can be edited has two tabs, Group and Members.

Properties

Name
The name of the group.

Default
Mark this checkbox to let BASE automatically add new users as members to this group.

[Description |
Description about the group. The magnifying glass, down to the right, can be used to open and
edit the text in a larger text area.

[Quota]
With this property it's possible to limit the quota of total disk space for the group members.
Select -none- from the drop-down list if the group should not have any quota. There are some
presets of quotas that comes with the BASE installation, besides a couple with different size
of total disk space there are one called No quota and one with Unlimited quota. Their names
speak for them self.

Note

A user can only take quota from one group, which has to be specified as the Quota group
of the user.

Go to the other tab, Members, if there are any changes to do otherwise use Save to save the settings
or Cancel to abort.

Group members

A group can have both single users and other groups as members. Group members have access to
those items that are shared to the group. Each user in the group has the possibility to share their
own items to one or more of the other members or to the whole group.

Members
Lists the user and groups that are already members of this group.

Add users...
Opens a pop-up window that allows you to add users to the group. In the pop-up window, mark
one or more users and click on the Ok button. The pop-up window will not list users that are
already members of the group.

Add groups...
Opens a pop-up window that allows you to add other groups to the group. In the pop-up window,
mark one or more groups and click on the Ok button. The pop-up window will not list groups
that are already members of the group.

155

Account administration

Remove
Use this button to remove the selected users and/or groups from this group. The selected items
will disappear from the list of memberships.

Go to the other tab if there are any changes to do, otherwise use Save to save the values or Cancel
to abort.

24.3. Roles administration

Roles are meant to represent different kinds of working positions that users can have, like server
administrator or regular user just to mention two. Users are normally assigned a role, perhaps more
than one, when they are created and registered in BASE.

24.3.1. Pre-defined system roles

BASE comes with some pre-defined roles. These are configured to cover the normal user roles that
can appear. A more detailed description of the different roles and when to use them follows here.

Administrator
This role gives the user full permission to do everything in BASE and also possibility to share
items with the system-group 'Everyone'. Users that are supposed to administrate the server,
user accounts, groups etc. should have this role.

Supervisor
Users that are members of this role has permission to read everything in BASE. This role does
not let the members to actually do anything in BASE except read and supervise.

Power user
This role allows it's members to do some things that an ordinary user not is allowed to. Most
things are related to global resources like reporters, the array lims and plug-ins. This role can
be proper for those users that are in some kind of leading position over work groups or projects.

User
A role that is suitable for all ordinary users. This allows the members to do common things in
BASE such as creating biomaterials and experiments, uploading raw data and analyse it.

Guest
This is a role with limited access to create new things. It is useful for those who wants to have
peek at the program. It can also be used for someone that is helping out with the analysis of
an experiment.

Job agent
This role is given to the job agents and allows them to read and execute jobs. Job agents always
runs the jobs as the user who created the job and therefore it have to be able to act as another
user.

24.3.2. Edit role

Creating a new role or editing the system-roles are something that do not needs to be done very
often. The existing roles will normally be enough but there can be some cases when they need to be
complemented, either with a new role or with different permissions.

Properties

Name
The name of the role.

Share to Everyone
Allows the user to share items to the system-group 'Everyone'.

156

Account administration

Act as another user
Allows the user to login as another user without knowing the password. This is used by job
agents to make it possible for them to execute a plug-in as the user that created the job. This
permission will also make it possible to switch user in the web interface. It can be useful for an
administrator who needs to check out a problem, but use this permission with care.

Select job agent for jobs
Allows the user to select a specific job agent when running jobs. Users without this permission
will always have a randomly selected job agent.

Default
Mark this checkbox to let BASE automatically add new users as members to the role.

Description
Description and information about the role.

Set the properties and proceed then to either one of the other tabs or by clicking on one of the
buttons: Save to save the changes or Cancel to abort.

Permissions

A role's permissions are defined for each item type within BASE. Set the role's permission on an
item type by first selecting the item(s) in the list and then tick those permissions that should be
applied. Not all permissions can be applied to every item type, that's why permission check-boxes
becomes disabled when selecting some of the item types

After each item type in the list is a string inside square brackets that shows what kind of permissions
the current role has on that particular item type. The permissions that do not have been set are
represented with '-' inside the square brackets and those which have been set are represented with
characters that are listed below.

DENIED = Deny access to the selected item type. This exclude all the other permissions by
unchecking the other check boxes.

* C = Create
* R =Read
e U="Use

* W = Write
* D = Delete

O = Set owner

P = Set permission

Set the role's permission on each one of the item types and proceed then to one of the other tabs
or click on Save to save the changes or Cancel to abort.

Members

Members
Users that are members of a role are listed in the list-box located on this tab.

Add users
Select the users that should be added from the list in the pop-up window. Click on the Ok button
to close the pop-up window and add the selected users.

157

Account administration

Remove
Removes the selected users from the role.

Press Save to save the role or go to one of the other tabs if there are more that needs to be set. Use
Close to abort and close the window without saving the changes.

24.4. Disk space/quota

The administrator can control the maximum size of disk space for users and groups. A user must
be assigned a quota of their own and may optionally have a group quota as well. If so, the most
restrictive quota is checked whenever the user tries to do something that counts as disk-consuming,
for example uploading a file.

Note

The quota is checked before an operation, which is allowed to continue if there is space left. For
example, even if you have only one byte left of disk space you are allowed to upload a 10MB file.

Read Section 24.1.1, “Edit user” (page 152) and Section 24.2.1, “Edit group” (page 155) for
information about how to set a quota for a user and group.

The list of quotas in BASE can be found by using the menu Administrate Quota.

24.4.1. Edit quota

The edit window has two tabs, one with information about the quota and one where the limits are
defined.

Properties

Name
Name of the quota.

[Description |
Description of the quota. It could be a good idea to describe the quota's details here. Use the
magnifying glass to edit the text in a larger text area.

Go to the other tab if there are values that have not been set. Otherwise use Save to save the settings
or Cancel to abort.

Values

The quota values are defined here, both for the primary location and the secondary location. Use
the check box to the right of the input fields to set unlimited quota. You can use the abbreviations
kb, Mb and Gb to specify the quota values.

Total
Limit of total quota. The sum of the other three quotas does not have to be the same as this, it
is always the most restricted value that is used.

[Files]
Limit of disk space to save files in.

[Raw data]
Limit of disk space to save raw data in.

[Experiments]
Limit of disk space that can be used by experiments.

When everything have been set the quota is saved by using Save. To discard changes use Cancel.

158

Account administration

24.4.2. Disk usage

Go to Administrate Disk usage if you want to get statistics about how the disk is used. There are
three tabs:

Overview
Gives an overview of the total disk usage. It is divided per location and quota type.

Per user
Gives an overview of the disk usage per user. For each user you can get a summary displaying
the total disk usage and divided per location and quota type. Use the View details link to list
all items that uses up disk space. The list displays the name and type of each item and the
amount of disk space it uses.

Per group
Gives an overview of the disk usage per group, with the same functionality as the per user
Overview.

159

Part IV. Developer documentation

Chapter 25. Developer overview of
BASE

This section gives a brief overview of the architechture used in BASE. This is a good starting point
if you need to know how various parts of BASE are glued together. The figure below should display
most of the importants parts in BASE. The following sections will briefly describe some parts of the
figure and give you pointers for further reading if you are interested in the details.

161

Developer overview of BASE

Figure 25.1. Overview of the BASE application

Client Applications Fug-in system

Browser Execute Job controller

-Firefox ar IE |

-Internal
| | -Job agents
A T
U L8 Plugin Check
Web application Dther applications fo rjuhs
-Tamcat with |5P -Migration toaol |
-Extenszion AP -lob agents . - I
ek Service AP | Just a reglular client
|
| | | i
| | | |
L L L
Core AH |
i
Controller AH | nddiob N Job queue
-SezzioniCantral -stared in databaze
-DhCaontral
Ouery AH
-ltem Query | 1 C_hecﬁpgr_misﬁnn?, _I
-DynamicQuery Cantrol conhections, data validation, etc.
-Expression EXE““E HdQL transactions, ete. |
-Resztriction _et_met_a at_a S
B I Ul
I Item classes
Ececute S0L | | -
| I I -Baszicltem
-Uzer
| Batch A | | -Croup
| -ReporterBatcher N .I“
-RamDatabatcher et metadata .
| |-SpotBatcher HERG e
' I I |
Exeu:u}eSQL
I N B
H.idd_e.".- f_n}m client| | ih A i
applications and | | Hibernate Data classes
plug-ins*
[| -Hibernateltil -GazicData
-Sezzian __=/-UserData
| | -Transzaction Feald ! Wiite”| _croupData
I | -Query -ReporterData™
-Dialect
l l * Exception: BatchableData classes
| | Execufe QL are visible to client applications
| [_ _ _ _ _|_ _ _
| | |
| | Database |
i i A
Dynamic part Fixed part
-Analyzed data per experiment -Uszers
-Lroups

-Reporters

25.1. Fixed vs. dynamic database

BASE stores most of it's data in a database. The database is divided into two parts, one fixed and
one dynamic part.

162

Developer overview of BASE

The fixed part contains tables that corresponds to the various items found in BASE. There is, for
example, one table for users, one table for groups and one table for reporters. Some items share the
same table. Biosources, samples, extracts and labeled extracts are all biomaterials and share the
BioMaterials table. The access to the fixed part of the database goes through Hibernate in most
cases or through the the Batch API in some cases (for example, access to reporters).

The dynamic part of the database contains tables for storing analyzed data. Each experiment has
it's own set of tables and it is not possible to mix data from two experiments. The dynamic part of
the database can only be accessed by the Batch API and the Query API using SQL and JDBC.

Note
The actual location of the two parts depends on the database that is used. MySQL uses two
separate databases while PostgreSQL uses one database with two schemas.

More information

* Section 29.5, “Analysis and the Dynamic and Batch API:s” (page 276)

25.2. Hibernate and the DbEngine

Hibernate [Www.hibernate.orgl] is an object/relational mapping software package. It takes plain
Java objects and stores them in a database. All we have to do is to set the properties on the
objects (for example: user.setName ("A name")). Hibernate will take care of the SQL generation
and database communication for us. This is not a magic or automatic process. We have to pro-
vide mapping information about what objects goes into which tables and what properties goes into
which columns, and other stuff like caching and proxy settings, etc. This is done by annotating
the code with Javadoc comments. The classes that are mapped to the database are found in the
net.sf.basedb.core.data package, which is shown as the Data classes box in the image above.
The HibernateUtil class contains a lot of functionality for interacting with Hibernate.

Hibernate supports many different database systems. In theory, this means that BASE should work
with all those databases. However, in practice we have found that this is not the case. For example,
Oracle converts empty strings to null values, which breaks some parts of our code that expects
non-null values. Another difficulty is that our Batch API and some parts of the Query API:s generates
native SQL as well. We try to use database dialect information from Hibernate, but it is not always
possible. The DbEngine contains code for generating the SQL that Hibernate can't help us with.
We have implemented a generic DefaultDbEngine which follows ANSI specifications and special
drivers for MySQL (MySQLEngine) and PostgreSQL (PostgresDbEngine). We don't expect BASE to
work with other databases without modifications.

More information

* Section 31.3.4, “Data-layer rules” (page 304)

* www.hibernate.org?

25.3. The Batch API

Hibernate comes with a price. It affects performance and uses a lot of memory. This means that those
parts of BASE that often handles lots of items at the same time doesn't work well with Hibernate.
This is for example reporters, array design features and raw data. We have created the Batch API
to solve these problems.

The Batch API uses JDBC and SQL directly against the database. However, we still use metadata
and database dialect information available from Hibernate to generate most of the SQL we need. In

1 http://www.hibernate.org

163

http://www.hibernate.org
http://www.hibernate.org
http://www.hibernate.org

Developer overview of BASE

theory, this should make the Batch API just as database-independent as Hibernate is. In practice
there is some information that we can't extract from Hibernate so we have implemented a simple
DbEngine to account for missing pieces. The Batch API can be used for any BatchableData class
in the fixed part of the database and is the only way for adding data to the dynamic part.

Note

The main reason for the Batch API is to avoid the internal caching of Hibernate which eats
lots of memory when handling thousands of items. Hibernate 3.1 introduced a new stateless
API which among other things doesn't do any caching. This version was released after we had
created the Batch API. We made a few tests to check if it would be better for us to switch back
to Hibernate but found that it didn't perform as well as our own Batch API (it was about 2
times slower). In any case, we can never get Hibernate to work with the dynamic database,
so the Batch API is needed.

More information

® Section 29.5, “Analysis and the Dynamic and Batch API:s” (page 276)
® Section 31.3.6, “Batch-class rules” (page 318)

* Section 31.4.6, “Batch operations” (page 319)

25.4. Data classes vs. item classes

The data classes are, with few exceptions, for internal use. These are the classes that are mapped to
the database with Hibernate mapping files. They are very simple and contains no logic at all. They
don't do any permission checks or any data validation.

Most of the data classes has a corresponding item class. For example: UserData and User, Group—
Data and Group. The item classes are what the client applications can see and use. They contain
logic for permission checking (for example if the logged in user has WRITE permission) and data
validation (for example setting a required property to null).

The exception to the above scheme are the batchable classes, which are all subclasses of the Batch-
ableData class. For example, there is a ReporterData class but no corresponding item class. In-
stead there is a batcher implementation, ReporterBatcher, which takes care of the more or less
the same things that an item class does, but it also takes care of it's own SQL generation and JDBC
calls that bypasses Hibernate and the caching system.

More information

® Section 31.3.4, “Data-layer rules” (page 304)

® Section 31.3.5, “Item-class rules” (page 318)

Section 31.3.6, “Batch-class rules” (page 318)

Section 31.4.2, “Access permissions” (page 319)
* Section 31.4.3, “Data validation” (page 319)

* Section 31.4.6, “Batch operations” (page 319)

25.5. The Query API

The Query API is used to build and execute queries against the data in the database. It builds a
query by using objects that represents certain operations. For example, there is an EqRestriction
object which tests if two expressions are equal and there is an AddExpression object which adds
two expressions. In this way it is possible to build very complex queries without using SQL or HQL.

164

Developer overview of BASE

The Query API knows how to work both via Hibernate and via SQL. In the first case it generates HQL
(Hibernate Query Language) statements which Hibernate then translates into SQL. In the second
case SQL is generated directly. In most cases HQL and SQL are identical, but not always. Some
situations are solved by having the Query API generate slightly different query strings (with the help
of information from Hibernate and the DbEngine). Some query elements can only be used with one
of the query types.

Note

The object-based approach makes it a bit difficult to store a query for later reuse. The
net.sf.basedb.util. jep package contains an expression parser that can be used to convert
a string to Restriction:s and Expression:s for the Query API. While it doesn't cover 100%
of the cases it should be useful for the WHERE part of a query.

More information

* Section 29.4, “The Query API” (page 276)

25.6. The Controller API

The Controller API is the very heart of the Base 2 system. This part of the core is used for boring
but essential details, such as user authentication, database connection management, transaction
management, data validation, and more. We don't write more about this part here, but recommends
reading the documents below.

More information

* Section 31.4, “Internals of the Core API” (page 318)

25.7. Plug-ins

From the core code's point of view a plug-in is just another client application. A plug-in doesn't
have more powers and doesn't have access to some special API that allows it to do cool stuff that
other clients can't.

However, the core must be able to control when and where a plug-in is executed. Some plug-ins may
take a long time doing their calculations and may use a lot of memory. It would be bad if a several
users started to execute a resource-demanding plug-in at the same time. This problem is solved by
adding a job queue. Each plug-in that should be executed is registered as Job in the database. A
job controller is checking the job queue at regular intervals. The job controller can then choose if it
should execute the plug-in or wait depending on the current load on the server.

Note

BASE ships with two types of job controllers. One internal that runs inside the web application,
and one external that is designed to run on separate servers, so called job agents. The internal
job controller should work fine in most cases. The drawback with this controller is that a badly
written plug-in may crash the entire web server. For example, a call to System.exit () in the
plug-in code shuts down Tomcat as well.

More information

¢ Chapter 26, Plug-in developer (page 167)

* Section 31.4.8, “Plugin execution / job queue” (page 319)

25.8. Client applications

Client applications are application that use the BASE Core API. The current web application is built
with Java Server Pages (JSP). It is supported by several application servers but we have only tested it

165

Developer overview of BASE

with Tomcat. Other client applications are the external job agents that executes plug-ins on separate
servers, and the migration tool that migrates data from a BASE 1.2.x installation to BASE 2.

Although it is possible to develop a completely new client appliction from scratch we don't see this
as a likely thing to happen. Instead, there are some other possibilites to access data in BASE and
to extend the functionality in BASE.

The first possibility is to use the Web Service API. This allows you to access some of the data in the
BASE database and download it for further use. The Web Service API is currently very limited but
it is not hard to extend it to cover more use cases.

A second possibility is to use the Extension API. This allows a developer to add functionality that

appears directly in the web interface. For example, additional menu items and toolbar buttons. This
API is also easy to extend to cover more use cases.

More information

* Chapter 28, Web services (page 223)

* Chapter 27, Extensions developer (page 209)

® The BASE plug-ins site® also has examples of extensions and web services implementations.

166

http://baseplugins.thep.lu.se

Chapter 26. Plug-in developer

26.1. How to organize your plug-in project

26.1.1. Using Ant

Here is a simple example of how you might organize your project using ant (http://ant.apache.org)
as the build tool. This is just a recommendation that we have found to be working well. You may
choose to do it another way.

Directory layout

Create a directory on your computer where you want to store your plug-in project. This directory is
the pluginname/ directory in the listing below. You should also create some subdirectories:

pluginname/

pluginname/bin/
pluginname/lib/
pluginname/src/org/company/
pluginname/META-INF/

The bin/ directory is empty to start with. It will contain the compiled code. In the 1ib/ directory
you should put BASE2Core. jar and other library files your plug-in depends on. The src/ directory
contains your source code. In this directory you should create subdirectories corresponding to the
package name of your plug-in class(es). See http://en.wikipedia.org/wiki/Java_package for infor-
mation about conventions for naming packages. The META-INF directory contains metadata about
the plug-in and are needed for best functionality.

The build file

In the root of your directory, create the build file: build.xml. Here is an example that will compile
your plug-in and put it in a JAR file.

167

http://ant.apache.org
http://en.wikipedia.org/wiki/Java_package

Plug-in developer

Example 26.1. A simple build file

<?xml version="1.0" encoding="UTF-8"7?>
<project
name="MyPlugin"
default="build.plugin"
basedir="."
>

<!-- variables used ——>

<property name="plugin.name" value="MyPlugin" />
<property name="src" value="src" />

<property name="bin" value="bin" />

<!—— set up classpath for compiling —--—>
<path id="classpath">
<fileset dir="1ib">
<include name="**/*_ jar"/>
</fileset>
</path>

<!-- main target --—>
<target

name="build.plugin"

description="Compiles the plug-in and put in Jjar"

>

<javac
encoding="IS0-8859-1"
srcdir="${src}"
destdir="${bin}"
classpathref="classpath">

</javac>

<jar
Jarfile="${plugin.name}. jar"
basedir="bin"
manifest="META-INF/MANIFEST.MF"
>
<!--Include this to add required files for auto registration wizard-->
<metainf file="META-INF/base-plugins.xml"></metainf>
<metainf file="META-INF/base-configurations.xml"></metainf>

</jar>

</target>
</project>

If your plug-in depends on other JAR files than the BASE2Core. jar you must create a file called
MANIFEST.MF in the project META-INF directory. List the other JAR files as in the following example.
If your plug-in does not depend on other JAR files, you may remove the manifest attribute of the
<jar> tag.

Manifest-Version: 1.0
Class-Path: OtherJar.jar ASecondJar. jar

See also Section 26.8, “How BASE load plug-in classes”(page 207) for more information regarding
class loading when a plug-in depends on a external JAR files.

If your plug-in should support registration with the auto-installation wizard it is a good idea to add
the metainf tags. This will add the two files META-INF/base-plugins.xml and META-INF/base-
configurations.xml to the META-INF directory in the JAR file. The two files contains information
about your plug-in and BASE can automatically find and extract information from those. See Sec-
tion 26.1.3, “Make the plug-in compatible with the auto-installation wizard”(page 169) for get
more information about this feature.

Building the plug-in

Compile the plug-in simply by typing ant in the console window. If all went well the MyPlugin. jar
will be created in the same directory.

168

Plug-in developer

To install the plug-in copy the JAR file to the server including the dependent JAR files (if any). Place
all files together in the same directory. For more information read Section 22.1, “Installing plug-ins”
(page 133).

26.1.2. With Eclipse

If somebody is willing to add information to this chapter please send us a note or some written text
to put here. Otherwise, this chapter will be removed.

26.1.3. Make the plug-in compatible with the auto-
installation wizard

BASE has support for automatically detecting new plug-ins with the auto-installation wizard. The
wizard makes it very easy for a server administrator to install new plug-ins. See Section 22.1.3,
“Automatic installation of plug-ins” (page 136).

The auto-install feature requires that a plug-in provides some information about itself. The wizard
looks in all JAR file for the file META-INF/base-plugins.xml. This file contains some information
about the plug-in(s). Here is an example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plugins SYSTEM "base-plugins.dtd" >

<plugins Jjarname="jarfile.jar">

<pluginclass classname="se.lu.thep.PluginClass">
<minbaseversion>2.4</minbaseversion>
<hasconfigurations/>
</pluginclass>

</plugins>

The first two lines should be the same in all base-plugins.xml files. The rest of the tags are
described in following list.

<plugins>
This is the root element in the XML-file and must have the attribute jarname set. The value
must be the same as name of the JAR file the plug-in is located in or the auto-installation wizard
will fail with an error.

<pluginclass>
This tag defines information about a plug-in in the JAR file. The classname attribute needs to
have the full classname of the plug-in's main class. There can be one or several of this element
inside the <plugins> tag, which means that there should be one element for each plug-in in
the JAR file.

<minbaseversion>
A required child element in <pluginclass>. This defines from which version of BASE the
plug-in can be used. The plug-in will not be included in auto installer if the BASE-version
is lower then the value of this tag. The format of the value in this tag should be (numeric)
majorversion.minorversion. It is not possible to check the bugfix or revision numbers.

<hasconfigurations>
A required child element in <pluginclass>. This should tell if there are plug-in configurations
shipped with the plug-in. Setting the value to yes will indicate that there are available configura-
tions in the JAR file. This can be left as an empty tag if no configurations are available for import.

Configurations shipped with a JAR file should be exported with the plug-in configuration ex-
porter in BASE. The exported file must be given the name base-configurations.xml and be
placed in META-INF/.

169

Plug-in developer

26.2. The Plug-in API

26.2.1. The main plug-in interfaces

The Base2 core defines two interfaces and one abstract class that are vital for implementing plug-ins:

® net.sf.basedb.core.plugin.Plugin
® net.sf.basedb.core.plugin.InteractivePlugin
® net.sf.basedb.core.plugin.AbstractPlugin

A plug-in must always implement the Plugin interface. The InteractivePlugin interface is op-

tional, and is only needed if you want user interaction. The AbstractPlugin is a useful base class
that your plug-in can use as a superclass. It provides default implementations for some of the in-
terface methods and also has utility methods for validating and storing job and configuration pa-
rameter values. Another reason to use this class as a superclass is that it will shield your plug-in
from future changes to the Plug-in API. For example, if we decide that a new method is needed in
the Plugin interface we will also try to add a default implementation in the AbstractPlugin class.

Important

A plug-in must also have public no-argument contructor. Otherwise, BASE will not be able to
create new instances of the plug-in class.

The net.sf.basedb.core.plugin.Plugin interface
This interface defines the following methods and must be implemented by all plug-ins.

public About getAbout () ;

Return information about the plug-in, i.e. the name, version, and a short description about
what the plug-in does. The About object also has fields for naming the author and various other
contact information. The returned information is copied by the core at installation time into the
database. The only required information is the name of the plug-in. All other fields may have
null values.

Example 26.2. A typical implementation stores this information in a static field

private static final About about = new AboutImpl
(
"Spot images creator',
"Converts a full-size scanned image into smaller preview jpg " +
"images for each individual spot.",
2,07,
"2006, Department of Theoretical Physics, Lund University",
null,
"base@thep.lu.se",
"http://base.thep.lu.se"
)i

public About getAbout ()
{

return about;

}

public Plugin.MainType getMainType () ;

Return information about the main type of plug-in. The Plugin.MainType is an enumeration
with five possible values:

170

Plug-in developer

* ANALYZE: An analysis plug-in

® EXPORT: A plug-in that exports data

IMPORT: A plug-in that imports data
* INTENSITY: A plug-in that calculates the original spot intensities from raw data

* OTHER: Any other type of plug-in

The returned value is stored in the database but is otherwise not used by the core. Client
applications (such as the web client) will probably use this information to group the plug-ins,
i.e., a button labeled Export will let you select among the export plug-ins.

Example 26.3. A typical implementation just return one of the values

public Plugin.MainType getMainType ()
{
return Plugin.MainType.OTHER;

}

public boolean supportsConfigurations() ;

If this method returns true, the plug-in can have different configurations, (i.e. PluginConfigu-
ration). Note that this method may return true even if the InteractivePlugin interface is not
implemented. The AbstractPlugin returns true for this method, which is the old way before
the introduction of this method.

public boolean requiresConfiguration() ;

If this method returns true, the plug-in must have a configuration to be able to run. For example,
some of the core import plug-ins must have information about the file format, to be able to
import any data. The AbstractPlugin returns false for this method, which is the old way before
the introduction of this method.

public Collection<Permissions> getPermissions () ;

Return a collection of permissions that the plug-in needs to be able to function as expected. This
method may return null or an empty collection. In this case the plug-in permission system is
not used and the plug-in always gets the same permissions as the logged in user. If permissions
are specified the plug-in should list all permissions it requires. Permissions that are not listed
are denied.

Note

The final assignment of permissions to a plug-in is always at the hands of a server ad-
ministrator. He/she may decide to disable the plug-in permission system or revoke some
of the requested permissions. The permissions returned by this method is only a recom-
mendation that the server administrator may or may not accept. See Section 22.2, “Plug-in
permissions” (page 137) for more information about plug-in permissions.

public void init (SessionControl sc,

ParameterValues configuration,
ParameterValues job)

throws BaseException;

Prepare the plug-in for execution or configuration. If the plug-in needs to do some initialization
this is the place to do it. A typical implementation however only stores the passed parameters
in instance variables for later use. Since it is not possible what the user is going to do at this
stage, we recommend lazy initialisation of all other resources.

171

Plug-in developer

The parameters passed to this method has vital information that is needed to execute the plug-in.
The SessionControl is a central core object holding information about the logged in user and
is used to create DbControl objects which allows a plug-in to connect to the database to read,
add or update information. The two ParameterValues objects contain information about the
configuration and job parameters to the plug-in. The configuration object holds all parameters
stored together with a PluginConfiguration object in the database. If the plug-in is started
without a configuration this object is null. The job object holds all parameters that are stored
together with a Job object in the database. This object is null if the plug-in is started without
a job.

The difference between a configuration parameter and a job parameter is that a configuration is
usually something an administrator sets up, while a job is an actual execution of a plug-in. For
example, a configuration for an import plug-in holds the regular expressions needed to parse a
text file and find the headers, sections and data lines, while the job holds the file to parse.

The AbstractPlugin contains an implementation of this method that saves the passed objects
in protected instance variables. If you override this method we recommend that you also call
super.init ().

Example 26.4. The AbstractPlugin implementation of Plugin.init()

protected SessionControl sc = null;

protected ParameterValues configuration = null;

protected ParameterValues job = null;

/**
Store copies of the session control, plug-in and job configuration. These
are available to subclasses in the {@link #sc}, {@link #configuration}
and {@link #Jjob} variables. If a subclass overrides this method it is
recommended that it also calls super.init (sc, configuration, Jjob).

*/

public void init (SessionControl sc,
ParameterValues configuration, ParameterValues job)
throws BaseException

this.sc = sc;
this.configuration = configuration;
this.job = job;

public void run (Request request,

Response response,

ProgressReporter progress) ;

Run the plug-in.

The request parameter is of historical interest only. It has no useful information and can be
ignored.

The progress parameter can be used by a plug-in to report its progress back to the core. The
core will usually send the progress information to the database, which allows users to see exactly
how the plug-in is progressing from the web interface. This parameter can be null, but if it is
not we recommend all plug-ins to use it. However, it should be used sparingly, since each call
to set the progress results in a database update. If the execution involves several thousands of
items it is a bad idea to update the progress after processing each one of them. A good starting
point is to divide the work into 100 pieces each representing 1% of the work, i.e., if the plug-in
should export 100 000 items it should report progress after every 1000 items.

The response parameter is used to tell the core if the plug-in was successful or failed. Not setting
a response is considered a failure by the core. From the run method it is only allowed to use the
Response.setDone () or the Response.setError () methods.

172

Plug-in developer

Important

It is also considered bad practice to let exceptions escape out from this method. Always
use try...catch to catch exceptions and use Response.setError () to report the error
back to the core.

Example 26.5. Here is a skeleton that we recommend each plug-in to use in its implementation
of the run () method

public void run (Request request, Response response, ProgressReporter progress)
{

// Open a connection to the database

// sc is set by init () method

DbControl dc = sc.newDbControl () ;

try

{

// Insert code for plug-in here

// Commit the work
dc.commit () ;
response.setDone ("Plug-in ended successfully") ;
}
catch (Throwable t)
{
// All exceptions must be catched and sent back
// using the response object

response.setError (t.getMessage (), Arrays.aslList(t));

}

finally

{
// IMPORTANT!!! Make sure opened connections are closed
if (dc !'= null) dc.close();

public void done() ;

Clean up all resources after executing the plug-in. This method must not throw any exceptions.

Example 26.6. The AbstractPlugin contains an implementation of the done () method simply sets
the parameters passed to the init () method to null

/**
Clears the variables set by the init method. If a subclass
overrides this method it is recommended that it also calls super.done() .
*/
public void done ()
{
configuration = null;
job = null;
sc = null;

The net.sf.basedb.core.plugin.InteractivePlugin interface

If you want the plug-in to be able to interact with the user you must also implement this interface.
This is probably the case for most plug-ins. Among the core plug-ins shipped with BASE the Spo-
tImageCreator is one plug-in that does not interact with the user. Instead, the web client has spe-
cial JSP pages that handles all the interaction, creates a job for it and sets the parameters. This,
kind of hardcoded, approach can also be used for other plug-ins, but then it usually requires mod-
ification of the client application as well.

The InteractivePlugin has three main tasks:

1. Tell a client application where the plug-in should be plugged in.

173

Plug-in developer

2. Ask the users for configuration and job parameters.
3. Validate parameter values entered by the user and store those in the database.
This requires that the following methods are implemented.

public Set<GuiContext> getGuiContexts () ;

Return information about where the plug-in should be plugged in. Each place is identified by a
GuiContext object, which is an Item and a Type. The item is one of the objects defined by the
Item enumeration and the type is either Type.LIST or Type.ITEM, which corresponde to the
list view and the single-item view in the web client.

For example, the GuiContext = (Item.REPORTER, Type.LIST) tells a client application that
this plug-in can be plugged in whenever a list of reporters is displayed. The GuiContext =
(Item.REPORTER, Type.ITEM) tells a client application that this plug-in can be plugged in when-
ever a single reporter is displayed. The first case may be appropriate for a plug-in that imports
or exports reporters. The second case may be used by a plug-in that updates the reporter infor-
mation from an external source (well, it may make sense to use this in the list case as well).

The returned information is copied by the core at installation time to make it easy to ask for all
plug-ins for a certain GuiContext.

A typical implementation creates a static unmodifiable Set which is returned by this method. It
is important that the returned set cannot be modified. It may be a security issue if a misbehaving
client application does that.

Example 26.7. A typical implementation of getGuiContexts

// From the net.sf.basedb.plugins.RawDataFlatFileImporter plug-in
private static final Set<GuiContext> guiContexts =
Collections.singleton (new GuiContext (Item.RAWBIOASSAY, GuiContext.Type.ITEM)) ;

public Set<GuiContext> getGuiContexts ()
{

return guiContexts;

}

public String isInContext (GuiContext context,

Object item) ;

This method is called to check if a particular item is usable for the plug-in. This method is
invoked to check if a plug-in can be used in a given context. If invoked from a list context the
item parameter is null. The plug-in should return null if it finds that it can be used. If the
plug-in can't be used it must decide if the reason should be a warning or an error condition.

A warning is issued by returning a string with the warning message. It should be used when
the plug-in can't be used because it is unrelated to the current task. For example, a plug-in
for importing Genepix data should return a warning when somebody wants to import data to
an Agilent raw bioassay.

An error message is issued by throwing an exception. This should be used when the plug-in is
related to the current task but still can't do what it is supposed to do. For example, trying to
import raw data if the logged in user doesn't have write permission to the raw bioassay.

As a rule of thumb, if there is a chance that another plug-in might be able to perform the same
task a warning should be used. If it is guaranteed that no other plug-in can do it an error
message should be used.

174

Plug-in developer

Note

The contract of this method was changed in in BASE 2.4 to allow warning and error level
message. Prior to BASE 2.4 all messages were treated as error message. We recommend
that existing plug-ins are updated to throw exception to indicate error-level messages since
the default is to not show warning messages to users.

Here is a real example from the RawDataFlatFileImporter plug-in which imports raw data to a
RawBioAssay. Thus, GuiContext = (Item.RAWBIOASSAY, Type.ITEM), but the plug-in can only
import data if the logged in user has write permission, there is no data already, and if the raw
bioassay has the same raw data type as the plug-in has been configured for.

Example 26.8. A realistic implementation of the isInContext () method

/**
Returns null if the item is a {@link RawBioAssay} of the correct
{@link RawDataType} and doesn't already have spots.
@throws PermissionDeniedException If the raw bioasssay already has raw data
or if the logged in user doesn't have write permission
v
public String isInContext (GuiContext context, Object item)
{
String message = null;
if (item == null)
{
message = "The object is null";
}
else if (! (item instanceof RawBioAssay))
{
message = "The object is not a RawBioAssay: " + item;
}
else
{
RawBioAssay rba = (RawBioAssay)item;
String rawDataType = (String)configuration.getValue ("rawDataType") ;
RawDataType rdt = rba.getRawDataType () ;
if (!'rdt.getId() .equals(rawDataType))
{
// Warning
message = "Unsupported raw data type: " + rba.getRawDataType () .getName () ;
}
else if (!rdt.isStoredInDb ())
{
// Warning

message = "Raw data for raw data type '" + rdt + "' is not stored in the database";
}
else if (rba.hasData())
{

// Error

throw new PermissionDeniedException ("The raw bioassay already has data.");

}

else

{
// Error
rba.checkPermission (Permission.WRITE) ;

}

return message;

public RequestInformation getRequestInformation (GuiContext context,

String command)

throws BaseException;

Ask the plug-in for parameters that need to be entered by the user. The GuiContext parameter
is one of the contexts returned by the getGuiContexts method. The command is a string telling

175

Plug-in developer

the plug-in what command was executed. There are two predefined commands but as you will
see the plug-in may define its own commands. The two predefined commands are defined in the
net.sf.basedb.core.plugin.Request class.

Request .COMMAND_CONFIGURE_PLUGIN
Used when an administrator is initiating a configuration of the plug-in.

Request .COMMAND_CONFIGURE_JOB

Used when a user has selected the plug-in for running a job.
Given this information the plug-in must return a RequestInformation object. This is simply
a title, a description, and a list of parameters. Usually the title will end up as the input form
title and the description as a help text for the entire form. Do not put information about the
individual parameters in this description, since each parameter has a description of its own.

176

Plug-in developer

Example 26.9. When running an import plug-in it needs to ask for the file to import from and if
existing items should be updated or not

// The complete request information
private RequestInformation configure Job;

// The parameter that asks for a file to import from
private PluginParameter<File> file Parameter;

// The parameter that asks if existing items should be updated or not
private PluginParameter<Boolean> updateExistingParameter;

public RequestInformation getRequestInformation (GuiContext context, String command)
throws BaseException

RequestInformation requestInformation = null;

if (command.equals (Request.COMMAND_CONFIGURE_PLUGIN))

{ requestInformation = getConfigurePlugin() ;

;lse if (command.equals (Request.COMMAND_CONFIGURE_JOB))
{ requestInformation = getConfigureJdob () ;

}

return requestInformation;

/**
Get (and build) the request information for starting a job.
*/
private RequestInformation getConfigureJdob ()
{
if (configuredob == null)
{
// A file is required
fileParameter = new PluginParameter<File> (
"file",
"File",
"The file to import the data from",
new FileParameterType (null, true, 1)

// The default value is 'false'

updateExistingParameter = new PluginParameter<Boolean> (
"updateExisting",
"Update existing items",
"If this option is selected, already existing items will be updated
" with the information in the file. If this option is not selected
" existing items are left untouched.",
new BooleanParameterType (false, true)

[

[

List<PluginParameter<?>> parameters =
new ArrayList<PluginParameter<?>>(2);

parameters.add (fileParameter) ;

parameters.add (updateExistingParameter) ;

configureJob = new RequestInformation

(
Request . COMMAND_CONFIGURE_JOB,
"Select a file to import items from',
"Description",
parameters

}

return configureJob;

177

Plug-in developer

As you can see it takes a lot of code to put together a RequestInformation object. For each
parameter you need one PluginParameter object and one ParameterType object. To make life
a little easier, a ParameterType can be reused for more than one PluginParameter.

StringParameterType stringPT = new StringParameterType (255, null, true);

PluginParameter one = new PluginParameter ("one", "One", "First string", stringPT);
PluginParameter two = new PluginParameter ("two", "Two", "Second string", stringPT) ;
// ... and so on

The ParameterType is an abstract base class for several subclasses each implementing a specific
type of parameter. The list of subclasses may grow in the future, but here are the most important
ones currently implemented.

Note

Most parameter types include support for supplying a predefined list of options to select
from. In that case the list will be displayed as a drop-down list for the user, otherwise a
free input field is used.

StringParameterType
Asks for a string value. Includes an option for specifying the maximum length of the string.

FloatParameterType, DoubleParameterType, IntegerParameterType, LongParameter-
Type
Asks for numerical values. Includes options for specifying a range (min/max) of allowed
values.

BooleanParameterType
Asks for a boolean value.

DateParameterType
Asks for a date.

FileParameterType
Asks for a file item.

ItemParameterType
Asks for any other item. This parameter type requires that a list of options is supplied, except
when the item type asked for matches the current GuiContext, in which case the currently
selected item is used as the parameter value.

PathParameterType
Ask for a path to a file or directory. The path may be non-existing and should be used when
a plug-in needs an output destination, i.e., the file to export to, or a directory where the
output files should be placed.

You can also create a PluginParameter with a null name and ParameterType. In this case, the
web client will not ask for input from the user, instead it is used as a section header, allowing you
to group parameters into different sections which increase the readability of the input parameters

page.

PluginParameter firstSection = new PluginParameter (null, "First section", null, null);
PluginParameter secondSection = new PluginParameter (null, "Second section", null, null);

//

parameters.add(firstSection) ;
parameters.add (firstParameterInFirstSection) ;
parameters.add (secondParameteInFirstSection) ;

parameters.add (secondSection) ;
parameters.add (firstParameterInSecondSection) ;

178

Plug-in developer

parameters.add (secondParameteInSecondSection) ;

public void configure (GuiContext context,

Request request,

Response response) ;

Sends parameter values entered by the user for processing by the plug-in. The plug-in must
validate that the parameter values are correct and then store them in database.

Important

No validation is done by the core, except converting the input to the correct object type,
i.e. if the plug-in asked for a Float the input string is parsed and converted to a Float.
If you have extended the AbstractPlugin class it is very easy to validate the parameters
with the AbstractPlugin.validateRequestParameters () method. This method takes
the same list of PluginParameter:s as used in the Request Information object and uses
that information for validation. It returns null or a list of Throwable:s that can be given
directly to the response.setError () methods.

When the parameters have been validated, they need to be stored in the database.
Once again, it is very easy, if you use one of the AbstractPlugin.storeValue() or
AbstractPlugin.storeValues () methods.

The configure method works much like the P1lugin.run () method. It must return the result in
the Response object, and should not throw any exceptions.

Example 26.10. Configuration implementation building on the examples above

public void configure (GuiContext context, Request request, Response response)
{
String command = request.getCommand() ;
try
{
if (command.equals (Request.COMMAND_CONFIGURE_PLUGIN))
{
// TODO
}
else if (command.equals (Request.COMMAND_CONFIGURE_JOB))
{
// Validate user input
List<Throwable> errors =

validateRequestParameters (getConfiguredJob () .getParameters (), request) ;
if (errors != null)
{
response.setError (errors.size () +
" invalid parameter (s) were found in the request", errors);
return;

}

// Store user input
storeValue (job, request, fileParameter) ;
storeValue (job, request, updateExistingParameter) ;

// We are happy and done
response.setDone ("Job configuration complete", Job.ExecutionTime.SHORT) ;
// TODO - check file size to make a better estimate of execution time

}

catch (Throwable ex)
{

response.setError (ex.getMessage (), Arrays.aslList (ex));

Note that the call to response.setDone () has a second parameter Job.ExecutionTime.SHORT.
It is an indication about how long time it will take to execute the plug-in. This is of interest

179

Plug-in developer

for job queue managers which probably does not want to start too many long-running jobs at
the same time blocking the entire system. Please try to use this parameter wisely and not use
Job.ExecutionTime.SHORT out of old habit all the time.

The Response class also has a setContinue () method which tells the core that the plug-in
needs more parameters, i.e. the core will then call getRequestInformation () again with the
new command, let the user enter values, and then call configure () with the new values. This
process is repeated until the plug-in reports that it is done or an error occurs.

Tip

You do not have to store all values the plug-in asked for in the first place. You may even
choose to store different values than those that were entered. For example, you might ask
for the mass and height of a person and then only store the body mass index, which is
calculated from those values.

An important note is that during this iteration it is the same instance of the plug-in that
is used. However, no parameter values are stored in the database until the plugin sends a
response.setDone (). After that, the plug-in instance is usually discarded, and a job is placed
in the job queue. The execution of the plug-in happens in a new instance and maybe on a dif-
ferent server. This means that a plug-in can't store state from the configuration phase internally
and expect it to be there in the execution phase. Everything the plug-in needs to do it's job must
be stored as parameters in the database.

The only exception to the above rule is if the plug-in answers with
Response.setExecuteImmediately () Or Response.setDownloadImmediately (). Doing so
bypasses the entire job queue system and requests that the job is started immediately. This is a
permission that has to be granted to each plug-in by the server administrator. If the plug-in has
this permission, the same object instance that was used in the configuration phase is also used
in the execution phase. This is the only case where a plug-in can retain internal state between
the two phases.

26.2.2. How the BASE core interacts with the plug-in
when...

This section describes how the BASE core interacts with the plug-in in a number of use cases. We
will outline the order the methods are invoked on the plug-in.

Installing a plug-in

When a plug-in is installed the core is eager to find out information about the plug-in. To do this
it calls the following methods in this order:

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2.Calls are made to Plugin.getMainType(), Plugin.supportsConfigurations(),
Plugin.requiresConfiguration () and Plugin.getAbout () to find out information about the
plug-in. This is the only time these methods are called. The information that is returned by them
are copied and stored in the database for easy access.

Note

The Plugin.init () method is never called during plug-in installation.

3.If the plug-in implements the InteractivePlugin interface the
InteractivePlugin.getGuiContexts () method is called. This is the only time this method is
called and the information it returns are copied and stored in the database.

180

Plug-in developer

4. If the server admin decided to use the plug-in permission system, the Plugin.getPermissions ()
method is called. The returned information is copied and stored in the database.

Configuring a plug-in

The plug-in must implement the InteractivePlugin interface and the
Plugin.supportsConfigurations () method must return TRUE. The configuration is done with a
wizard-like interface (see Section 22.4.1, “Configuring plug-in configurations” (page 141)). The same
plug-in instance is used throughout the entire configuration sequence.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2.The Plugin.init () method is called. The job parameter is null.

3.The 1InteractivePlugin.getRequestInformation() method is called. The context
parameter is null and the command is the value of the string constant
Request .COMMAND_CONFIGURE_PLUGIN (_config_plugin).

4. The web client process the returned information and displays a form for user input. The plug-in
will have to wait some time while the user enters data.

5.The InteractivePlugin.configure () method is called. The context parameter is still null
and the request parameter contains the parameter values entered by the user.

6. The plug-in must validate the values and decide whether they should be stored in the database
or not. We recommend that you use the methods in the AbstractPlugin class for this.

7. The plug-in can choose between three different respones:

® Response.setDone (): The configuration is complete. The core will write any configuation
changes to the database, call the Plugin.done () method and then discard the plug-in in-
stance.

® Response.setError (): There was one or more errors. The web client will display the error
messages for the user and allow the user to enter new values. The process continues with step
4 (page 181).

® Response.setContinue (): The parameters are correct but the plug-in wants more parameters.
The process continues with step 3 (page 181) but the command has the value that was passed
to the setContinue () method.

Checking if a plug-in can be used in a given context

If the plug-in is an InteractivePlugin it has specified in which contexts it can be used by the
information returned from InteractivePlugin.getGuiContexts () method. The web client uses
this information to decide whether, for example, a Run plugin button should be displayed on a page
or not. However, this is not always enough to know whether the plug-in can be used or not. For
example, a raw data importer plug-in cannot be used to import raw data if the raw bioassay already
has data. So, when the user clicks the button, the web client will load all plug-ins that possibly can
be used in the given context and let each one of them check whether they can be used or not.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2. The Plugin.init () method is called. The job parameter is null. The configuration parameter
is null if the plug-in does not have any configuration parameters.

3.The InteractivePlugin.isInContext () is called. If the context is a list context, the item pa-
rameter is null, otherwise the current item is passed. The plug-in should return null if it can be
used under the current circumstances, or a message explaining why not.

181

Plug-in developer

4. After this, Plugin.done () is called and the plug-in instance is discarded. If there are several
configurations for a plug-in, this procedure is repeated for each configuration.

Creating a new job

If the web client found that the plug-in could be used in a given context and the user selected the
plug-in, the job configuration sequence is started. It is a wizard-like interface identical to the con-
figuration wizard. In fact, the same JSP pages, and calling sequence is used. See the section called
“Configuring a plug-in” (page 181). We do not repeat everything here. There are a few differences:

* The job parameter is not null, but it does not contain any parameter values to start with. The
plug-in should use this object to store job-related parameter values. The configuration param-
eter is null if the plug-in is started without configuration. In any case, the configuration values
are write-protected and cannot be modified.

e The first call to InteractivePlugin.getRequestInformation () is done with
Request .COMMAND_CONFIGURE_JOB (_configjob) as the command. The context parameter re-
flects the current context.

* When calling Response.setDone () the plug-in should use the variant that takes an es-
timated execution time. If the plug-in has support for immediate execution or download
(export plug-ins only), it can also respond with Response.setExecuteImmediately () or
Response.setDownloadImmediately ().

If the plug-in requested and was granted immediate execution or download the same plug-in in-
stance is used to execute the plug-in. This may be done with the same or a new thread. Otherwise,
a new job is added to the job queue, the parameter value are saved and the plug-in instance is
discarded after calling the Plugin.done () method.

Executing a job

Normally, the creation of a job and the execution of it are two different events. The execution may as
well be done on a different server. See Section 21.2, “Installing job agents” (page 123). This means
that the execution takes place in a different instance of the plug-in class than what was used for
creating the job. The exception is if a plug-in supports immediate execution or download. In this
case the same instance is used, and it is, of course, always executed on the web server.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2.The Plugin.init () method is called. The job parameter contains the job configuration param-
eters. The configuration parameter is null if the plug-in does not have any configuration pa-
rameters.

3. The Plugin.run () method is called. It is finally time for the plug-in to do the work it has been de-
signed for. This method should not throw any exceptions. Use the Response.setDone () method
to report success or the Response.setError () to report errors.

4. In both cases the P1lugin.done () method is called and the plug-in instance is discarded.

26.2.3. Using custom JSP pages for parameter input

This is an advanced option for plug-ins that require a different interface for specifying plug-in pa-
rameters than the default list showing one parameter at a time. This feature is used by setting the
RequestInformation.getJspPage () property when constructing the request information object.
If this property has a non-null value, the web client will send the browser to the specified JSP page
instead of to the generic parameter input page.

When setting the JSP page you can either specify an absolute path of only the filename of the JSP file.
If only the filename is specified, the JSP file is expected to be located in a special location, generated

182

Plug-in developer

from the package name of your plug-in. If the plug-in is located in the package org.company the
JSP file must be located in <base-dir>/www/plugins/org/company/.

An absolute path starts with '/' and may or may not include the root directory of the BASE instal-
lation. If, for example, BASE is intalled to http://your.base.server.com/base, the following ab-
solute paths are equivalent /base/path/to/file. jsp, /path/to/file. jsp.

In both cases, please note that the browser still thinks that it is showing the regular parameter
input page at the usual location: <base-dir>/www/common/plugin/index. jsp. All links in your
JSP page should be relative to that directory.

Even if you use your own JSP page we recommend that you use the built-in facility for passing the
parameters back to the plug-in. For this to work you must:

* Generate the list of PluginParameter objects as usual.
¢ Name all your input fields in the JSP like: parameter:name-of-parameter

// Plug-in generate PluginParameter

StringParameterType stringPT = new StringParameterType (255, null, true);
PluginParameter one = new PluginParameter ("one", "One", "First string", stringPT) ;
PluginParameter two = new PluginParameter ("two", "Two", "Second string", stringPT) ;

// JSP should name fields as:
First string: <input type="text" name="parameter:one'">

Second string: <input type="text" name="parameter:two'">

* Send the form to index. jsp with the ID, cmd and requestId parameters as shown below.

<form action="index.jsp" method="post">

<input type="hidden" name="ID" value="<%=ID%>">

<input type="hidden" name="requestId" value="<%$=request.getParameter ("requestId")$>">
<input type="hidden" name="cmd" value="SetParameters'">

</form>

The 1D is the session ID for the logged in user and is required. The requestId is the ID for this
particular plug-in/job configuration sequence. It is optional, but we recommend that you use it
since it protects your plug-in from getting mixed up with other plug-in configuration wizards. The
cmd tells BASE to send the parameters to the plug-in for validation and saving.

Values are sent as strings to BASE that converts them to the proper value type before they are
passed on to your plug-in. However, there is one case that can't be accurately represented with
custom JSP pages, namely 'null' values. A null value is sent by not sending any value at all. This
is not possible with a fixed form. It is of course possible to add some custom JavaScript that adds
and removes form elements as needed, but it is also possible to let the empty string represent
null. Just include a hidden parameter like this if you want an empty value for the 'one' parameter
converted to null:

<input type="hidden" name="parameter:one:emptyIsNull" value="1">

If you want a Cancel button to abort the configuration you should reload the page with with the
url: index. jsp?ID=<%=ID%>&cmd=CancelWizard. This allows BASE to clean up resources that has
been put in global session variables.

In your JSP page you will probably need to access some information like the SessionControl, Job
and possible even the RequestInformation object created by your plug-in.

// Get session control and its ID (required to post to index. jsp)
final SessionControl sc = Base.getExistingSessionControl (pageContext, true);
final String ID = sc.getId();

183

Plug-in developer

// Get information about the current request to the plug-in
PluginConfigurationRequest pcRequest =

(PluginConfigurationRequest) sc.getSessionSetting ("plugin.configure.request") ;
PluginDefinition plugin =

(PluginDefinition)sc.getSessionSetting("plugin.configure.plugin") ;
PluginConfiguration pluginConfig =

(PluginConfiguration) sc.getSessionSetting ("plugin.configure.config") ;
PluginDefinition job =

(PluginDefinition) sc.getSessionSetting ("plugin.configure.job") ;
RequestInformation ri = pcRequest.getRequestInformation() ;

26.3. Import plug-ins

A plugin becomes an import plugin simply by returning Plugin.MainType.IMPORT from the
Plugin.getMainType () method.

26.3.1. Autodetect file formats

BASE has built-in functionality for autodetecting file formats. Your plug-in can be part of that feature
if it reads it data from a single file. It must also implement the AutoDetectingImporter interface.

The net.sf.basedb.core.plugin.AutoDetectingImporter interface

public boolean isImportable (InputStream in)

throws BaseException;

Check the input stream if it seems to contain data that can be imported by the plugin. Usually
it means scanning a few lines for some header mathing a predefined string or a regexp.

The AbstractFlatFileImporter implements this method by reading the headers from the in-
put stream and checking if it stopped at an unknown type of line or not:

public final boolean isImportable (InputStream in)
throws BaseException
{
FlatFileParser ffp = getInitializedFlatFileParser() ;
ffp.setInputStream(in) ;
try
{
ffp.nextSection() ;
FlatFileParser.LineType result = ffp.parseHeaders() ;
if (result == FlatFileParser.LineType.UNKNOWN)
{
return false;
}
else
{
return isImportable (ffp) ;
}
}
catch (IOException ex)
{
throw new BaseException (ex) ;

}

Note that the input stream doesn't have to be a text file. It can be any type of file, for example
a binary or an XML file. In the case of an XML file you would need to validate the entire input
stream in order to be a 100% sure that it is a valid xml file, but we recommend that you only check
the first few XML tags, for example, the <!IDOCTYPE > declaration and/or the root element tag.

184

Plug-in developer

public void doImport (InputStream in,

ProgressReporter progress)

throws BaseException;

Parse the input stream and import all data that is found. This method is of course only called
if the isImportable () has returned true. Note however that the input stream is reopened at
the start of the file. It may even be the case that the isImportable () method is called on one
instance of the plugin and the doImport () method is called on another. Thus, the doImport ()
can't rely on any state set by the isImportable () method.

Try casting to ImportinputStream

As of BASE 2.9 the auto-detect functionality uses a Import InputStream as the in parameter.
This class contains some metadata about the file the input stream is originating from. The
most useful feature is the possibility to get information about the character set used in the
file. This makes it possible to open text files using the correct character set.

String charset = Config.getCharset(); // Default value
if (in instanceof ImportInputStream)
{
ImportInputStream iim = (ImportInputStream)in;
if (iim.getCharacterSet () != null) charset = iim.getCharacterSet () ;
}

Reader reader = new InputStreamReader (in, Charset.forName (charset))) ;

Call sequence during autodetection

The call sequence for autodetection resembles the call sequence for checking if the plug-in can be
used in a given context.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

.The Plugin.init () method is called. The job parameter is null. The configuration parameter
is null if the plug-in does not have any configuration parameters.

. If the plug-in is interactive the the InteractivePlugin.isInContext () is called. If the context
is a list context, the item parameter is null, otherwise the current item is passed. The plug-in
should return null if it can be used under the current circumstances, or a message explaining
why not.

. If the plug-in can be used the AutoDetectingImporter.isImportable () method is called to
check if the selected file is importable or not.

. After this, Plugin.done () is called and the plug-in instance is discarded. If there are several
configurations for a plug-in, this procedure is repeated for each configuration. If the plug-in can
be used without a configuration the procedure is also repeated without configuration parameters.

. If a single plug-in was found the user is taken to the regular job configuration wizard. A new
plug-in instance is created for this. If more than one plug-in was found the user is presented
with a list of the plug-ins. After selecting one of them the regular job configuration wizard is used
with a new plug-in instance.

26.3.2. The AbstractFlatFileImporter superclass

The AbstractFlatFileImporter is a very useful abstract class to use as a superclass for your

own import plug-ins. It can be used if your plug-in uses regular text files that can be parsed by an
instance of the net.sf.basedb.util.FlatFileParser class. This class parses a file by checking
each line against a few regular expressions. Depending on which regular expression matches the

185

Plug-in developer

line, it is classified as a header line, a section line, a comment, a data line, a footer line or unknown.
Header lines are inspected as a group, but data lines individually, meaning that it consumes very
little memory since only a few lines at a time needs to be loaded.

The AbstractFlatFileImporter defines PluginParameter objects for each of the regular expres-
sions and other parameters used by the parser. It also implements the Plugin. run () method and
does most of the ground work for instantiating a FlatFileParser and parsing the file. What you
have to do in your plugin is to put together the RequestInformation objects for configuring the
plugin and creating a job and implement the InteractivePlugin.configure () method for vali-
dating and storing the parameters. You should also implement or override some methods defined
by AbstractFlatFileImporter.

Here is what you need to do:

¢ Implement the Plugin.getAbout () method. See the section called “The
net.sf.basedb.core.plugin.Plugin interface” (page 170) for more information.

¢ Implement the InteractivePlugin methods. See the section called “The
net.sf.basedb.core.plugin.InteractivePlugin interface” (page 173)for more information. Note that
the AbstractFlatFileImporter has defined many parameters for regular expressions used by
the parser already. You should just pick them and put in your RequestInformation object.

// Parameter that maps the items name from a column
private PluginParameter<String> nameColumnMapping;

// Parameter that maps the items description from a column
private PluginParameter<String> descriptionColumnMapping;

private RequestInformation getConfigurePluginParameters (GuiContext context)
{
if (configurePlugin == null)
{
// To store parameters for CONFIGURE_PLUGIN
List<PluginParameter<?>> parameters =
new Arraylist<PluginParameter<?>>();

// Parser regular expressions - from AbstractFlatFileParser
parameters.add (parserSection) ;

parameters.add (headerRegexpParameter) ;

parameters.add (dataHeaderRegexpParameter) ;
parameters.add(dataSplitterRegexpParameter) ;

parameters.add (ignoreRegexpParameter) ;

parameters.add (dataFooterRegexpParameter) ;

parameters.add (minDataColumnsParameter) ;

parameters.add (maxDataColumnsParameter) ;

// Column mappings

nameColumnMapping = new PluginParameter<String> (
"nameColumnMapping",
"Name",
"Mapping that picks the items name from the data columns',
new StringParameterType (255, null, true)

)i

descriptionColumnMapping = new PluginParameter<String> (
"descriptionColumnMapping",
"Description",
"Mapping that picks the items description from the data columns',
new StringParameterType (255, null, false)

)i

parameters.add (mappingSection) ;
parameters.add (nameColumnMapping) ;
parameters.add(descriptionColumnMapping) ;

configurePlugin = new RequestInformation

(

186

Plug-in developer

Request .COMMAND_CONFIGURE_PLUGIN,
"File parser settings",

o
4

parameters

)i

}

return configurePlugin;

* Implement/override some of the methods defined by AbstractFlatFileParser. The most im-
portant methods are listed below.

protected FlatFileParser getInitializedFlatFileParser ()

throws BaseException;

The method is called to create a FlatFileParser and set the regular expressions that should
be used for parsing the file. The default implementation assumes that your plug-in has used
the built-in PluginParameter objects and has stored the values at the configuration level. You
should override this method if you need to initialise the parser in a different way. See for example

the code for the PrintMapFlatFileImporter plug-in which has a fixed format and doesn't use
configurations.

@Override

protected FlatFileParser getInitializedFlatFileParser ()
throws BaseException

{
FlatFileParser ffp = new FlatFileParser() ;
ffp.setSectionRegexp (Pattern.compile ("\\[(.+)\\1"));
ffp.setHeaderRegexp (Pattern.compile (" (.+)=, (.*)"));

-
ffp.setDataSplitterRegexp (Pattern.compile (", ")) ;
ffp.setDataFooterRegexp (Pattern.compile ("")) ;
ffp.setMinDataColumns (12) ;
return ffp;

protected boolean isImportable (FlatFileParser ffp)

throws IOException;

This method 1is called from the isImportable (InputStream) method, AFTER
FlatFileParser.nextSection() and FlatFileParser.parseHeaders () has been called a
single time and if the parseHeaders method didn't stop on an unknown line. The default im-
plementation of this method always returns TRUE, since obviously some data has been found.
A subclass may override this method if it wants to do more checks, for example, make that a
certain header is present with a certain value. It may also continue parsing the file. Here is a

code example from the PrintMapFlatFileImporter which checks if a FormatName header is
present and contains either TAM or MwBr.

/**
Check that the file is a TAM or MwBr file.
@return TRUE if a FormatName header is present and contains "TAM" or "MwBr", FALSE
otherwise
Y
@Override

protected boolean isImportable (FlatFileParser ffp)
{

String formatName = ffp.getHeader ("FormatName") ;
return formatName != null &&
(formatName.contains ("TAM") || formatName.contains ("MwBr")) ;

187

Plug-in developer

protected void begin (FlatFileParser ffp)

throws BaseException;

This method is called just before the parsing of the file begins. Override this method if you need
to initialise some internal state. This is, for example, a good place to open a DbControl object,
read parameters from the job and configuration and put them into more useful variables. The
default implementation does nothing, but we recommend that super.begin () is always called.

// Snippets from the RawDataFlatFileImporter class
private DbControl dc;

private RawDataBatcher batcher;

private RawBioAssay rawBioAssay;

private Map<String, String> columnMappings;
private int numlInserted;

@Override
protected void begin ()

{

throws BaseException
super.begin () ;

// Get DbControl

dc = sc.newDbControl () ;

rawBioAssay = (RawBioAssay) job.getValue (rawBioAssayParameter.getName()) ;

// Reload raw bioassay using current DbControl
rawBioAssay = RawBioAssay.getById(dc, rawBioAssay.getId());

// Create a batcher for inserting spots
batcher = rawBioAssay.getRawDataBatcher () ;

// For progress reporting
numInserted = 0;

protected void handleHeader (FlatFileParser.Line line)

throws BaseException;

This method is called once for every header line that is found in the file. The 1ine parameter
contains information about the header. The default implementation of this method does nothing.

@Override
protected void handleHeader (Line line)

{

throws BaseException

super.handleHeader (line) ;
if (line.name () != null && line.value() != null)
{

rawBioAssay.setHeader (line.name (), line.value());

protected void handleSection (FlatFileParser.Line line)

throws BaseException;

This method is called once for each section that is found in the file. The 1ine parameter contains
information about the section. The default implementation of this method does nothing.

188

Plug-in developer

protected abstract void beginData ()

throws BaseException;

This method is called after the headers has been parsed, but before the first line of data. This is
a good place to add code that depends on information in the headers, for example, put together
column mappings.

private Mapper reporterMapper;
private Mapper blockMapper;
private Mapper columnMapper;
private Mapper rowMapper;

//

more mappers

@Override
protected void beginData ()

{

boolean cropStrings = ("crop".equals (job.getValue ("stringTooLongError")));

// Mapper that always return null; used if no mapping expression has been entered
Mapper nullMapper = new ConstantMapper ((String)null) ;

// Column mappers

reporterMapper = getMapper (ffp, (String)configuration.getValue ("reporterIdColumnMapping")
cropStrings ? ReporterData.MAX_ EXTERNAL_ID_LENGTH : null, nullMapper) ;

blockMapper = getMapper (ffp, (String)configuration.getValue ("blockColumnMapping")
null, nullMapper) ;

columnMapper = getMapper (ffp, (String)configuration.getValue ("columnColumnMapping"),
null, nullMapper) ;

rowMapper = getMapper (ffp, (String)configuration.getValue ("rowColumnMapping"),
null, nullMapper) ;

// ... more mappers: metaGrid coordinate, X-Y coordinate, extended properties

//

protected abstract void handleData (FlatFileParser.Data data)

throws BaseException;

This method is abstract and must be implemented by all subclasses. It is called once for every
data line in the the file.

// Snippets from the RawDataFlatFileImporter class
@Override
protected void handleData (Data data)

throws BaseException

// Create new RawData object
RawData raw = batcher.newRawData () ;

// External ID for the reporter
String externalld = reporterMapper.getValue (data) ;

// Block, row and column numbers

raw.setBlock (blockMapper.getInt (data)) ;

raw.setColumn (columnMapper.getInt (data)) ;

raw.setRow (rowMapper.getInt (data)) ;

// ... more: metaGrid coordinate, X-Y coordinate, extended properties

// Insert raw data to the database
batcher.insert (raw, externalld) ;
numInserted++;

189

Plug-in developer

protected void end (boolean success) ;

Called when the parsing has ended, either because the end of file was reached or because an
error has occurred. The subclass should close any open resources, ie. the DbControl object.
The success parameter is true if the parsing was successful, false otherwise. The default
implementation does nothing.

@Override
protected void end(boolean success)
throws BaseException
{
try
{
// Commit if the parsing was successful
if (success)
{
batcher.close () ;
dc.commit () ;
}
}
catch (BaseException ex)
{
// Well, now we got an exception
success = false;
throw ex;

}

finally

{
// Always close... and call super.end()
if (dc != null) dc.close();

super.end (success) ;

protected String getSuccessMessage () ;

This is the last method that is called, and it is only called if everything went suceessfully. This
method allows a subclass to generate a short message that is sent back to the database as a
final progress report. The default implementation returns null, which means that no message
will be generated.

@Override
protected String getSuccessMessage ()
{
return numInserted + " spots inserted";

}

The AbstractFlatFileImporter has a lot of other methods that you may use and/or override in
your own plug-in. Check the javadoc for more information.

26.4. Export plug-ins

Export plug-ins are plug-ins that takes data from BASE, and prepares it for use with some
external entity. Usually this means that data is taken from the database and put into a file
with some well-defined file format. An export plug-in should return MainType.EXPORT from the
Plugin.getMainType () method.

26.4.1. Immediate download of exported data

An export plug-in may want to give the user a choice between saving the exported data in the BASE
file system or to download it immediately to the client computer. With the basic plug-in API the

190

Plug-in developer

second option is not possible. The TmmediateDownloadExporter is an interface that extends the
Plugin interface to provide this functionality. If your export plug-in wants to provide immediate
download functionality it must implement the ImmediateDownloadExporter interface.

The ImmediateDownloadExporter interface

public void doExport (ExportOutputStream out,

ProgressReporter progress) ;

Perform the export. The plug-in should write the exported data to the out stream. If the
progress parameter is not null, the progress should be reported at regular interval in the same
manner as in the Plugin.run () method.

The ExportOutputStream class

The ExportOutputStream is an extension to the java.io.OutputStream. Use the regular write ()
methods to write data to it. It also has some additional methods, which are used for setting metadata
about the generated file. These methods are useful, for example, when generating HTTP response
headers.

Note

These methods must be called before starting to write data to the out stream.

public void setContentLength (long contentLength) ;

Set the total size of the exported data. Don't call this method if the total size is not known.

public void setMimeType (String mimeType) ;

Set the MIME type of the file that is being generated.

public void setCharacterSet (String charset) ;

Sets the character set used in text files. For example, UTF-8 or ISO-8859-1.

public void setFilename (String filename) ;

Set a suggested name of the file that is being generated.

Call sequence during immediate download

Supporting immediate download also means that the method call sequence is a bit altered from the
standard sequence described in the section called “Executing a job” (page 182).

* The plug-in must call Response.setDownloadImmediately () instead of Response.setDone ()
in Plugin.configure () to end the job configuration wizard. This requests that the core starts
an immediate download.

Note

Even if an immediate download is requested by the plug-in this feature may have been
disabled by the server administrator. If so, the plug-in can choose if the job should be added
to job queue or if this is an error condition.

191

Plug-in developer

¢ If immediate download is granted the web client will keep the same plug-in instance and call
ImmediateDownloadExporter.doExport (). In this case, the Plugin.run () is never called. After
the export, Plugin.done () is called as usual.

¢ If immediate download is not granted and the job is added to the job queue the regular job exe-
cution sequence is used.

26.4.2. The AbstractExporterPlugin class

This is an abstract superclass that will make it easier to implement export plug-ins that support
immediate download. It defines PluginParameter objects for asking a user about a path where
the exported data should be saved and if existing files should be overwritten or not. If the user
leaves the path empty the immediate download functionality should be used. It also contains imple-
mentations of both the P1lugin.run () method and the ImmediateDownloadExporter.doExport ()
method. Here is what you need to do in your own plug-in code (code examples are taken from the
HelpExporter):

® Your plug-in should extend the AbstractExporterPlugin class:

public class HelpExporter
extends AbstractExporterPlugin
implements InteractivePlugin

* You need to implement the InteractivePlugin.getRequestInformation () method. Use the
getSaveAsParameter () and getOverwriteParameter () methods defined in the superclass to
create plug-in parameters that asks for the file name to save to and if existing files can be over-
written or not. You should also check if the administrator has enabled the immediate execution
functionality for your plug-in. If not, the only option is to export to a file in the BASE file system
and the filename is a required parameter.

// Selected parts of the getRequestConfiguration () method

List<PluginParameter<?>> parameters =
new ArrayList<PluginParameter<?>> () ;

PluginDefinition pd = job.getPluginDefinition() ;
boolean requireFile = pd == null ?
false : !pd.getAllowImmediateExecution() ;

parameters.add (getSaveAsParameter (null, null, defaultPath, requireFile));
parameters.add (getOverwriteParameter (null, null));

configureJob = new RequestInformation
(
Request .COMMAND_CONFIGURE_JOB,
"Help exporter options",

"Set Client that owns the helptexts, " +
"the file path where the export file should be saved",
parameters

)

return configuredob;

* You must also implement the configure () method and check the parameters. If no filename
has been given, you should check if immediate exection is allowed and set an error if it is not.
If a filename is present, use the pathCanBeUsed () method to check if it is possible to save the
data to a file with that name. If the file already exists it can be overwritten if the OVERWRITE is
TRUE or if the file has been flagged for removal. Do not forget to store the parameters with the
storeValue () method.

// Selected parts from the configure () method
if (request.getParameterValue (SAVE_AS) == null)

192

Plug-in developer

if (!'request.isAllowedImmediateExecution())
{
response.setError ("Immediate download is not allowed. " +
"Please specify a filename.", null);
return;
}
Client client = (Client)request.getParameterValue("client") ;
response.setDownloadImmediately ("Export help texts for client application " +
client.getName (), ExecutionTime.SHORTEST, true);
}
else

{
if (!pathCanBeUsed((String)request.getParameterValue (SAVE_AS),
(Boolean) request .getParameterValue (OVERWRITE)))

{

response.setError ("File exists: " +
(String) request.getParameterValue (SAVE_AS), null);
return;

}

storeValue (job, request, ri.getParameter (SAVE_AS)) ;

storeValue (job, request, ri.getParameter (OVERWRITE)) ;

response.setDone ("The job configuration is complete", ExecutionTime.SHORTEST) ;

¢ Implement the performExport () method. This is defined as abstract in the AbstractExporter-
Plugin class. It has the same parameters as the ImmediateDownloadExporter.doExport ()
method and they have the same meaning. The only difference is that the out stream can be linked
to a file in the BASE filesystem and not just to the HTTP response stream.

* Optionally, implement the begin (), end () and getSuccessMessage () methods. Theese methods
do nothing by default.

The call sequence for plug-ins extending AbstractExporterPlugin is:
1. Call begin ().

2. Call performExport ().

3.Call end ().

4. Call getSuccessMessage () if running as a regular job. This method is never called when doing
an immediate download since there is no place to show the message.

26.5. Analysis plug-ins

A plug-in becomes an analysis plug-in simply by returning Plugin.MainType.ANALYZE
from the Plugin.getMainType () method. The information returned from
InteractivePlugin.getGuiContexts () must include: [ITtem.BIOASSAYSET, Type.ITEM] since
this is the main place where the web client looks for analysis plug-ins. If the plug-in can work on a
subset of the bioassays it may also include [Item.BIOASSAY, Type.LIST] among the contexts. This
will make it possible for a user to select bioassays from the list and then invoke the plug-in.

private static final Set<GuiContext> guiContexts =
Collections.singleton (new GuiContext (Item.BIOASSAYSET, GuiContext.Type.ITEM)) ;

public Set<GuiContext> getGuiContexts ()
{

return guiContexts;

}

If the plugin depends on a specific raw data type or on the number of channels, it should check that
the current bioassayset is of the correct type in the InteractivePlugin.isInContext () method.
It is also a good idea to check if the current user has permission to use the current experiment.
This permission is needed to create new bioassaysets or other data belonging to the experiment.

193

Plug-in developer

public boolean isInContext (GuiContext context, Object item)
{
if (item == null)
{
message = "The object is null";
}
else if (! (item instanceof BioAssaySet))

{
message = "The object is not a BioAssaySet: " + item;
}
else
{
BioAssaySet bas = (BioAssaySet)item;

int channels = bas.getRawDataType () .getChannels () ;
if (channels != 2)
{

message = "This plug-in requires 2-channel data, not " + channels + "-channel.";

}
else
{

Experiment e = bas.getExperiment () ;
e.checkPermission (Permission.USE) ;

The plugin should always include a parameter asking for the current

when the InteractivePlugin.getRequestInformation() is «called with
Request .COMMAND_CONFIGURE_JOB.

private static final RequestInformation configurePlugin;
private RequestInformation configureJob;
private PluginParameter<BioAssaySet> bioAssaySetParameter;

public RequestInformation getRequestInformation (GuiContext context, String command)
throws BaseException
RequestInformation requestInformation = null;
if (command.equals (Request.COMMAND_CONFIGURE_PLUGIN))
{
requestInformation = getConfigurePlugin (context) ;
}
else if (command.equals (Request.COMMAND_CONFIGURE_JOB))
{
requestInformation = getConfigureJob (context) ;
}

return requestInformation;

private RequestInformation getConfigureJob (GuiContext context)

{

if (configuredJob == null)
{
bioAssaySetParameter; = new PluginParameter<BioAssaySet> (
"bioAssaySet",

"Bioassay set',
"The bioassay set used as the source for this analysis plugin",
new ItemParameterType<BioAssaySet> (BioAssaySet.class, null, true, 1, null)

List<PluginParameter<?>> parameters = new ArraylList<PluginParameter<?>>();
parameters.add (bioAssaySetParameter) ;

// Add more plug-in-specific parameters here...
configureJob = new RequestInformation (
Request . COMMAND_CONFIGURE_JOB,
"Configure job",
"Set parameter for plug-in execution",
parameters

bioassay
command

set

194

Plug-in developer

)i
}

return configuredJob;

Of course, the InteractivePlugin.configure () method needs to validate and store the bioassay
set parameter as well:

public void configure (GuiContext context, Request request, Response response)
{
String command = request.getCommand() ;
try
{
if (command.equals (Request.COMMAND_CONFIGURE_PLUGIN))
{
// Validate and store configuration parameters
response.setDone ("Plugin configuration complete") ;
}
else if (command.equals (Request.COMMAND_CONFIGURE_JOB))

{

List<Throwable> errors =

validateRequestParameters (configureJob.getParameters (), request);
if (errors != null)
{
response.setError (errors.size () +
" invalid parameter(s) were found in the request", errors);
return;

}
storeValue (job, request, bioAssaySetParameter) ;
// Store other plugin-specific parameters

response.setDone ("Job configuration complete", Job.ExecutionTime.SHORT) ;

}

catch (Throwable ex)

{
// Never throw exception, always set response!
response.setError (ex.getMessage (), Arrays.asList (ex));

Now, the typical P1lugin. run () method loads the specfied bioassay set and its spot data. It may do
some filtering and recalculation of the spot intensity value(s). In most cases it will store the result
as a child bioassay set with one bioassay for each bioassay in the parent bioassay set. Here is an
example, which just copies the intensity values, while removing those with a negative value in either
channel.

public void run (Request request, Response response, ProgressReporter progress)
{
DbControl dc = sc.newDbControl () ;
try
{
BioAssaySet source = (BioAssaySet) job.getParameter ("bioAssaySet") ;
// Reload with current DbControl
source = BioAssaySet.getById(dc, source.getId());
int channels = source.getRawDataType () .getChannels() ;

// Create transformation and new bioassay set
Job j = Job.getByld(dc, Jjob.getId());
Transformation t = source.newTransformation(j) ;
t.setName ("Copy spot intensities >= 0");
dc.saveltem(t) ;

BioAssaySet result = t.newProduct (null, "new", true);
result.setName ("After: Copying spot intensities");

dc.saveltem (result) ;

// Get query for source data

195

Plug-in developer

DynamicSpotQuery query = source.getSpotDatal() ;

// Do not return spots with intensities < 0
for (int ch = 1; ch <= channels; ++ch)
{
query.restrict (
Restrictions.gteqg(
Dynamic.column (VirtualColumn.channel (ch))
Expressions.integer (0)
)
)i
}

// Create batcher and copy data

SpotBatcher batcher = result.getSpotBatcher() ;
int spotsCopied = batcher.insert (query) ;
batcher.close () ;

// Commit and return

dc.commit () ;

response.setDone ("Copied " + spotsCopied + " spots.");
}
catch (Throwable t)
{

response.setError (t.getMessage (), Arrays.asList(t));
}
finally
{

if (dc != null) dc.close();

}
}

See Section 29.5, “Analysis and the Dynamic and Batch API:s”(page 276) for more examples of
using the analysis API.

26.5.1. The AbstractAnalysisPlugin class

This class is an abstract base class. It is a useful class for most analysis plug-ins to inherit from. Its
main purpose is to define PluginParameter objects that are commonly used in analysis plug-ins.
This includes:

e The source bkmssay set: getSourceBioAssaySetParameter (), getCurrentBioAssaySet (),
getSourceBioAssaySet ()

* The optional restriction of which bioassays to use. All bioassays in a bioassay set will be used if
this parameter is empty. This is useful when the plugin only should run on a subset of bioassays
in a bioassay set: getSourceBioAssaysParameter (), getSourceBioAssays ()

* The name and description of the child bioassay set that is going to be created by the plug-in:
getChildNameParameter (), getChildDescriptionParameter ()

* The name and description of the transformation that represents the execution of the plug-in:
getTransformationNameParameter (), getTransformationName ()

26.5.2. The AnalysisFilterPlugin interface

The net.sf.basedb.core.plugin.AnalysisFilterPlugin is a tagging interface, with no meth-
ods, that all analysis plug-ins that only filters data should implement. The benefit is that they will
be linked from the Filter bioassay set button and not just the Run analysis button. They will also
get a different icon in the experiment outline to make filtering transformations appear different from
other transformations.

The interface exists purely for making the user interaction better. There is no harm in not imple-
menting it since the plug-in will always appear in from the Run analysis button. On the other hand,
it doesn't cost anything to implement the interface since it doesn't have any methods.

196

Plug-in developer

26.6. Other plug-ins

26.6.1. Authentication plug-ins

BASE provides a plug-in mechanism for authenticating users (validating the username and pass-
word) when they are logging in. This plug-in mechanism is not the same as the regular plug-in API.
That is, you do not have worry about user interaction or implementing the Plugin interface.

Internal vs. external authentation

BASE can authenticate users in two ways. Either it uses the internal authentication or the external
authentication. With internal authentication BASE stores logins and passwords in its own database.
With external authentication this is handled by some external application. Even with external au-
thentication it is possible to let BASE cache the logins/passwords. This makes it possible to login
to BASE if the external authentication server is down.

Note

An external authentication server can only be used to grant or deny a user access to BASE. It
cannot be used to give a user permissions, or put a user into groups or different roles inside
BASE.

The external authentication service is only used when a user logs in. Now, one or more of several
things can happen:

¢ The ROOT user is logging on. Internal authentication is always used for the root user and the
authenticator plug-in is never used.

¢ The login is correct and the user is already known to BASE. If the plug-in supports extra infor-
mation (name, email, phone, etc.) and the auth.synchronize setting is TRUE the extra information
is copied to the BASE server.

* The login is correct, but the user is not known to BASE. This happens the first time a user logs
in. BASE will create a new user account. If the driver supports extra information, it is copied to
the BASE server (even if auth.synchronize is not set). The new user account will get the default
quota and be added to the all roles and groups which has been marked as default.

Note

Prior to BASE 2.4 it was hardcoded to add the new user to the Users role only.

¢ If password caching is enabled, the password is copied to BASE. If an expiration timeout has been
set, an expiration date will be calculated and set on the user account. The expiration date is only
checked when the external authentication server is down.

¢ The authentication server says that the login is invalid or the password is incorrect. The user
will not be logged in. If a user account with the specified login already exists in BASE, it will be
disabled.

¢ The authentication driver says that something else is wrong. If password caching is enabled,
internal authentication will be used. Otherwise the user will not be logged in. An already existing
account is not modified or disabled.

Note

The Encrypt password option that is available on the login page does not work with external
authentication. The simple reason is that the password is encrypted with a one-way algorithm
making it impossible to call Authenticator.authenticate ().

197

Plug-in developer

The Authenticator interface

To be able to use external authentication you must create a class that implements the
net.sf.based.core.authentication.Authenticator interface. Specify the name of the class in
the auth.driver setting in base.config and its initialisation parameters in the auth.init setting.

Your class must have a public no-argument constructor. The BASE application will create only one
instance of the class for lifetime of the BASE server. It must be thread-safe since it may be invoked
by multiple threads at the same time. Here are the methods that you must implement

public void init (String settings)

throws AuthenticationException;

This method is called just after the object has been created with its argument taken from the
auth.init setting in your base.config file. This method is only called once for an instance of the
object. The syntax and meaning of the parameter is driver-dependent and should be documented
by the plug-in. It is irrelevant for the BASE core.

public boolean supportsExtraInformation() ;

This method should simply return TRUE or FALSE depending on if the plug-in supports extra
user information or not. The only required information about a user is a unique ID and the login.
Extra information includes name, address, phone, email, etc.

public AuthenticationInformation authenticate (String login,

String password)

throws UnknownLoginException, InvalidPasswordException, AuthenticationException;

Try to authenticate a login/password combination. The plug-in should return an Authentica-
tionInformation object if the authentication is successful or throw an exception if not. There
are three exceptions to choose from:

® UnknownLoginException: This exception should be thrown if the login is not known to the
external authentication system.

®* InvalidPasswordException: This exception should be thrown if the login is known but the
password is invalid. In case it is considered a security issue to reveal that a login exists, the
plugin may throw an UnknowLoginException instead.

®* AuthenticationException: In case there is another problem, such as the authentication
service being down. This exception triggers the use of cached passwords if caching has been
enabled.

Configuration settings

The configuration settings for the authentication driver are located in the base.config file. Here is
an overview of the settings. For more information read the section called “Authentication section”
(page 337).

auth.driver
The class name of the authentication plug-in.

auth.init
Initialisation parameters sent to the plug-in when calling the Authenticator.init () method.

auth.synchronize
If extra user information is synchronized at login time or not. This setting is ignored if the driver
does not support extra information.

198

Plug-in developer

auth.cachepasswords
If passwords should be cached by BASE or not. If the passwords are cached a user may login to
BASE even if the external authentication server is down.

auth.daystocache
How many days to cache the passwords if caching has been enabled. A value of O caches the
passwords for ever.

26.6.2. Secondary file storage plugins

Primary vs. secondary storage

BASE has support for storing files in two locations, the primary storage and the secondary storage.
The primary storage is always disk-based and must be accessible by the BASE server as a path
on the file system. The path to the primary storage is configured by the userfiles setting in the
base.config file. The primary storage is internal to the core. Client applications don't get access
to read or manipulate the files directly from the file system.

The secondary storage can be anything that can store files. It could, for example, be another direc-
tory, a remote FTP server, or a tape based archiving system. A file located in the secondary storage
is not accessible by the core, client applications or plug-ins. The secondary storage can only be
accessed by the secondary storage controller. The core (and client) applications uses flags on the
file items to handle the interaction with the secondary storage.

Each file has an action attribute which default's to File.Action.NOTHING. It can take two other
values:

l.File.Action.MOVE_TO_SECONDARY
2.File.Action.MOVE_TO_PRIMARY

All files with the action attribute set to MOVE_TO_SECONDARY should be moved to the secondary
storage by the controller, and all files with the action attribute set to MOVE_TO_PRIMARY should be
brought back to primary storage.

The moving of files between primary and secondary storage doesn't happen immediately. It is
up to the server administrator to configure how often and at what times the controller should
check for files that should be moved. This is configured by the secondary.storage.interval and
secondary.storage.time settings in the base.config file.

The SecondaryStorageController interface

All you have to do to create a secondary storage controller is to create a class that implements
the net.sf.basedb.core.SecondaryStorageController interface. In your base.config file you
then specify the class name in the secondary.storage.driver setting and its initialisation pa-
rameters in the secondary.storage.init setting.

Your class must have a public no-argument constructor. The BASE application will create only one
instance of the class for lifetime of the BASE server. Here are the methods that you must implement:

public void init (String settings) ;

This method is called just after the object has been created with its argument taken from the
secondary.storage.init setting in your base.config file. This method is only called once
for an object.

199

Plug-in developer

public void run() ;

This method is called whenever the core thinks it is time to do some management
of the secondary storage. How often the run() method is called is controlled by the
secondary.storage.interval and secondary.storage.time settings in the base.config
file. When this method is called the controller should:

* Move all files which has action=MOVE_TO_SECONDARY to the secondary storage. When the file
has been moved call File.setLocation (Location.SECONDARY) to tell the core that the file is
now in the secondary storage. You should alsocall File.setAction (File.Action.NOTHING)
to reset the action attribute.

e Restore all files which has action=MOVE_TO_PRIMARY. The core will set the location attribute
automatically, but you should call File.setAction (File.Action.NOTHING) to reset the ac-
tion attribute.

® Delete all files from the secondary storage that are not present in the database with
location=Location.SECONDARY. This includes files which has been deleted and files that
have been moved offline or re-uploaded.

As a final act the method should send a message to each user owning files that has been moved
from one location to the other. The message should include a list of files that has been moved
to the secondary storage and a list of files moved from the secondary storage and a list of files
that has been deleted due to some of the reasons above.

public void close () () ;

This method is called when the server is closing down. After this the object is never used again.

Configuration settings

The configuration settings for the secondary storage controller is located in the base.config file.
Here is an overview of the settings. For more information read Appendix C, base.config reference
(page 336).

secondary.storage.driver
The class name of the secondary storage plug-in.

secondary.storage.init
Initialisation parameters sent to the plug-in by calling the init () method.

secondary.storage.interval
Interval in seconds between each execution of the secondary storage controller plug-in.

secondary.storage.time
Time points during the day when the secondary storage controller plugin should be executed.

26.6.3. File unpacker plug-ins

The BASE web client has integrated support for unpacking of compressed files. See Section 8.2.1,
“Upload a new file” (page 44). Behind the scenes, this support is provided by plug-ins. The standard
BASE distribution comes with support for ZIP files (net.sf.basedb.plugins.ZipFileUnpacker)
and TAR files (net.sf.basedb.plugins.TarFileUnpacker).

To add support for additional compressed formats you have to create a plug-in that implements
the net.sf.basedb.util.zip.FileUnpacker interface. The best way to do this is to extend the
net.sf.basedb.util.zip.AbstractFileUnpacker which implements all methods in the Plugin

200

Plug-in developer

and InteractivePlugin interfaces except Plugin.getAbout (). This leaves you with the actual
unpacking of the files as the only thing to implement.

No support for configurations
The integrated upload in the web interface only works with plug-ins that does not require a
configuration to run.

Methods in the FileUnpacker interface

public String getFormatName () ;

Return a short string naming the file format. For example: zZIP files or TAR files.

public Set<String> getExtensions() ;

Return a set of strings with the file extensions that are most commonly used with the compressed
file format. For example: [zip, jar]. Do not include the dot in the extensions. The web client
and the AbstractFlatFileUnpacker.isInContext () method will use this information to au-
tomatically guess which plug-in to use for unpacking the files.

public Set<String> getMimeTypes () ;

Return a set of string with the MIME types that commonly used with the compressed file format.
For example: [application/zip, application/java-archive]. This information is used by
the AbstractFlatFileUnpacker.isInContext () method to automatically guess which plug-in
to use for unpacking the files.

public int unpack (DbControl dc,

Directory dir,
InputStream in,
boolean overwrite,

AbsoluteProgressReporter progress)

throws IOException, BaseException;

Unpack the files and store them in the BASE file system.

Donot close () or commit () the DbControl passed to this method. This is done automatically
by the AbstractFileUnpacker or by the web client.

The dir parameter is the root directory where the unpacked files should be placed. If the
compressed file contains subdirectories the plug-in must create those subdirectories unless
they already exists.

If the overwrite parameter is FALSE no existing file should be overwritten unless the file is
OFFLINE.

The in parameter is the stream containing the compressed data. The stream may come directly
from the web upload or from an existing file in the BASE file system.

The progress parameter, if not null, should be used to report the progress back to the calling
code. The plug-in should count the number of bytes read from the in stream. Ifit is not possible
by other means the stream can be wrapped by a net.sf.basedb.util.InputStreamTracker
object which has a getNumRead () method.

When the compressed file is uncompressed during the file upload from the web interface, the call
sequence to the plug-in is slightly altered from the standard call sequence described in the section

h” (Khace

Exe

ealled— entineg aiobh” 1Q9)
canCa—xXecutinig a job—(pPpage1o=zj:

201

Plug-in developer

¢ After the plug-in instance has been created, the Plugin.init () method is called with null values
for both the configuration and job parameters.

® Then, the unpack () method is called. The Plugin.run () method is never called in this case.

26.6.4. File packer plug-ins

BASE has support for compressing and downloading a set of selected files and/or direc-
tories. This functionality is provided by a plug-in, the PackedFileExporter. This plug-
in doesn't do the actual packing itself. This is delegated to classes implementing the
net.sf.basedb.util.zip.FilePacker interface.

BASE ships with a number of packing methods, including ZIP and TAR. To add support for other
methods you have to provide an implementation of the FilePacker interface. Then, create a new
configuration for the PackedFileExporter and enter the name of your class in the configuration
wizard.

The FilePacker interface is not a regular plug-in interface (ie. it is not a subinterface to Plugin).
This means that you don't have to mess with configuration or job parameters. Another difference

is that your class must be installed in Tomcat's classpath (ie. in one of the WEB-INF/classes or
WEB-INF/1lib folders).

Methods in the FilePacker interface

public String getDescription() ;
Return a short description the file format that is suitable for use in dropdown lists in client
applications. For example: Zip-archive (.zip) or TAR-archive (.tar).

public String getFileExtension() ;
Return the default file extension of the packed format. The returned value should not include
the dot. For example: zip or tar.

public String getMimeType () ;
Return the standard MIME type of the packed file format. For example: application/zip or
application/x-tar.

public void setOutputStream (OutputStream out)

throws IOException;

Sets the outputstream that the packer should write the packed files to.
public void pack (String entryName,

InputStream in,
long size,
long lastModified)

throws IOException;

Add another file or directory to the packed file. The entryName is the name of the new entry,
including path information. The in is the stream to read the file data from. If inis null then the
entry denotes a directory. The size parameter gives the size in bytes of the file (zero for empty

files or directories). The lastModified is that time the file was last modified or O if not known.
202

Plug-in developer

public void close()

throws IOException;

Finish the packing. The packer should release any resources, flush all data and close all output
streams, including the out stream set in the setOutputStream method.

26.6.5. File validator and metadata reader plug-ins

See also
* Section 29.3.1, “Using files to store data” (page 269)
* Section 29.2.8, “Experimental platforms” (page 244)

In those cases where files are used to store data instead of importing it to the database, BASE can
use plug-ins to check that the supplied files are valid and also to extract metadata from the files.
For example, the net.sf.basedb.core.filehandler.CelFileHandler is used to check if a file is
a valid Affymetrix CEL file and to extract data headers and the number of spots from it.

The validator and metadata reader plug-ins are not regular plug-ins (ie. they don't have to implement
the Plugin interface). This means that you don't have to mess with configuration or job parameters.

Validator plug-ins must implement the net.sf.basedb.core.filehandler.DataFileHandler
and net.sf.basedb.core.filehandler.DatavValidator interfaces. Metadata reader plug-
ins should implement the net.sf.basedb.core.filehandler.DataFileHandler and
net.sf.basedb.core.filehandler.DataFileMetadataReader interfaces.

Note

Meta data extraction can only be done if the file has first been validated. We recommend that
metadata reader plug-ins also takes the role as validator plug-ins. This will make BASE re-use
the same object instance and the file doesn't have to be parsed twice.

Always extend the net . sf .basedb.core.filehandler.AbstractDataFileHandler class

We consider the mentioned interface to be part of the public API only from the caller side,
not from the implementor side. Thus, we may add methods to those interfaces in the future
without prior notice. The AbstractDataFileHandler will provide default implementations of
the new methods in order to not break existing plug-ins.

Methods in the DataFileHandler interface

public void setFile (FileSetMember member) ;
Sets the file that is going to be validated or used for metadata extraction. If the same plug-in
can be used for validating more than one type of file, this method will be called one time for each

file that is present in the file set.

public void setItem(FileStoreEnabled item) ;

Sets the item that the files belong to. This method is only called once.

Methods in the DataFileValidator interface
public void validate (DbControl dc)

throws InvalidDataException, InvalidRelationException;

Validate the file. The file is valid if this method returns sucessfully. If the file is not valid an
InvalidDataException should be thrown. Note that BASE will still accept the file, but will

203

Plug-in developer

indicate the failure with a flag and also keep the message of the exception in the database to
remind the user of the failure.

The InvalidRelationException should be used to indicate a partial success/partial failure,
where the file as such is a valid file, but in relation to other files it is not. For example, we may
assign a valid CEL file to a raw bioassay, but the chip type doesn't match the chip type of the
CDF file of the related array design. This exception will also allow metadata to be extracted from
the file.

Methods in the DataFileMetadataReader interface

public void extractMetadata (DbControl dc) ;

Extract metadata from the file. It is up to the plug-in to decide what to extract and how to store
it. The CelFileHandler will, for example, extract headers and the number of spots from the file
and store it with the raw bioassay.

public void resetMetadata (DbControl dc) ;

Remove all metadata that the plug-in usually can extract. This method is called if a file is un-
linked from an item or if the validation fails. It is important that the plug-in cleans up everything
so that data from a previous file doesn't remain in the database.

Methods in the AbstractDataFileHandler class

public FileStoreEnabled getItem() ;

Get the item that was previously added to setItem/()

public FileSetMember getMember (String dataFileTypelId) ;

Get a file that was previously added to setFile (). The dataFileTypeId is the external ID of
the DataFileType.

26.6.6. Logging plug-ins

BASE provides a plug-in mechanism for logging changes that are made to items. This plug-in mech-
anism is not the same as the regular plug-in API. That is, you do not have worry about user inter-
action or implementing the Plugin interface.

The logging mechanism works on the data layer level and hooks into callbacks provided by Hiber-
nate. EntityLogger:s are used to extract relevant information from Hibernate and create log en-
tries. While it is possible to have a generic logger it is usually better to have different implementations
depending on the type of entity that was changed. For example, a change in a child item should,
for usability reasons, be logged as a change in the parent item. Entity loggers are created by a Log-
ManagerFactory. All changes made in a single transaction are usually collected by a LogManager
which is also created by the factory.

The LogManagerFactory interface

Which LogManagerFactory to use is configured in base.config (See the section called “Change
history logging section” (page 339)). A single factory instance is created when BASE starts and is
used for the lifetime of the virtual machine. The factory implementation must of course be thread-
safe. Here is a list of the methods the factory must implement:

204

Plug-in developer

public LogManager getLogManager (LogControl logControl) ;

Creates a log manager for a single transaction. Since a transaction is not thread-safe the log
manager implementation doesn't have to be either. The factory has the possibility to create new
log managers for each transaction.

public boolean isLoggable (Object entity) ;

Checks if changes to the given entity should be logged or not. For performance reasons, it usually
makes sense to not log everything. For example, the database logger implementation only logs
changes if the entity implements the LoggableData interface. The return value of this method
should be consistent with getEntityLogger ().

public EntityLogger getEntityLogger (LogManager logManager,

Object entity) ;

Create or get an entity logger that knows how to log changes to the given entity. If the entity
should not be logged, null can be returned. This method is called for each modified item in
the transaction.

The LogManager interface

A new log manager is created for each transaction. The log manager is responsible for collecting all
changes made in the transaction and store those changes in the appropriate place. The interface
doesn't define any methods for this collection, since each implementation may have very different
needs.

public LogControl getLogControl () ;

Get the log control object that was supplied by the BASE core when the transaction was started.
The log controller contains methods for accessing information about the transaction, such as
the logged in user, executing plug-in, etc. It can also be used to execute queries against the
database to get even more information.

Warning

Be careful about the queries that are executed by the log controller. Since all logging code
is executed at flush time in callbacks from Hibernate we are not allowed to use the regular
session. Instead, all queries are sent through the stateless session. The stateless session
has no caching functionality which means that Hibernate will use extra queries to load
associations. Our recommendation is to avoid quires that return full entities, use scalar
queries instead to just load the values that are needed.

public void afterCommit () ;

public void afterRollback () ;

Called after a successful commit or after a rollback. Note that the connection to the database
has been closed at this time and it is not possible to save any more information to it at this time.

The EntityLogger interface

An entity logger is responsible for extracting the changes made to an entity and converting it to
something that is useful as a log entry. In most cases, this is not very complicated, but in some

205

Plug-in developer

cases, a change in one entity should actually be logged as a change in a different entity. For example,
changes to annotations are handled by the AnnotationLogger which which log it as a change on
the parent item.

public void logChanges (LogManager logManager,

EntityDetails details) ;

This method is called whenever a change has been detected in an entity. The details variable
contains information about the entity and, to a certain degree, what changes that has been
made.

26.7. Enable support for aborting a running
a plug-in

BASE includes a simple signalling system that can be used to send signals to plug-ins. The system
was primarly developed to allow a user to kill a plug-in when it is executing. Therfore, the focus of
this chapter will be how to implement a plug-in to make it possible to kill it during it's execution.

Since we don't want to do this by brute force such as destroying the process or stopping thread
the plug-in executes in, cooperation is needed by the plug-in. First, the plug-in must implement
the SignalTarget interface. From this, a SignalHandler can be created. A plug-in may choose to
implement it's own signal handler or use an existing implementation. BASE, for example, provides
the ThreadSignalHandler implementation that supports the ABORT signal. This is a simple imple-
mentation that just calls Thread.interrupt () on the plug-in worker thread. This may cause two
different effects:

* The Thread.interrupted () flag is set. The plug-in must check this at regular intervals and if
the flag is set it must cleanup, rollback open transactions and exit as soon as possible.

¢ If the plug-in is waiting in a blocking call that is interruptable, for example Thread.sleep (), an
InterruptedException is thrown. This should cause the same actions as if the flag was set to
happen.

Not all blocking calls are interruptable

For example calling InputStream.read () may leave the plug-in waiting in a non-interrupt-
able state. In this case there is nothing BASE can do to wake it up again.

Here is a general outline for a plug-in that uses the ThreadSignalHandler.

private ThreadSignalHandler signalHandler;
public SignalHandler getSignalHandler ()
{
signalHandler = new ThreadSignalHandler () ;
return signalHandler;

}

public void run (Request request, Response response, ProgressReporter progress)

{

if (signalHandler != null) signalHandler.setWorkerThread (null) ;
beginTransaction () ;
boolean done = false;
boolean interrupted = false;
while (!done && !interrupted)
{

try

{

done = doSomeWork (); // NOTE! This must not take forever!

interrupted = Thread.interrupted() ;

206

Plug-in developer

catch (InterruptedException ex)
{
// NOTE! Try-catch is only needed if thread calls
// a blocking method that is interruptable
interrupted = true;
}
}
if (interrupted)
{
rollbackTransaction () ;
response.setError ("Aborted by user", null);

}

else

{
commitTransaction() ;
response.setDone ("Done") ;

Another signal handler implementation is the ProgressReporterSignalHandler. See that javadoc
for information about how to use it. For more information about the signalling system as a whole,
see Section 29.3.2, “Sending signals (to plug-ins)” (page 274).

26.8. How BASE load plug-in classes

We recommend that plug-in JAR files are installed outside the web server's classpath. If you are us-
ing Tomcat this means that you should not install the plug-in in the <base-dir>/www/WEB-INF/1lib
directory or any other directory where the web server keeps it's classes. The rest of the information
in this section only applies to plug-ins that have been installed following this restriction.

If the above recommendation has been followed BASE will use it's own classloader to load the plug-in
classes. This have several benefits:

* New plug-ins can be installed and existing plug-ins can be updated without restarting the web
server. If the plugins.autounload setting in base.config has been enabled all you have to do to
update a plug-in is to replace the JAR file with a new version. BASE will automatically load the
new classes the next time the plug-in is used. If the option isn't enabled, the server admin has to
manually unload the old code from the web interface first.

¢ Plug-ins may use it's own 3-rd party libraries without interfering with other plug-ins. This may be
important because a plug-in may depend on a certain version of a library while another plug-in
may depend on a different version. Since BASE is using different class-loaders for different plug-ins
this is not a problem.

The classloading scheme used by BASE also means plug-in developers must pay attention to a few
things:

* A plug-in can only access/use classes from it's own JAR file, BASE core classes, Java system
classes and from JAR files listed in the plug-in's MANIFEST.MF file. See Section 26.1, “How to
organize your plug-in project” (page 167).

* A plug-in can also access other plug-ins, but only via the methods and interfaces defined
in BASE. In the following example we assume that there are two plug-ins, ex.MyPlugin and
ex.MyOtherPlugin, located in two different JAR files. The code below is executing in the
ex.MyPlugin:

// Prepare to load MyOtherPlugin

SessionControl sc = ...

DbControl dc = ...

PluginDefinition def = PluginDefinition.getByClassName (dc, "ex.MyOtherPlugin") ;

// Ok

207

Plug-in developer

Plugin other = def.newlInstance(Plugin.class, null, sc, null, null);

// Not ok; fails with ClassCastException
MyOtherPlugin other = def.newInstance (MyOtherPlugin.class, null, sc, null, null);

The reason that the second call fails is that BASE uses a different classloader to load the
ex.MyOtherPlugin class. This class is not (in Java terms) the same as the ex.MyOtherPlugin
class loaded by the classloader that loaded the ex.MyPlugin class. If, on the other hand, both
plug-ins are located in the same JAR file BASE uses the same classloader and the second call
will succeed.

The first call always succeeds because it uses the Plugin interface which is defined by BASE. This
class is loaded by the web servers class loader and is the same for all plug-ins.

A third option is that the ex.MyPlugin lists the JAR file where ex.MyOtherPlugin is located
in it's MANIFEST.MF file. Then, the following code can be used: MyOtherPlugin other = new
MyOtherPlugin() ;

Tomcat includes a good document describing how classloading is implemented in Tomcat: http://
tomcat.apache.org/tomcat-5.5-doc/class-loader-howto.html. BASE's classloading scheme isn't as
complex as Tomcat's, but it very similar to how Tomcat loads different web applications. The figure
on the linked document could be extended with another level with separate classloaders for each
plug-in as child classloaders to the web application classloaders.

As of BASE 2.13 the default search order for classes has been changed. The default is now to first
look in the plug-ins class path (eg. in the same JAR file and in files listed in the MANIFEST . MF file).
Only if the class is not found the search is delegated to the parent class loader. This behaviour can
be changed by setting X-Delegate-First: true in the MANIFEST.MF file. If this property is set the
parent class loader is search first. This is the same as in BASE 2.12 and earlier.

Note

The benefit with the new search order is that plug-ins may use a specific version of any external
package even if the same package is part of the BASE distribution. This was not possible before
since the package in the BASE distribution was loaded first.

26.9. Example plug-ins (with download)

We have created some example plug-ins which demonstrates how to use the plug-in system and how
to create an interactive plug-in that can ask a user for one or more parameters. You can download

a tar file with the source and compiled plug-in code' from the BASE plug-ins website.

! http:/ /baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.plugins

208

http://tomcat.apache.org/tomcat-5.5-doc/class-loader-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/class-loader-howto.html
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.plugins
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.plugins
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.plugins

Chapter 27. Extensions developer

27.1. Overview

The BASE web client includes an extensions mechanism that makes it possible to dynamically add
functions to the GUI without having to edit the JSP code. It is, for example, possible to add menu
items in the menu and toolbar buttons in selected toolbars.

Go to the Extensions Installed extensions menu to display a list of possible extension points and
all installed extensions. From this page, if you are logged in with enough permissions, it is also
possible to configure the extensions system, enable/disable extensions, etc. Read more about this
in Chapter 23, Extensions (page 148).

Extensions can come in two forms, either as an XML file in the BASE Extensions XML format or
as a JAR file. A JAR file is needed when the extension needs to execute custom-made code or use
custom resources such as icons, css stylesheets, or JSP files.

More reading
* Chapter 23, Extensions (page 148).
¢ Section 29.6, “Extensions API” (page 276).

27.1.1. Download code examples

The code examples in this chapter can be downloaded from The BASE plug-ins site'.

27.1.2. Terminology

Extension point
An extensions point is a place in the BASE web client interface where it is possible to extend
the GUI with custom extensions. An extension point has an ID which must be unique among
all existing extension points. Extension points registered by the BASE web client all starts with
net.sf.basedb.clients.web. The extension point also defines an Action class that all exten-
sions must "implement".

Extension
An extensions is a custom addition to the BASE web client interface. This can mean a new menu
item in the menu or a new button in a toolbar. An extension must provide an ActionFactory that
knows how to create actions that fits the requirements from the extension point the extension
is extending.

Action
An Action is an interface definition which provides an extension point enough information
to make it possible to render the action as HTML. An action typically has methods such as,
getTitle (), getIcon() and getOnClick ().

Action factory
An ActionFactory is an object that knows how to create actions of some specific type, for ex-
ample menu item actions. Action factories are part of an extension definition and can usually
be configured with parameters from the XML file. BASE ships with several implementations of
action factories for all defined extension points. Still, if your extension needs a different imple-
mentation you can easily create your own factory.

Renderer
A Renderer is an object that knows how to convert the information in an action to HTML. The
use of renderers are optional. Some extension points use a "hard-coded" approach that renders

1 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.extensions

209

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.extensions
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.extensions

Extensions developer

the actions directly on the JSP file. Some extension points uses a locked renderer, while other
extension points provides a default renderer, but allows extensions to supply their own if they
want to.

Renderer factory
A RendererFactory is an object that knows how to create renderers. Renderer factories can be
part of both extension points and extensions. In most other aspects renderer factories are very
similar to action factories.

Client context
A ClientContext is an object which contains information about the current user session. It is
for example, possible to get information about the logged in user, the currently active item, etc.

In the BASE web client the context is always a JspContext. Wherever a ClientContext object
is provided as a parameter it is always safe to cast it to a JspContext object.

The context can also be used by an extension to request that a specific javascript or stylesheet
file should be included in the HTML code.

27.2. Hello world as an extension

We will use the classical Hello world as the first simple example of an extension. This extension
will add a new menu item in the menu which displays a popup with the text "Hello world!" when
selected. Copy the XML code below and save it to a file in the /WEB-INF/extensions directory. The
filename must end with .xml. If you have enabled automatic installation just wait a few seconds
and the extension will be installed automatically. Otherwise you may have to do a manual scan:
(Extensions Manual scan...).

When the extension has been installed you should have a new menu item: Extensions Hello world!
which pops up a message in a Javascript window.

Note

You may have to logout and login again to see the new menu item.

<?xml version="1.0" encoding="UTF-8" ?>
<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
<extension
id="net.sf.basedb.clients.web.menu.extensions.helloworld"
extends="net.sf.basedb.clients.web.menu.extensions"
>
<index>1</index>
<about>
<name>Hello world</name>
<description>
The very first extensions example. Adds a "Hello world"
menu item that displays "Hello world" in a javascript
popup when selected.
</description>
</about>
<action-factory>
<factory-class>
net.sf.basedb.clients.web.extensions.menu.FixedMenultemFactory
</factory-class>
<parameters>
<title>Hello world!</title>
<tooltip>This is to test the extensions system</tooltip>
<onClick>alert ('Hello world!')</onClick>
<icon>/images/info.gif</icon>
</parameters>
</action-factory>
</extension>
</extensions>

210

Extensions developer

The <extensions> tag is the root tag and is needed to set up the namespace and schema validation.

The <extension> defines a new extension. It must have an id attribute that is unique among all
installed extensions and an extends attribute which id the ID of the extension point. For the id
attribute we recommend using the same naming conventions as for java packages. See Java naming

conventions from Sun?.

The <about> tag is optional and can be used to provide meta information about the extension. We
recommend that all extensions are given at least a <name>. Other supported subtags are:

® <description>
® <version>

® <copyright>

® <contact>

® <email>

® <url>

Global about tag

<about> tag can also be specified as a first-level tag (eq. as a child to <extensions>). This
can be useful when an XML file defines more than one extension and you don't want to repeat
the same information for every extension. You can still override the information for specific
extensions by including new values in the extension's <about> tag.

The <action-factory> tagis required and so is the <factory-class> subtag. It tells the extension
system which factory to use for creating actions. The FixedMenuItemFactory is a very simple factory
that is shipped with BASE. This factory always creates the same menu item, no matter what. Another
factory for menu items is the PermissionMenultemFactory which can create menu items that
depends on the logged in user's permissions. It is for example, possible to hide or disable the menu
item if the user doesn't have enough permissions. If none of the supplied factories suits you it is
possible to supply your own implementation. More about this later.

The <parameters> subtag is used to provide initialisation parameters to the factory. Different fac-
tories supports different parameters and you will have to check the javadoc documentation for each
factory to get information about which parameters that are supported.

Tip

In case the factory is poorly documented you can always assume that public methods the
start with set and take a single String as an argument can be used as a parameter. The
parameter tag to use should be the same as the method name, minus the set prefix and with
the first letter in lowercase. For example, the method setIcon(String icon) corresponds
to the <icon> parameter.

27.3. Custom action factories

Some times the factories shipped with BASE are not enough, and you may want to provide your
own factory implementation. In this case you will have to create a class that implements the Ac-
tionFactory interface. Here is a very simple example that does the same as the previous "Hello
world" example.

package net.sf.basedb.examples.extensions;

import net.sf.basedb.clients.web.extensions.JspContext;

2 http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

211

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

Extensions developer

import net.sf.basedb.clients.web.extensions.menu.MenultemAction;
import net.sf.basedb.clients.web.extensions.menu.MenultemBean;
import net.sf.basedb.util.extensions.ActionFactory;

import net.sf.basedb.util.extensions.InvokationContext;

/**
First example of an action factory where eveything is hardcoded.
Qauthor nicklas

*/

public class HelloWorldFactory
implements ActionFactory<MenultemAction>

private MenultemAction[] helloWorld;

// A public, no-argument constructor is required
public HelloWorldFactory ()
{

helloWorld = new MenultemAction[1l];

// Return true enable the extension, false to disable it
public boolean prepareContext (
InvokationContext<? super MenultemAction> context)

return true;

// An extension may create one or more actions
public MenuItemAction[] getActions (
InvokationContext<? super MenultemAction> context)

// This cast is always safe with the web client
JspContext JspContext = (JIspContext)context.getClientContext () ;
if (helloWorld[0] == null)
{
MenultemBean bean = new MenultemBean () ;
bean.setTitle ("Hello factory world!");

bean.setIcon (jspContext.getRoot () + "/images/info.gif");
bean.setOnClick ("alert ('Hello factory world!')");
helloWorld[0] = bean;

}
return helloWorld;

And here is the XML configuration file that goes with it.

<?xml version="1.0" encoding="UTF-8" 2>
<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
<extension
id="net.sf.basedb.clients.web.menu.extensions.helloworldfactory"
extends="net.sf.basedb.clients.web.menu.extensions"
>
<index>2</index>
<about>
<name>Hello factory world</name>
<description>
A "Hello world" variant with a custom action factory.
Everything is hard-coded into the factory.
</description>
</about>
<action-factory>
<factory-class>
net.sf.basedb.examples.extensions.HelloWorldFactory
</factory-class>
</action-factory>
</extension>
</extensions>

212

Extensions developer

To install this extension you need to put the compiled HelloWorldFactory.class and the XML file
inside a JAR file. The XML file must be located at META-INF/extensions.xml and the class file at
net/sf/basedb/examples/extensions/HelloWorldFactory.class.

The above example is a bit artificial and we have not gained anything. Instead, we have lost the
ability to easily change the menu since everything is now hardcoded into the factory. To change,
for example the title, requires that we recompile the java code. It would be more useful if we could
make the factory configurable with parameters. The next example will make the icon and message
configurable, and also include the name of the currently logged in user. For example: "Greetings
<name of logged in user>!".

package net.sf.basedb.examples.extensions;

import net.sf.basedb.clients.web.extensions.AbstractJspActionFactory;
import net.sf.basedb.clients.web.extensions.menu.MenultemAction;
import net.sf.basedb.clients.web.extensions.menu.MenultemBean;

import net.sf.basedb.core.DbControl;

import net.sf.basedb.core.SessionControl;

import net.sf.basedb.core.User;

import net.sf.basedb.util.extensions.ClientContext;

import net.sf.basedb.util.extensions.InvokationContext;

import net.sf.basedb.util.extensions.xml.PathSetter;

import net.sf.basedb.util.extensions.xml.VariableSetter;

/**
Example menu item factory that creates a "Hello world" menu item
where the "Hello" part can be changed by the "prefix" setting in the
XML file, and the "world" part is dynamically replaced with the name
of the logged in user.

@author nicklas
*/
public class HelloUserFactory
extends AbstractJspActionFactory<MenultemAction>

// To store the URL to the icon
private String icon;

// The default prefix is Hello
private String prefix = "Hello";

// A public, no-argument constructor is required
public HelloUserFactory ()
{}

/**

Creates a menu item that displays: {prefix} {name of user}!
*/
public MenuItemAction[] getActions (

InvokationContext<? super MenultemAction> context)

String userName = getUserName (context.getClientContext ());
MenultemBean helloUser = new MenultemBean () ;
helloUser.setTitle (prefix + " " + userName + "!");
helloUser.setIcon (icon) ;
helloUser.setOnClick ("alert ('" + prefix + " " + userName + "!')");
return new MenultemAction[] { helloUser };

}

/**
Get the name of the logged in user.

*/

private String getUserName (ClientContext context)

{
SessionControl sc = context.getSessionControl () ;
DbControl dc = context.getDbControl () ;

213

Extensions developer

User current = User.getById(dc, sc.getLoggedInUserId()) ;
return current.getName () ;

}

/**
Sets the icon to use. Path conversion is enabled.
wY
@VariableSetter
@PathSetter
public void setIcon(String icon)

{
this.icon = icon;

}

/**
Sets the prefix to use. If not set, the
default value is "Hello".

*/

public void setPrefix(String prefix)

{

this.prefix = prefix == null ? "Hello" : prefix;

The are two new parts in this factory. The first is the getUserName () method which is called from
getActions (). Note that the getActions () method always create a new MenuItemBean. It can no
longer be cached since the title and javascript code depends on which user is logged in.

The second new part is the setIcon() and setPrefix () methods. The extensions system uses
java reflection to find the existance of the methods if <icon> and/or <prefix> tags are present
in the <parameters> tag for a factory, the methods are automatically called with the value inside
the tag as it's argument.

The VariableSetter and PathSetter annotations on the setIcon () are used to enable "smart"
convertions of the value. Note that in the XML file you only have to specify /images/info.gif
as the URL to the icon, but in the hardcoded factory you have to do: jspContext.getRoot () +
"/images/info.gif". In this case, it is the PathSetter which automatically adds the the JSP root
directory to all URL:s starting with /. The VariableSetter can do the same thing but you would
have to use $ROOTS instead. Eg. SROOTS/images/info.gif. The PathSetter only looks at the first
characteer, while the VariableSetter looks in the entire string.

Here is an example of an extension configuration that can be used with the new factory.

<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
<extension
id="net.sf.basedb.clients.web.menu.extensions.hellouser"
extends="net.sf.basedb.clients.web.menu.extensions"
>
<index>3</index>

<about>
<name>Greetings user</name>
<description>
A "Hello world" variant with a custom action factory
that displays "Greetings {name of user}" instead. We also
make the icon configurable.
</description>
</about>

<action-factory>

<factory-class>
net.sf.basedb.examples.extensions.HelloUserFactory

</factory-class>

<parameters>
<prefix>Greetings</prefix>
<icon>/images/take_ownership.png</icon>

</parameters>

214

Extensions developer

</action-factory>
</extension>
</extensions>

Be aware of multi-threading issues

When you are creating custom action and renderer factories be aware that multiple threads
may use a single factory instance at the same time. Action and renderer objects only needs to
be thread-safe if the factories re-use the same objects.

27.4. Custom images, JSP files, and other
resources

Some times your extension may need other resources. It can for for example be an icon, a javascript
file, a JSP file or something else. Fortunately this is very easy. You need to put the extension in
a JAR file. As usual the extension definition XML file should be at META-INF/extensions.xml.
Everything you put in the JAR file inside the resources/ directory will automatically be extracted
by the extension system to a directory on the web server. Here is another "Hello world" example
which uses a custom JSP file to display the message. There is also a custom icon.

<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
<extension
id="net.sf.basedb.clients.web.menu.extensions.hellojspworld"
extends="net.sf.basedb.clients.web.menu.extensions"
>
<index>4</index>
<about>
<name>Hello JSP world</name>
<description>
This example uses a custom JSP file to display the
"Hello world" message instead of a javascript popup.
</description>
</about>
<action—factory>
<factory-class>
net.sf.basedb.clients.web.extensions.menu.FixedMenultemFactory
</factory-class>
<parameters>
<title>Hello JSP world!</title>
<tooltip>Opens a JSP file with the message</tooltip>
<onClick>
Main.openPopup ('SHOMES/hello_world. jsp?ID=' + getSessionId(), 'HelloJdspWorld',6 400,
300)
</onClick>
<icon>~/images/world.png</icon>
</parameters>
</action-factory>
</extension>
</extensions>

The JAR file should have have the following contents:

META-INF/extensions.XML
resources/hello_world. jsp
resources/images/world.png

When this extension is installed the hello_world. jsp and world.png files are automatically ex-
tracted to the web servers file system. Each extension is given a unique HOME directory to make sure
that extensions doesn't interfere with each other. The URL to the home directory is made available
in the SHOMES variable. All factory settings that have been annotated with the VariableSetter will

215

Extensions developer

have their values scanned for $HOMES which is replaced with the real URL. It is also possible to use
the SROOTS variable to get the root URL for the BASE web application. Never use /base/. .. since
users may install BASE into another path.

The tilde (~) in the <icon> tag value is also replaced with the HOME path. Note that this kind of
replacement is only done on factory settings that have been annotated with the PathSetter anno-
tation and is only done on the first character.

Note

Unfortunately, the custom JSP file can't use classes that are located in the extension's JAR file.
The reason is that the JAR file is not known to Tomcat and Tomcat will not look in the WEB-
INF/extensions folder to try to find classes. There are currently two possible workarounds:

¢ Place classes needed by JSP files in a separate JAR file that is installed into the WEB-INF/1ib
folder. The drawback is that this requires a restart of Tomcat.

* Use an X-JSP file instead. This is an experimental feature. See Section 27.4.2, “X-JSP files”
(page 216) for more information.

27.4.1. Javascript and stylesheets

It is possible for an extension to use a custom javascript or stylesheet. However, this doesn't
happen automatically and may not be enabled for all extension points. If an extension needs
this functionality the action factory or renderer factory must call JspContext.addScript () or
JspContext .addStylesheet () from the prepareContext () method.

The AbstractJspActionFactory and AbstractJspRendererFactory factory can do this. All fac-
tories shipped with BASE extends one of those classes and we recommend that custom-made fac-
tories also does this.

Factories that are extending one of those two classes can use <script> and <stylesheet> tags in
the <parameters> section for an extensions. Each tag may be used more than one time. The values
are subject to path and variable substitution.

<action-factory>
<factory-class>
. some factory class ...
</factory-class>
<parameters>
<script>~/scripts/custom. js</script>
<stylesheet>~/css/custom.css</stylesheet>
. other parameters ...
</parameters>
</action-factory>

If scripts and stylesheets has been added to the JSP context the extension system will, in most
cases, include the proper HTML to link in the requested scripts and/or stylesheet.

All extension points doesn't support custom scripts/stylesheets

In some cases the rendering of the HTML page has gone to far to make is possible to include
custom scripts and stylesheets. This is for example the case with the extensions menu. Always
check the documentation for the extension point if scripts and stylesheets are supported or
not.

27.4.2. X-JSP files

The drawback with a custom JSP file is that it is not possible to use classes from the extension's
JAR file in the JSP code. The reason is that the JAR file is not known to Tomcat and Tomcat will not
look in the WEB-INF/extensions folder to try to find classes.

216

Extensions developer

One workaround is to place classes that are needed by the JSP files in a separate JAR file that is
placed in WEB-INF/1lib. The drawback with this is that it requires a restart of Tomcat. It is also a
second step that has to be performed manually by the person installing the extension and is maybe
forgotten when doing an update.

Another workaround is to use an X-JSP file. This is simply a regular JSP file that has a .x7jsp
extension instead of . jsp. The . x3sp extension will trigger the use of a different compiler that knows
how to include the extension's JAR file in the class path.

X-JSP is experimental

The X-JSP compiler depends on functionality that is internal to Tomcat. The JSP compiler is
not part of any open specification and the implementation details may change at any time.
This means that the X-JSP compiler may or may not work with future versions of Tomcat.
We have currently tested it with Tomcat 6.0.14 only. It will most likely not work with other
servlet containers.

Adding support for X-JSP requires that a JAR file with the X-JSP compiler is installed into
Tomcat's internal /1ib directory. It is an optional step and not all BASE installations may have
the compiler installed. See Section 23.2, “Installing the X-JSP compiler” (page 149).

27.5. Custom renderers and renderer facto-
ries

It is always the responsibility of the extension point to render an action. The need for custom ren-
derers is typically very small, at least if you want your extensions to blend into the look and feel of
the BASE web client. Most customizations can be probably be handled by stylesheets and images.
That said, you may still have a reason for using a custom renderer.

Renderer factories are not very different from action factories. They are specified in the same way in
the XML file and uses the same method for initialisation, including support for path conversion, etc.
The difference is that you use a <renderer-factory> tag instead of an <action-factory> tag.

<renderer-factory>
<factory-class>
. some factory class ...
</factory-class>
<parameters>
. some parameters ...
</parameters>
</renderer-factory>

A RendererFactory also has a prepareContext () method that can be used to tell the web client
about any scripts or stylesheets the extension needs. If your renderer factory extends the Abstrac-
tJspRendererFactory class you will not have to worry about this since you can configure scripts
and stylesheets in the XML file.

A render factory must also implement the getRenderer () which should return a Renderer in-
stance. The extension system will then call the Renderer.render () method to render an action.
This method may be called multiple times if the extension created more than one action.

The renderers responsibility is to generate the HTML that is going to be sent to the web client. To
do this it needs access to the JspContext object that was passed to the renderer factory. Here is a
simple outline of both a renderer factory and renderer.

// File: MyRendererFactory.java
public class MyRendererFactory

217

Extensions developer

extends AbstractJspRendererFactory<MyAction>

public MyRendererFactory ()
{}

@Override
public MyRenderer getRenderer (InvokationContext context)
{
return new MyRenderer ((JspContext)context.getClientContext ()) ;
}
}

// File: MyRenderer. java
public class MyRenderer
implements Renderer<MyAction>

{

private final JspContext context;
public MyRenderer (IJspContext context)
{

this.context = context;

}

/**
Generates HTML (unless invisible) :
[title]l
w/
public void render (MyAction action)
{
if (laction.isVisible()) return;
Writer out = context.getOut () ;
try
{

out.write("<a") ;

if (action.getClazz () != null)
{
out.write (" class=\"" + action.getClazz () + "\"");
}
if (action.getStyle() != null)

out.write (" style=\"" + action.getStyle() + "\"");
if (action.getOnClick () != null)

out.write (" href=\"" + action.getOnClick () + "\"");
}
out.write(">");
out.write (HTML.encodeTags (action.getTitle())) ;
out.write("\n") ;

}

catch (IOException ex)

{

throw new RuntimeException (ex) ;

}

27.6. Extension points

The BASE web client ships with a number of predefined extension points. Adding more extension
points to the existing web client requires some minor modifications to the regular JSP files. But this
is not what this chapter is about. This chapter is about defining new extension points as part of an
extension. It is nothing magical about this and the process is the same as for the regular extension
points in the web client.

The first thing you need to do is to start writing the XML definition of the extension point. Here is
an example from the web client:

218

Extensions developer

<extensions
xmlns="http://base.thep.lu.se/extensions.xsd"
>
<extension-point
id="net.sf.basedb.clients.web.menu.extensions"
>
<action-class>net.sf.basedb.clients.web.extensions.menu.MenultemAction</action-class>
<name>Menu: extensions</name>
<description>
Extension point for adding extensions to the 'Extensions' menu.
Extensions should provide MenultemAction instances. The rendering
is internal and extensions can't use their own rendering factories.
The context will only include information about the currently logged
in user, not information about the current page that is displayed.
The reason for this is that the rendered menu is cached as a string
in the user session. The menu is not updated on every page request.
This extension point doesn't support custom stylesheets or javascripts.
</description>
</extension-point>
</extensions>

The <extensions> tag is the root tag and is needed to set up the namespace and schema validation.

The <extension-point> defines a new extension point. It must have an id attribute that is unique
among all installed extension points. We recommend using the same naming conventions as for java

packages. See Java naming conventions from Sun®.
Document the extension point!

The <name> and <description> tags are optional, but we strongly recommend that values
are provided. The description tag should be used to document the extension point. Pay special
attention to the support (or lack of support) for custom scripts, stylesheets and renderers.

The <action-class> defines the interface or class that extensions must provide to the extension
point. This must be a class or interface that is a subclass of the Action interface. We generally
recommend that interfaces are used since this gives more implementation flexibility for action fac-
tories, but a regular class may work just as well.

The action class is used to carry information about the action, such as a title, which icon to use,
a tooltip text, a javascript snippet that is invoked on click events, etc. The action class may be as
simple or complex as you like.

Web client extension points

This is a note for the core developers. Extension points that are part of the web client should
always define the action as an interface. We recommend that getId (), getClazz () and get—
Style () attributes are always included if this makes sense. It is usually also a good idea to
include isvisible () and isEnabled () attributes.

Now, if you are a good citizen you should also provide at least one implementation of an action
factory that can create the objects of the desired type of action. The factory should of course be
configurable from the XML file.

If you are lazy or if you want to immediately start testing the JSP code for the extension point, it may
be possible to use one of the debugger action factories in the net.sf.basedb.util.extensions.debug
pacakge.

* ProxyActionFactory: This action factory can only be used if your action class is an interface
and all important methods starts with get or is. The proxy action factory uses Java reflection to
create a dynamic proxy class in runtime. It will map all getX () and isY () methods to retreive the

3 http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

219

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

Extensions developer

values from the corresponding parameter in the XML file. For example, getIcon () will retrieve
the value of the <icon> tag and isvisible () from the <visible>. The factory is smart enough
to convert the string to the correct return value for int, long, float, double and boolean data types
and their corresponding object wrapper types, if this is needed.

* BeanActionFactory: This action factory can be used if you have created a bean-like class that
implements the desired action class. The factory will create an instance of the class specified by
the <beanClass> parameter. The factory will then use Java reflection to find set method for the
other parameters. If there is a parameter <icon> the factory first looks for a setIcon (String)
method. If it can't find that it will see if there is a getIcon () method which has a return type,
T. If so, a second attempt is made to find a setIcon (T) method. The factory is smart enough to
convert the string value from the XML file to the correct return value for int, long, float, double
and boolean data types and their corresponding object wrapper types, if this is needed.

It is finally time to write the JSP code that actually uses the extension point. It is usually not very
complicated. Here is an exemple which lists snippets from a JSP file:

// 1. We recommend using the extensions taglib (and the BASE core taglib)
<%Q@ taglib prefix="ext" uri="/WEB-INF/extensions.tld" %>
<%@ taglib prefix="base" uri="/WEB-INF/base.tld" %>

// 2. Prepare the extension point

SessionControl sc = Base.getExistingSessionControl (pageContext, true);

JspContext JspContext = ExtensionsControl.createContext (sc, pageContext) ;

ExtensionsInvoker invoker = ExtensionsControl.useExtensions (jspContext,
"my.domain.name.extensionspoint") ;

// 3. Output scripts and stylesheets
<base:page title="My new extension point">
<base:head>
<ext:scripts context="<%=jspContext%>" />
<ext:stylesheets context="<%=jspContext%>" />
</base:head>
<base:body>

// 4a. Using a taglib for rendering with the default renderer
<ext:render extensions='"<%=invoker%>" context="<%=jspContext%>" />

// 4b. Or, use the iterator and a more hard-coded approach
<%
Iterator it = invoker.iterate();
while (it.hasNext())
{
MyAction action = (MyAction)it.next();
String html = action.getTitle() +

out.write (html) ;

o0 —

27.7. Custom servlets

It is possible for an extension to include servlets without having to register those servlets in Tomcat's
WEB-INF/web.xml file. The extension needs to be in a JAR file as usual. The servlet class should be
located in the JAR file following regular Java conventions. Eg. The class my.domain.ServletClass
should be located at my/domain/ServletClass.class. You also need to create a second XML file
that contains the servlet definitions at META-INF/servlets.xml. The format for defining servlets
in this file is very similar to how servlets are defined in the web.xml file. Here is an example:

220

Extensions developer

<?xml version="1.0" encoding="UTF-8" ?>
<servlets xmlns="http://base.thep.lu.se/servlets.xsd">
<servlet>
<servlet-name>HelloWorld</servlet-name>
<servlet-class>net.sf.basedb.examples.extensions.HelloWorldServlet</servlet-class>
<init-param>
<param-name>template</param-name>
<param-value>Hello {user}! Welcome to the Servlet world!</param-value>
</init-param>
</servlet>
</servlets>

The <servlets> tag is the root tag and is needed to set up the namespace and schema validation.
This may contain any number of <servlet> tags, each one defining a single servlet.

The <servlet-name> tag contains the name of the servlet. This is a required tag and must be unique
among the servlets defined by this extension. Other extensions may use the same name without
any problems.

The <servlet-class> tag contains the name of implementing class. This is required and the class
must implement the Servlet interface and have a public, no-argument constructor. We recommend
that servlet implementations instead extends the HttpServlet class. This will make the servlet
programming easier.

A servlet may have any number <init-param> tags, containing initialisation parameters for the
servlet. Here is the code for the servlet references in the above example.

public class HelloWorldServlet
extends HttpServlet

{
private String template;
public HelloWorldServlet ()
{}

@Override
public void init ()
throws ServletException
{
ServletConfig cfg = getServletConfig() ;
template = cfg.getInitParameter ("template");
if (template == null) template = "Hello {user}.";

@QOverride
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
final SessionControl sc = Base.getExistingSessionControl (request, true);
final DbControl dc = sc.newDbControl() ;
try
{
User current = User.getById(dc, sc.getLoggedInUserId()) ;

PrintWriter out = response.getWriter();
out.print (template.replace ("{user}", current.getName()));
}
finally
{
if (dc != null) dc.close();
}
}
@QOverride

protected void doPost (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
doGet (req, resp);

221

Extensions developer

Invoking the servlet is done with a URL that is constructed like: $SHOMES$/ [servlet-name] .servlet,
where $HOMES is the home directory of the extension. Since BASE 2.13 an alternate URL that
doesn't require the .servlet extension is available: $SERVLET HOMES/ [servlet-name], where
$SERVLET_HOMES is the home directory of servlets for the extension. Note that this directory is on
a different sub-path than the $HOMES directory.

Extra path information is supported (since BASE 2.10) if it is inserted between the servlet
name and the .servlet extension: SHOMES/[servlet-name] [/extra/path/info].servlet,
$SERVLET_HOMES/ [servlet—name] [/extra/path/info]

Query parameters are supported as normal: SHOMES/ [servlet—
name] .servlet?paraml=value¶m2=value, SSERVLET_HOMES/ [servlet-
name] ?paraml=value¶m2=value

<extension
id="net.sf.basedb.clients.web.menu.extensions.helloservletworld"
extends="net.sf.basedb.clients.web.menu.extensions"
>
<index>5</index>
<about>
<name>Hello Servlet world</name>
<description>
This example uses a custom Servlet page to display the
"Hello world" message instead of a javascript popup.
</description>
</about>
<action-factory>
<factory-class>
net.sf.basedb.clients.web.extensions.menu.FixedMenultemFactory
</factory-class>
<parameters>
<title>Hello Servlet world!</title>
<tooltip>Opens a Servlet generated page with the message</tooltip>
<onClick>
Main.openPopup ('$HOMES/HelloWorld.servlet?ID=' + getSessionId(), 'HelloServletWorld',
400, 300)
</onClick>
<icon>~/images/servlet.png</icon>
</parameters>
</action-factory>
</extension>

Note

To keep things as simple as possible, a new instance of the servlet class is created for each
request. If the servlet needs complex or expensive initialisation, that should be externalised
to other classes that the servlet can use.

222

Chapter 28. Web services

This chapter is an introduction of web services in BASE. It is recommended to begin your reading
with the first section in this chapter and then you can move on to either the second section for more
information how to develop client applications, or to the third section if you think there are some
services missing and you want to know how to proceed to develop a new one.

Before moving on to develop client applications or new services there are few things that need to
be explained first.

1. Items in BASE are not send directly by the web services, most of them are to complex for this
should be possible. Instead is each item type represented by an info class that can hold the type's
less complex properties.

2. BASE offers a way for services to allow the client applications to put their own includes and re-
strictions on a query before it is executed. For those who intend to develop services it is recom-
mended to have a look in javadoc for the QueryOptions class. This is on the first hand for the
service developers but it can be useful for client developers to also know that this may be available
in some services.

28.1. Available services

Web services can, at the moment, be used to provide some information and data related to experi-
ments in BASE, for example, information about raw bioassays or bioassay set data. The subsection
below gives an overview of the services that are currently present in BASE short description for
each. More detailed information can be found in the javadoc and WSDL-files. Each service has it's
own class and WSDL-file.

28.1.1. Services

SessionService, SessionClient
Provides methods to manage a sessions. This is the main entry point to the BASE web services.
This contains methods for logging in and out and keeping the session alive to avoid automatic
logout due to inactivity.

ProjectService, ProjectClient
Service related to projects. You can list available projects and select one to use as the active
project.

ExperimentService, ExperimentClient
Service related to experiments. List your experiments and find out which raw bioassays that are
part of it and which bioassay sets have been created as part of the analysis.

BioAssaySetService, BioAssaySetClient
Services related to bioassay sets. Get access to the data in a bioassay set that has been previously
exported to a file.

RawBioAssayService, RawBioAssayClient
Services related to raw bioassays. Find out which raw data files that are present and download
them.

ArrayDesignService, ArrayDesignClient
Services related to array design. Find out which data files that are present and download them.

AnnotationTypeService, AnnotationTypeClient
Services related to annotation types. Find out which annotation types that can be used for
different types of items.

223

Web services

28.2. Client development

How to develop client applications for the web services in BASE is, of course, depends on which
program language you are using. BASE comes with a simple client API for java for the existing
services. If you use this API, you don't have to worry about WSDL files, stubs and skeletons and
other web services related stuff. Just use it the client API as any other java API.

The client API can be downloaded with example code from the BASE plug-ins website!. The package
contains all external JAR files you need, the WSDL files (in case you still want them) and some
example code that logs in to a BASE server, lists projects and experiments and then logs out again.
Here is a short example of how to login to a BASE server, list the experiments and then logout.

String serviceUrl = "http://your.base.server/base2/services";
String login = "mylogin";
String password = "mypassword";

// Create new session
SessionClient session = new SessionClient (serviceUrl, null, null);

// Login
session.login(login, password, null, false);

// Get all projects and print out name and ID
ExperimentClient ex = new ExperimentClient (session) ;
ExperimentInfo[] experiments = ec.getExperiments (new QueryOptions()) ;

if (experiments != null && experiments.length > 0)
{
for (ExperimentInfo info : experiments)
{
System.out.println("name=" + info.getName() + "; id=" +info.getId());
}
}

// Logout
session.logout () ;

If you want to use another language than Java or you don't want to use our client API, you probably
need the WSDL files. These can be found in the client API package discussed above and also in
the BASE core distribution in the <base-dir>/misc/wsdl directory. The WSDL files can also be
generated on the fly by the BASE server by appending ?wsdl to the url for a specific service. For
example, http://your.base.server/base2/services/Session?wsdl.

28.2.1. Receiving files

Some methods can be used to download files or exported data. Since this kind of data can be
binary data the usual return methods can't be used. BASE uses a method commonly known as web
services with attachments using MTOM (SOAP Message Transmission Optimization Mechanism)

to send file data. Read the MTOM Guide? from Apache if you want to know more about this.

With the client API it is relatively easy to download a file. Here is a short program example that
downloads the CEL files for all raw bioassays in an experiment.

int experimentId = ...
SessionClient session = ...
String fileType = "affymetrix.cel";

// Create clients for experiment and raw bioassay

! http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices
2 http://ws.apache.org/axis2/1_0/mtom-guide.html

224

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices
http://ws.apache.org/axis2/1_0/mtom-guide.html
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices
http://ws.apache.org/axis2/1_0/mtom-guide.html

Web services

ExperimentClient ec = new ExperimentClient (session) ;
RawBioAssayClient rc = new RawBioAssayClient (session) ;

// Get all raw bioassays in the experiment

RawBioAssayInfo[] rawInfo = ec.getRawBioAssays (experimentId, new QueryOptions());
if (rawInfo == null && rawInfo.length == 0) return;
for (RawBioAssayInfo info : rawInfo)

{
// We receive the file contents as an InputStream
InputStream download = rc.downloadRawDataByType (info.getId (), fileType) ;

// Save to file with the same name as the raw bioassay + .cel
// assume that there are no duplicates

File saveTo = new File(info.getName () + ".cel");
FileUtil.copy (download, new FileOutputStream(saveTo)) ;

If you are using another programming language than Java or doesn't want to use the client API
you must know how to get access to the received file. The data is sent as a binary attachment to
an element in the XML. It is in the interest of the client developer to know how to get access to
a received file and to make sure that the programming language/web services framework that is
used supports MTOM. Below is a listing which shows an example of a returned message from the
RawBioAssayService.downloadRawDataByType () Service.

——-MIMEBoundaryurn_uuid_1526E5ADDI9FC4431651195044149664

Content-Type: application/xop+xml; charset=UTF-8; type="application/soap+xml"
Content-Transfer-Encoding: binary

Content-ID: <0O.urn:uuid:1526E5ADD9FC4431651195044149665CRapache.org>

<ns:downloadRawDataByTypeResponse xmlns:ns="http://server.ws.basedb.sf.net">
<ns:return>
<Test.cel:Test.cel xmlns:Test.cel="127.0.0.1">
<xop:Include href="cid:1l.urn:uuid:1526E5ADDI9FC4431651195044149663@apache.org"
xmlns:xop="http://www.w3.0rg/2004/08/x0op/include" />
</Test.cel:Test.cel>
</ns:return>
</ns:downloadRawDataByTypeResponse>
——-MIMEBoundaryurn_uuid_1526E5ADDI9FC4431651195044149664
Content-Type: text/plain
Content-Transfer-Encoding: binary
Content-ID: <l.urn:uuid:1526E5ADD9FC4431651195044149663C@apache.org>

binary file data is here

Here is a programlisting, that shows how to pick up the file. This is the actual implemen-
tation that is used in the web service client that comes with BASE. The InputStream re-
turned from this method is the same InputStream that is returned from, for example, the
RawBioAssayClient.downloadRawDataByType () method.

// From AbstractRPCClient. java
protected InputStream invokeFileBlocking(String operation, Object... args)
throws AxisFault, IOException
{
//Get the original response element as sent from the server-side
OMElement response = getService () .invokeBlocking (getOperation (operation), args);

//The file element returned from the service is the first element of the response
OMElement fileElement = response.getFirstElement () ;

//The data node always in the first element.
OMElement dataElement = fileElement.getFirstElement () ;

if (dataElement == null) return null;

//Get the binary node and pick up the inputstream.

225

Web services

OMText node = (OMText)dataElement.getFirstOMChild() ;
node.setBinary (true) ;
DataHandler dataHandler = (DataHandler)node.getDataHandler () ;

return dataHandler.getInputStream() ;

28.3. Services development

This list should work as guide when creating new web service in BASE.

1. Create a new class that extends AbstractRPCService

2. Place the new service in same package as the abstract class, net.sf.basedb.ws.server
3. Write the routines/methods the service should deploy.

Never return void from methods

For server-side exceptions to be propagated to the client the web services method mustn't
be declared as void. We suggest that in cases where there is no natural return value, the
session ID is returned, for example:

public String myMethod (String ID, ...more parameters...)
{

// ... your code here

return ID;

}

4. Make the Ant build-file creates a WSDL-file when the services are compiled (see below). This step
is not needed for BASE to work but may be appreciated by client application developers.

5. Register the service in the <base-dir>/src/webservices/server/META-INF/services.xml
file. This is an XML file listing all services and is needed for BASE (Axis) to pick up the new service
and expose it to the outside world. Below is an example of hoe the Session service is registered.

Example 28.1. How to register a service in services.xml

<service name="Session" scope="application'">
<description>
This service handles BASE sessions (including login/logout)
</description>
<messageReceivers>
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-out"
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver" />
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-only"
class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver" />
</messageReceivers>
<parameter name="ServiceClass"
locked="false">net.sf.basedb.ws.server.SessionService</parameter>
</service>

28.3.1. Generate WSDL-files

When a new service is created it can be a good idea to also get a WSDL-file generated when the
web services are compiled. The WSDL-file will be a help for those developers who intend to create
client applications to the new service. It is a one-liner in the Ant build file to do this and not very
complicated. To create a WSDL file for the new web service add a line like the one below to the
webservices.wsdl target. Replace SessionService with the name of the new service class.

226

Web services

<webservices.wsdl serviceClassName="SessionService"/>

28.4. Example web service client (with
download)

We have created a simple Java client that uses web services to get information about projects and
experiments from a BASE server. The example code can also download raw data files attached to
an experiment. The example code can be used as a starting point for developers wanting to do their

own client. You can download a tar file with the source and compiled code® from the BASE plug-ins
website.

3 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices

227

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices

Chapter 29. API overview (how to
use and code examples)

29.1. The Public API of BASE

Not all public classes and methods in the BASE2Core. jar and other JAR files shipped with BASE
are considered as Public API. This is important knowledge since we will always try to maintain
backwards compatibility for classes that are part of the public API. For other classes, changes may
be introduced at any time without notice or specific documentation. In other words:

Only use the public APl when developing plug-ins

This will maximize the chance that you plug-in will continue to work with the next BASE
release. If you use the non-public API you do so at your own risk.

See the javadocl for information about what parts of the API that contributes to the public API.
Methods, classes and other elements that have been tagged as @deprecated should be considered
as part of the internal API and may be removed in a subsequent release without warning.

See Appendix K, API changes that may affect backwards compatibility(page 358) to read
more about changes that have been introduced by each release.

29.1.1. What is backwards compatibility?

There is a great article about this subject on http://wiki.eclipse.org/index.php/Evolving Java-
based_APIs. This is what we will try to comply with. If you do not want to read the entire article,
here are some of the most important points:

Binary compatibility

For example:
* We cannot change the number or types of parameters to a method or constructor.

* We cannot add or change methods to interfaces that are intended to be implemented by plug-in
or client code.

Contract compatibility

For example:

¢ We cannot change the implementation of a method to do things differently than before. For exam-
ple, allow null as a return value when it was not allowed before.

Note

Sometimes there is a very fine line between what is considered a bug and what is considered
a feature. For example, if the actual implementation does not do what the javadoc says, do we

1 http://base.thep.lu.se/chrome/site/doc/api/index.html

228

http://base.thep.lu.se/chrome/site/doc/api/index.html
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
http://base.thep.lu.se/chrome/site/doc/api/index.html

API overview (how to
use and code examples)

change the code or do we change the documentation? This has to be considered from case to
case and depends on the age of the code and if we expect plug-ins and clients to be affected
by it or not.

Source code compatibility

This is not an important matter and is not always possible to achieve. In most cases, the problems
are easy to fix. Example:

¢ Adding a class may break a plug-in or client that import classes with . * if the same class name
exists in another package.

29.2. The database schema and the Data
Layer API

This section gives an overview of the entire data layer API. The figure below show how different
modules relate to each other.

229

API overview (how to
use and code examples)

Figure 29.1. Data layer overview

Basic classes & interfaces

BasicData, OwnedData, SharedData, NameableData,
RemovableData, Annotatablelata, ete.

3
V

Authentication

User, Group, Role, Project, Key,

Passward
Hardware & software I e Client, Session & settings
- = Fol 8 " T -
Hardware, HardwareType, Software, -~ ' ~ . Client, Help, Session, Setting, Context
SoftwareType - [l . -
. ke | R R
! - i ~ B
- I - Misc
- -
) Reporters Quutg : Parameters & \falues|
! . News, Message,
/ Reporter, Reporterlist, Quota, QuataType, ParameterType, Farmula, AnyTodny,
ReporterType DiskUsage Parametervalue Caloring, ChangeHistory
!
] = 4
) 7 (T - 1
! ! ! .
J/' J - . . Annotations ~ |
Files & directories - 5
I I AnnotationType, i
File, FileType, Directory, AnnhotationTypeCategary, \
\ / MimeType Annotationset, Annatation, |
{ Quantity, Unit |
\ G0 < . I e /
. | et o (I
A ! - I Y ~ i
1 = . =
N ' Experimental platforms Protocols| / \ Plugins & Jobs
A v Platform, Platfarm\ariant, ' PluginDefinition,
™ A PlatformFileType, FileSet, Protocol, ProtocalType | PluginCanfiguration,
. \ FileSettember, DataFileType PluginType, lob, Jobfgent
S - . ra ."l l.1-
. » /
- .___x:__ﬂ-.. - ™ # - /
— ™ S s - -
All resources belmy depends on the abowve i
resources, To avoid cluttering individual
links are not drawn.
|
- hY
Array LIMS - plates| ~ ' .
Flate, PlateType, PlateGeametry, ! - -
PlateEventType, PlateBvent, Biomaterial LIMS
PlateMapping, Well | -
| BioSource, Sample, Extract,
T LabeledEctract, Label,
[BioMaterialEwent, BioPlate,
Biowell, Biohateriallist
o

Array LIMS - arrays |

ArrayDesign, ArrayBatch,
Arrayslide, ArrayDesignPlate, | !
ArrayDesignBlock, Feature r
e | rd
- |
e .fr
Hyhridzations & raw datal

Hybridization, 5can, Image,
RawEBiofssay, Spotlmages,
RawData

T
|

Experiments| |

Experiment, Transformation, BiofssaySet,
BioAssay, ExtraVfalue, ExtraValueType,
WirtwalDb, DataCube, DataCubelayer,
[DataCubeColumn, DataCubeFilter,
DataCubeBExtravalue

29.2.1. Basic classes and interfaces

This document contains information about the basic classes and interfaces in this package. They
are important since all data-layer classes must inherit from one of the already existing abstract base

230

API overview (how to
use and code examples)

classes or implement one or more of the existing interfaces. They contain code that is common to
all classes, for example implementations of the equals () and hashCode () methods or how to link
with the owner of an item.

231

1| +owmner
UserData

hemKeyData

0.1 | +itemkey

DwhedDats

0.1 [+projectkey
Froject KeyData

Shared Date

LemmenDats

+name : 5tring [1]
+description : 5tring
+removed ; boolean

T
|

Annatated Data

0.1 |+annotationset

Lhnotation5et Data

—p Ownable Data [

I ShareableData (

— I Nameable Data {

— Annotatable Data (

—I= Loggable Data

+getCmmerd UzerData
+zetCOnmers ownner : UserData)

i i
|

DiskCons umable Data

Ll

L

+getDizkl)zaged : Dizkl=zageData

+getltemkey(: temkeyData
+getProjectkeyd | ProjectkevData

—I3 Re movable Data &

+izRemovedd . boolean
+zetRemoved removed ; boolean)

+getMame : 5tring

+zetMamerl name : 5tring)
+getDezcriptiond : 5tring
+zetDezcriptiond dezcription : 5tring)

+getdnnotation>etd : AnnotationsetData
+zetdnnotationset! az | Annotation>etData)

Extendable Data F

+getExtendedy key : 5tring) Object
+zetExtendedy key : String, value ; Object)

Batchable Data (&

S5ystemData @

+getiystemidd : 3tring
+zetiystem|dd id : 5tring)

RegisteredData [

+qgetEntryDated) | Date
+zetEntryDatef date : Date)

232

API overview (how to
use and code examples)

Classes

BasicData
The root class. It overrides the equals (), hashCode () and toString () methods from the Ob-
ject class. It also defines the id and version properties. All data layer classes must inherit
from this class or one of it's subclasses.

OwnedData
Extends the BasicData class and adds an owner property. The owner is a required link to a
UserData object, representing the user that is the owner of the item.

SharedData
Extends the OwnedData class and adds properties (itemKey and pro jectKey) that holds access
permission information for an item. Access permissions are held in ItemKeyData and/or Pro-
jectKeyData objects. These objects only exists if the item has been shared.

CommonData
This is a convenience class for items that extends the SharedData class and implements the
NameableData and RemoveableData interfaces. This is one of the most common situations.

AnnotatedData
This is a convenience class for items that can be annotated. Annotations are held in Annota-
tionSetData objects. The annotation set only exists if annotations has been created for the item.

Interfaces

IdentifiableData
All items are identifiable, which means that they have a unique id. The id is unique for all items
of a specific type (ie. class). The id is number that is automatically generated by the database
and has no other meaning outside of the application. The version property is used for detecting
and preventing concurrent modifications to an item.

OwnableData
An ownable item is an item which has an owner. The owner is represented as a required link
to a UserData object.

ShareableData
A shareable item is an item which can be shared to other users, groups or projects. Access
permissions are held in ItemKeyData and/or ProjectKeyData objects.

NameableData
A nameable item is an item that has a name (required) and a description (optional). The name
doesn't have to be unique, except in a few special cases (for example, the name of a file).

RemovableData
A removable item is an item that can be flagged as removed. This doesn't remove the information
about the item from the database, but can be used by client applications to hide items that
the user is not interested in. A trashcan function can be used to either restore or permanently
remove items that has the flag set.

SystemData
A system item is an item which has an additional id in the form of string. A system id is required
when we need to make sure that we can get a specific item without knowing the numeric id.
Example of such items are the root user and the everyone group. A system id is generally con-
structed like: net.sf.basedb.core.User.ROOT. The system id:s are defined in the core layer
by each item class.

DiskConsumableData
This interface is used by items which occupies a lot of disk space and should be part of the
quota system, for example files. The required DiskUsageData contains information about the
size, location, owner etc. of the item.

233

API overview (how to
use and code examples)

AnnotatableData
This interface is used by items which can be annotated. Annotations are name/value pairs that
are attached as extra information to an item. All annotations are contained in an Annotation-
SetData object.

ExtendableData
This interface is used by items which can have extra administrator-defined columns. The func-
tionality is similar to annotations. It is not as flexible, since it is a global configuration, but has
better performance. BASE will generate extra database columns to store the data in the tables
for items that can be extended.

BatchableData
This interface is a tagging interface which is used by items that needs batch functionality in
the core.

RegisteredData
This interface is used by items which registered the date they were created in the database. The
registration date is set at creation time and can't be modified later. Since this didn't exist prior to
BASE 2.10, null values are allowed on all pre-existing items. Note! For backwards compatibility
reasons with existing code in BioMaterialEventData the method name is getEntryDate ().

LoggableData

This is a tagging interface that indicates that the DbLogManagerFactory logging implementation
should log changes made to items that implements it.

29.2.2. User authentication and access control

This section gives an overview of user authentication and how groups, roles and projects are used
for access control to items.

234

API overview (how to

use and code examples)

UML diagram

Figure 29.3. User authentication and access control

table = "Users”

+address ; String
+disabled : baolean
+email : 5tring 1

s er Data 1 1 Pass word Data
A = 102_1 -user ~passward BasicData
extends asicData proxy = true
implements =" NRTEG ™ table = "Passwords”

+mdSPassword : String [1]

+expirationDate : Date

I DwnableData [&)

KeyData

extends = i=={BasicData
proxy = true

table = "Keys"

fay

-

temKeyData

discriminator-value =1

0. +itemkey

0.1

-itemkeys

{tahlel ="Userkeys"}

Per mission

npeFMission :int

Group Data

+externalld : String +nmper
+fax : String
+login : String [1]
+multilserfAccount : boalean
+arganization : 51ring 0.
+phaone : String nlFErS
+url : String
0.% | 4users

ftable = "UserGroups"t g w

-groups

cache = 100

0.* {table = "Groupkeys’}
-parents ~groups
0.+ |table ="Groups” o
s sion ShareableData ()
+children | 0% [+groups ~permission : int
{table = "GroupGroups"} 0w aroup
Per mission __|itable ="GroupProjects"}
o . int +projectkey (0.1
ermission : in
|:| FrojectKeyData I—
discriminatar-value = 2
0.*
-projects
{table = "UserProjects”} 0.* Project Data -projectieys |0.*
-projects
o cache =100 _ 0n.* ftable = "Projectieys}
Per mission !axtTnds =k DI.:EEEIData wprojects
—— implements =" "
RN - table = "Projects” l = Role KeyData —
Per mission
+autoPermissian @ int ~permission - int discriminator-value = 3
+hame : String [1]
+description : String
+itemType ;int
~keys +permissions
0.+ 0.
ftable = "UserRoles"} 0.* Role Data 0.* ftable = "Rolekeys"}
-roles +rales
cache = 100 |
extends = i=iBasicData
implements = * NRTG " T—
table = "Roles” Permission
wpErMission ;int
- — {table = "Pluginkeys"}
MuginDefinition Data I I
1
Fermission
+denied : int

+granted :int

235

API overview (how to
use and code examples)

Users and passwords

The UserData class holds information about users. We keep the passwords in a separate table and
use proxies to avoid loading password data each time a user is loaded to minimize security risks. It
is only if the password needs to be changed that the PasswordData object is loaded. The one-to-one
mapping between user and password is controlled by the password class, but a cascade attribute
on the user class makes sure that the password is deleted when a user is deleted.

Groups, roles and projects

The GroupData, RoleData and ProjectData classes holds information about groups, roles and
projects respectively. A user may be a member of any number of groups, roles and/or projects. The
membership in a project comes with an attached permission values. This is the highest permission
the user has in the project. No matter what permission an item has been shared with the user will
not get higher permission. Groups may be members of other groups and also in projects.

Group membership is always accounted for, but the core only allows one project at a time to be use,
this is the active project. When a project is active new items that are created are automatically
added to that project with the permission given by the autoPermission property.

Keys

The KeyData class and it's subclasses ITtemKeyData, ProjectKeyData and RoleKeyData, are used
to store information about access permissions to items. To get permission to manipulate an item a
user must have access to a key giving that permission. There are three types of keys:

ItemKey
Is used to give a user or group access to a specific item. The item must be a ShareableData
item. The permissions are usually set by the owner of the item. Once created an item key cannot
be changed. This allows the core to reuse a key if the permissions match exactly, ie. for a given
set of users/groups/permissions there can be only one item key object.

ProjectKey
Is used to give members of a project access to a specific item. The item must be a ShareableData
item. Once created a project key cannot be changed. This allows the core to reuse a key if the
permissions match exactly, ie. for a given set of projects/permissions there can be only one
project key object.

RoleKey
Is used to give a user access to all items of a specific type, ie. READ all SAMPLES. The installation
will make sure that there already exists a role key for each type of item, and it is not possible to
add new or delete existing keys. Unlike the other two types this key can be modified.

A role key is also used to assign permissions to plug-ins. If a plug-in has been specified to use
permissions the default is to deny everything. The mapping to the role key is used to grant
permissions to the plugin. The granted value gives the plugin access to all items of the related
item type regardless of if the user that is running the plug-in has the permission or not. The
denied values denies access to all items of the related item type even if the logged in user has
the permission. Permissions that are not granted nor denied are checked against the logged in
users regular permissions. Permissions to items that are not linked are always denied.

Permissions

The permission property appearing in many classes is an integer values describing the permission:

Value Permission

1 Read

3 Use

7 Restricted write

236

API overview (how to
use and code examples)

Value Permission

15 Write

31 Delete

47 (=32+15) Set owner

79 (=64+15) Set permissions
128 Create

256 Denied

The values are constructed so that READ -> USE -> RESTRICTED_WRITE -> WRITE -> DELETE are
chained in the sense that a higher permission always implies the lower permissions also. The
SET_OWNER and SET_PERMISSION both implies WRITE permission. The DENIED permission is only
valid for role keys, and if specified it overrides all other permissions.

When combining permission for a single item the permission codes for the different paths are OR-ed
together. For example a user has a role key with READ permission for SAMPLES, but also an item key
with USE permission for a specific sample. Of course, the resulting permission for that sample is
USE. For other samples the resulting permission is READ.

If the user is also a member of a project which has WRITE permission for the same sample, the user
will have WRITE permission when working with that project.

The RESTRICTED_WRITE permission is in most cases the same as the WRITE permission. So far
the RESTRICTED_WRITE permission is only given to users to their own UserData object so they
can change their address and other contact information, but not quota, expiration date and other
administrative information.

29.2.3. Hardware and software

This section gives an overview of hardware and software in BASE.

UML diagram
Figure 29.4. Hardware and software
HardwareData HardwareTypeData

extends = i=iCommonData cache =100_
implements = "G" —hardware thardwareTyDe eytends = (=iRasicData
proxy = true 0..* 1 implements =" NTG"
table = "Hardware" table = "HardwareTypes"
+wersiohstring : String

SoftwareData SoftwareType Data
extends = i=iCommonData cache = 100
implements = "G" =30ftvare +50MWAreTYDE | aytangds = i=iBasicData
proxy = true 0. 1 implements =" HNTG "
table = "Software” tahle = "SoftwareTypes”
+wersionstring : String

237

API overview (how to
use and code examples)

Hardware and software

BASE is pre-installed with a set of hardware and software types. They are typically used to filter
the registered hardware and software depending on what a user is doing. For example, when adding
raw data to BASE a user can select a scanner. The GUI will display the hardware that has been
registered as scanner hardware types. Other hardware types are hybridization station and print
robot. An administrator may register more hardware and software types.

29.2.4. Reporters

This section gives an overview of hardware and software in BASE.

UML diagram

Figure 29.5. Reporters

Reporter Data -Feparters

extends = {=iBasicData 0.*
implements =" BENG " +reporterType | 0..1
table = "Reporters” ReporterTypeData
+externalld ; String [1] nrEpOrter cache = 1urq_1
I:as:in%rcte :S[t:erg[I] extends = i=iBasicData

astlpdate : Date 1 . = "
+3ymbal : 5tring = MHG

proxy = true
+getExtendedi name : String 1 : Object table = "ReporterTypes”
+setEctendedi name ; 5tring, walue ; Object)
i W
+reporterlisticares | 0. _reporterlistScares |0,
. — — — 4 ReporterListicoreData

table = "ReporterlistScores”

+scare ; Float

ReporterListData
i 1
extends = i=ziCommaonData .
) i nmreparterlist
implements ="G
proxy = true

table = "ReporterLists”

+externalld : 5tring
+size [int

+experiment | 0.1
Experiment Data

Reporters

The ReporterData class holds information about reporters. The externalld is a required property
that must be unique among all reporters. The external ID is the value BASE uses to match reporters
when importing data from files.

238

API overview (how to
use and code examples)

The ReporterData is an extendable class, which means that the server administrator can
define additional columns (=annotations) in the reporters table. These are accessed with the
ReporterData.getExtended () and ReporterData.setExtended () methods. See Appendix D, ex-
tended-properties.xml reference (page 342) for more information about this.

The ReporterData is also a batchable class which means that there is no corresponding class in
the core layer. Client applications and plug-ins should work directly with the ReporterData class.
To help manage the reporters there is the Reporter and ReporterBatcher classes. The main reason
for this is to increase the performance and lower the memory usage by bypassing internal caching
in the core and Hibernate. Performance is also increased by the batchers which uses more efficient
SQL against the database than Hibernate.

The lastUpdate property holds the data and time the reporter information was last updated. The val-
ue is managed automatically by the ReporterBatcher class. That goes for lastSource property too,
which holds information about where the last update comes from. By default this is set to the name
of the logged in user, but it can be changed by calling ReporterBatcher.setUpdateSource (String
source) before the batcher commits the updates to the database. The source-string should have
the format:

[ITEM_TYPE] : [ITEM_NAME]

where,in the file-case, ITEM_TYPE is File and ITEM_NAME is the file's name.

Reporter lists

Reporter lists can be used to group reporters that are somehow related to each other. This could for

example be a list of interesting reporters found in the analysis of an experiment. Each reporter in the
list may optionally be assigned a score. The meaning of the score value is not interpreted by BASE.

29.2.5. Quota and disk usage

This section gives an overview of quota system in BASE and how the disk usage is kept track of.

239

API overview (how to
use and code examples)

UML diagram

Figure 29.6. Quota and disk usage

+maxBvtes long

OuotaData | OuotaTypeData
ftable = "QuotaValues"}
cache = 100 cache = 100
gxtTnds = ';;;‘EESRi;Data +quotayalues| 1.+ !extTnds = ';;;‘Eahj_ircGData
implements = "NRT" 1 implements =" .
proxy = true Quotaindex T table = "QuotaTypes”
table = "Quota” +location ;int tauotalype X
~iecondarylocation : boolean
1 [+quota 0.1 [+gquota +quotalType (1
GLroup Data +aroup Dis kUs age Data
+quataGroup|0.1 o extends = {z={BasicData
DiskConsumableData () . 1 JEHERES LrLE .
—'| ~diskllsage |table ="DiskUsage
+bytes : long
+user nitemType [int
UserData " +location :int
Quota

The QuotaData holds information about a single quota registration. The same quota may be used by
many different users and groups. This object encapsulates allowed quota values for different types
of quota types and locations. BASE defines several quota types (file, raw data and experiment), and
locations (primary, secondary and offline).

The quotaValues property is a map from QuotalIndex to maximum byte values. This map must
contain at least one entry for the total quota at the primary location.

Disk usage

A DiskConsumableData (for example a file) item is automatically linked to a DiskUsageData item.
This holds information about the number of bytes, the location and quota type the item uses. It also
holds information about which user and group (optional) that should be charged for the disk usage.
The user is always the owner of the item.

29.2.6. Client, session and settings

This section gives an overview of hardware and software in BASE.

240

API overview (how to
use and code examples)

L]
UML diagram
Figure 29.7. Client, sessions and settings
Client Data ~client
cache = 100 1
~ilieft | pytends = .
1 |implements = "G" ~clignt
table = "Clients” 1
+externalld : Strifg 0.4 | -helpTexts
- Help Data
0.1 ~client
0.%| -sessions rache = 100_
SessionData

extends =

i==iBasicData
table = "Sessions”

table ="

implements ="N"

Help"

~itmpersonated
~laginComment

~laginTime : Date
+logoutTime : Date

+externalld : String

cboolean
:String

-contexts| 0%

name : 5tring

{table =['PropertyFilters"}

+propertyFilters|0.*

FropertyFilter Data

+aperatar ; int
+walue : String
+walueType @ int

name : 5tring

{table =["Contextiettings"}

+settings| 0.*

+walue : String

[

-userhettings

Us er CliemtSetting Data

table = "UserClientSettings”

[

-defaultsettings

Client DefaultSetting Data

[

Clients

table = "ClientDefaultSettings”

~remoteld ; String Contextindex Context Data
™ : +client : ClientData BasicData
0. FeIII0N: +itemType : int proxy = true
+harme : 5tring bl _"C N
+subContext ; String table = "Lontexts
1| euser ' o | Finclude Cint
| | +itemld :int
User Data ~itemType : int
-Cantexts{fname : String
+page : int
mUSEr +public : boolean
1 +rowsPerPage ©int
+iartDirection :int
+sortProperty : String
1 | ~user +:ubContext : String
SettingData
extends = [=iBasicData
+nhame : String
+walue : String
fa3
. Us er Default5etting Data Global DefaultSetting Data
~-defaultsettings
0 table = "UserDefaultiettings” table = "GlobalDefaultsettings”
~clientSpttings

The ClientData class holds information about a client application. The externalld property is a
unique identifier for the application. To avoid ID clashes the ID should be constructed in the same
way as Java packages, for example net.sf.basedb.clients.web is the ID for the web client ap-

plication.

A client application doesn't have to be registered with BASE to be able to use it. But we recommend

it since:

241

API overview (how to
use and code examples)

¢ The permission system allows an admin to specify exactly which users that may use a specific
application.

* The application can't store any context-sensitive or application-specific settings unless it is reg-
istered.

* The application can store context-sensitive help in the BASE database.

Sessions

A session represents the time between login and logout for a single user. The SessionData object
is entirely managed by the BASE core, and should be considered read-only for client applications.

Settings

There are two types of settings: context-sensitive settings and regular settings. The regular settings
are simple key-value pairs of strings and can be used for almost anything. There are four subtypes:

¢ Global default settings: Settings that are used by all users and client applications on the BASE
server. These settings are read-only except for administrators. BASE has not yet defined any set-
tings of this type.

¢ User default settings: Settings that are valid for a single user for any client application. BASE has
not yet defined any settings of this type.

¢ Client default settings: Settings that are valid for all users using a specific client application. Each
client application is responsible for defining it's own settings. Settings are read-only except for
administrators.

* User client settings: Settings that are valid for a single user using a specific client application.
Each client application is responsible for defining it's own settings.

The context-sensitive settings are designed to hold information about the current status of options
related to the listing of items of a specific type. This includes:

Current filtering options (as 1 or more PropertyFilterData objects).

Which columns and direction to use for sorting.

The number of items to display on each page, and which page that is the current page.

Simple key-value settings related to a given context.
Context-sensitive settings are only accessible if a client application has been registered. The settings
may be named to make it possible to store several presets and to quickly switch between them. In

any case, BASE maintains a current default setting with an empty name. An administrator may
mark a named setting as public to allow other users to use it.

29.2.7. Files and directories

This section covers the details of the BASE file system.

242

API overview (how to
use and code examples)

UML diagram

Figure 29.8. Files and directories

UserData

+homeDirectory [0.1 0.1 | +parent
DirectoryData
cache = 100
extends = Eg—gitummun[lata 0%
implements = "T" — .
proxy = true -sybdirectaries

table = "Directaries”

+autoCompress - boolean
+autozhare : boolean

MimeType Data

cache =100

extends = E—Eiﬁasic[lata

implements =" NRG ™
table = "MimeTypes”

mExtension ; 5tring
+autoCompress D boolean

1 [+directory
0| -files 0.1 [+fileType
File Data FileTypeData
extends = (==iCommonData +ileTyYPe | cache = 100
implements = DL 0.1 |extends = izziBasicData
proxy = true implements =" NTG "

table = "Files'

+action :int
+characterset ; String
+compressed : boolean
+diskSize : long
+internalMame : 5tring
+lastUpdate : Date
+location ;int

+md5 : 5tring
+mimeType : 5tring
+3size : long
+uwriteProtected ; boolean

table = "FileTypes"

ndizklsage

Dis kUsage Data

1

Description

The location property can take three values:

The DirectoryData class holds information about directories. Directories are organised in the
ususal way as as tree structure. All directories must have a parent directory, except the system-de-
fined root directory.

The FileData class holds information about a file. The actual file contents is stored on disk in
the directory specified by the userfiles setting in base.config. The internalName property is
the name of the file on disk, but this is never exposed to client applications. The filenames and
directories on the disk doesn't correspond to the the filenames and directories in BASE.

243

API overview (how to
use and code examples)

* 0 = The file is offline, ie. there is no file on the disk
¢ 1 =The file is in primary storage, ie. it is located on the disk and can be used by BASE

¢ 2 =The file is in secondary storage, ie. it has been moved to some other place and can't be used
by BASE immediately.

The action property controls how a file is moved between primary and seconday storage. It can
have the following values:

* 0 = Do nothing
¢ 1 =If the file is in secondary storage, move it back to the primary storage
¢ 2 =If the file is in primary storage, move it to the secondary storage

The actual moving between primary and secondary storage is done by an external program. See
the section called “Secondary storage controller”(page 339) and Section 26.6.2, “Secondary file
storage plugins” (page 199) for more information.

The md5 property can be used to check for file corruption when it is moved between primary and
secondary storage or when a user re-uploads a file that has been offline.

BASE can store files in a compressed format. This is handled internally and is not visible to client
applications. The compressed and diskSize properties are used to store information about this.
A file may always be compressed if the users says so, but BASE can also do this automatically if
the file is uploaded to a directory with the autoCompress flag set or if the file has MIME type with
the autoCompress flag set.

The FileTypeData class holds information about file types. It is used only to make it easier for
users to organise their files.

The MimeTypeData is used to register mime types and map them to file extensions. The information
is only used to lookup values when needed. Given the filename we can set the File.mimeType and
File.fileType properties. The MIME type is also used to decide if a file should be stored in a

compressed format or not. The extension of a MIME type must be unique. Extensions should be
registered without a dot, ie html, not .html.

29.2.8. Experimental platforms

This section gives an overview of experimental platforms and how they are used to enable data
storage in files instead of in the database.

See also
* Section 29.3.1, “Using files to store data” (page 269)
* Section E.1, “Default platforms/variants installed with BASE” (page 346)

* Section 26.6.5, “File validator and metadata reader plug-ins” (page 203)

244

API overview (how to
use and code examples)

T tecen ON N Draoa ale a1

et e ~

File5tore EnabledData ()

Fatfor m Data 5
Tathe — 100 I 1 +getFileset : FilesetData
extends = ==ifasicData +platform '?
implements = "NR"
table = "Platfarms” ArrayDesignData _I
~channels :int splatform |
~extermalld : 5tring [1] RawBioAssayData | |
~fileQnly . boolean 1
~tanDataType : 5tring
1 | ~platform
0.*|-wariants 0..1] +wariant 0.1 [+fileset
Aatfor mVariant Data File5etData
cache =100 extends = {=iRasicData
extends = i==iBasicData proxy = true
implements = "MNR" table = "FileSets"
table = "PlatformVariants” : :
nitemType :int
mchannels :int
nexternalld ; String [1] 1 | ~fileSet
~filednly : boolean
~rawDataType : 5tring
0% -fileTypes . 0.1 [~variant
Platfor mFileTypeData fileTypes 0.*% | +members
= 0. ~filebetMembers Fleset Me mber Data
extends = t==iBasicData -
proxy = true 0% lextends = t==ifasicData
table = "PlatformFileTypes” implements ="L"
; : proxy = true
+required : boolean table = "FileSetMembers"
0.* [-platforms - +errorhessage : String
1 ! dataFileType +valid : Boolean
DataFileType Data
~dataFileType .
P2 [ache = 100 | 1 | +file
extends = i=iBasicData | File Data

implements = "NR"
table = "FileSetMemberTypes”

+extension : 5tring

mexternalld © String [1]
~itemType [int
+metadataReaderClass ; 5tring
+metadataReaderlarPath : 5tring
+validatorClass : 5tring
+validatorlarPath : 5tring

Only one of each
DatafFileTypeData

0..1| +genericType
FileTypeData

245

API overview (how to
use and code examples)

Platforms

The PlatformData holds information about a platform. A platform can have one or more
PlatformvVariant:s. Both the platform and variant are identified by an external ID that is fixed and
can't be changed. Affymetrix is an example of a platform. If the fileOnly flag is set data for the
platform can only be stored in files and not imported into the database. If the flag is not set data
can be imported into the database. In the latter case, the rawDataType property can be used to lock
the platform to a specific raw data type. If the value is null the platform can use any raw data type.

Each platform and it's variant can be connected to one or more DataFileTypeData items. This item
describes the kind of files that are used to hold data for the platform and/or variant. The file types
are re-usable between different platforms and variants. Note that a file type may be attached to
either only a platform or to a platform with a variant. File types attached to platforms are inherited
by the variants. The variants can only define additional file types, not remove or redefine file types
that has been attached to the platform.

The file type is also identified by a fixed, non-changable e