
BASE 3.3.1 Documentation

BASE 3.3.1 Documentation
Last modified:
<lastmodified></lastmodified>
Version:
3.3.1 (build #6494)

iv

Table of Contents
I. Overview .. 1

1. Why use BASE .. 2
1.1. Case I: The SCAN-B BASE installation at Department of Oncology, Lund Uni-
versity .. 2
1.2. Case II: The BASE installation at SCIBLU, Department of Oncology, Lund Uni-
versity .. 3

2. BASE features ... 4
2.1. Web interface .. 4
2.2. Information and annotation management .. 4
2.3. Data sharing and privacy ... 4
2.4. File and directory structure .. 5
2.5. Plugin and extension infrastructure .. 5
2.6. Batch upload and download of data .. 5
2.7. Supported array platforms and raw data formats .. 6

2.7.1. Vendor specific and custom printing array platforms 6
2.7.2. Available raw data types ... 7

2.8. Supported sequencing applications ... 8
2.9. Repository and standards ... 8

3. Resources .. 9
3.1. BASE project site .. 9

3.1.1. Download ... 9
3.1.2. Ticket system .. 9
3.1.3. Roadmap .. 9
3.1.4. Documentation ... 10

3.2. BASE plug-ins site .. 10
3.3. Demo server ... 10
3.4. Mailing lists .. 10
3.5. BASE-hacks .. 11

II. User documentation ... 12
4. Overview of user documentation .. 13

4.1. Working environment .. 13
4.2. Start working with BASE .. 13

4.2.1. Administrative tasks ... 14
4.2.2. User tasks .. 14

5. Using the web client ... 16
5.1. Introduction .. 16

5.1.1. Logging in ... 16
5.1.2. Forgotten password ... 16
5.1.3. The home page ... 16
5.1.4. Using the menu bar ... 18
5.1.5. Getting help .. 18

5.2. Configuring your account .. 19
5.2.1. Contact information .. 19
5.2.2. Other information ... 20
5.2.3. Changing password .. 21
5.2.4. Preferences ... 22

5.3. Working with items ... 25
5.3.1. Create a new item .. 26
5.3.2. Edit an existing item .. 27
5.3.3. Delete items .. 27
5.3.4. Restore deleted items .. 27
5.3.5. Share items to other users ... 28
5.3.6. Change owner of items ... 30

5.4. Listing items ... 30
5.4.1. Ordering the list ... 32

BASE 3.3.1 Documentation

v

5.4.2. Filtering the list .. 32
5.4.3. Configuring which columns to show ... 34
5.4.4. Presets .. 35

5.5. Trashcan ... 37
5.5.1. Delete items permanently ... 38
5.5.2. View dependencies of a trashed item .. 38

5.6. Item overview .. 39
5.6.1. Validation options ... 41
5.6.2. Fixing validation failures ... 43

6. Projects and the permission system .. 44
6.1. The permission system ... 44

6.1.1. Permission levels .. 44
6.1.2. Getting access to an item ... 45
6.1.3. Plug-in permissions .. 45

6.2. Projects ... 45
6.2.1. Creating a project ... 46
6.2.2. The active project ... 47
6.2.3. How to give other users access to your project .. 48
6.2.4. Default items .. 49
6.2.5. Working with the items in the project ... 50

6.3. Permission templates .. 52
7. File management ... 53

7.1. File system .. 53
7.1.1. Disk space quota .. 54

7.2. Handling files .. 54
7.2.1. Upload a new file .. 54
7.2.2. External files .. 56
7.2.3. File servers ... 58
7.2.4. Edit a file ... 59
7.2.5. Move files ... 59
7.2.6. Viewing and downloading files .. 60
7.2.7. Directories .. 61

8. Jobs .. 64
9. Reporters ... 67

9.1. Reporter types .. 67
9.2. Reporters .. 67

9.2.1. Import/update reporter from files ... 68
9.2.2. Manual management of reporters ... 68
9.2.3. Deleting reporters ... 70

9.3. Reporter lists .. 70
9.3.1. Merging reporter lists ... 71

10. Annotations ... 73
10.1. Annotation Types .. 73

10.1.1. Properties ... 74
10.1.2. Options ... 75
10.1.3. Item types .. 76
10.1.4. Units .. 77
10.1.5. Categories ... 78

10.2. Annotating items ... 78
10.2.1. Inheriting annotations from other items .. 79
10.2.2. Mass annotation import plug-in .. 81

11. Experimental platforms and data file types .. 82
11.1. Platforms .. 82
11.2. Platform variants .. 84
11.3. Data file types .. 84
11.4. Selecting files for an item .. 85

12. Item subtypes .. 87
12.1. Item subtype properties .. 87

BASE 3.3.1 Documentation

vi

12.2. File types .. 88
13. Protocols .. 90

13.1. Protocol parameters ... 91
14. Hardware and software .. 92

14.1. Hardware .. 92
14.2. Software .. 92

15. Array LIMS .. 94
15.1. Array designs .. 94

15.1.1. Properties ... 95
15.1.2. Importing features to an array design ... 96

15.2. Array batches .. 96
15.3. Array slides ... 97

15.3.1. Creating array slides ... 97
15.3.2. Multiple slides wizard ... 99

16. Biomaterial LIMS ... 101
16.1. Biosources .. 101
16.2. Samples .. 102

16.2.1. Create sample ... 102
16.2.2. Sample properties ... 103
16.2.3. Sample parents ... 104

16.3. Extracts .. 105
16.3.1. Create extract ... 105
16.3.2. Extract properties ... 106
16.3.3. Extract parents ... 107

16.4. Tags .. 108
16.5. Bioplates ... 109

16.5.1. Bioplate properties .. 109
16.5.2. Biowells .. 110
16.5.3. Bioplate types ... 111
16.5.4. Bioplate events ... 112

16.6. Biomaterial lists .. 120
16.7. Physical bioassays ... 120

16.7.1. Create physical bioassays ... 120
16.7.2. Bioassay properties ... 121
16.7.3. Parent extracts ... 122

17. Experiments and analysis .. 123
17.1. Derived bioassays .. 123

17.1.1. Create derived bioassays ... 123
17.1.2. Derived bioassay properties .. 124

17.2. Raw bioassays ... 125
17.2.1. Create raw bioassays .. 125
17.2.2. Raw bioassay properties ... 126
17.2.3. Import raw data .. 127
17.2.4. Raw data types ... 127
17.2.5. Spot images .. 128

17.3. Experiments .. 129
17.3.1. Experiment properties .. 130
17.3.2. Experimental factors ... 132

17.4. Analysing data within BASE .. 133
17.4.1. Transformations and bioassay sets .. 133
17.4.2. Filtering data .. 133
17.4.3. Normalizing data .. 133
17.4.4. Other analysis plug-ins ... 133
17.4.5. The plot tool ... 133
17.4.6. Experiment explorer .. 134

18. Import of data ... 135
18.1. General import procedure ... 135

18.1.1. Select plug-in and file format .. 135

BASE 3.3.1 Documentation

vii

18.1.2. Specify plug-in parameters .. 138
18.1.3. Add the import job to the job queue ... 139

18.2. Batch import of data ... 140
18.2.1. File format .. 140
18.2.2. Running the item batch importer .. 141
18.2.3. Comments on the item batch importers .. 143

19. Export of data ... 144
19.1. Select plug-in and configuration .. 144
19.2. Specify plug-in parameters .. 144
19.3. The table exporter plug-in ... 146

III. Admin documentation .. 148
20. Installation and upgrade instructions .. 149

20.1. Upgrade instructions ... 149
20.2. Installation instructions .. 150
20.3. Installing job agents .. 154

20.3.1. BASE application server side setup ... 155
20.3.2. Database server setup .. 155
20.3.3. Job agent client setup .. 155
20.3.4. Configuring the job agent ... 156

20.4. Server configurations .. 158
20.4.1. Sending a broadcast message to logged in users 159

20.5. Migrating from MySQL to PostgreSQL .. 160
21. Plug-ins and extensions ... 163

21.1. Managing plug-ins and extensions .. 163
21.1.1. Automatic installation wizard .. 164
21.1.2. Manual plug-in registration ... 166
21.1.3. BASE version 1 plug-ins ... 168
21.1.4. Installing the X-JSP compiler .. 168
21.1.5. Disable/enable plug-ins and extensions .. 169
21.1.6. Plug-in permissions .. 169

21.2. Plug-in configurations ... 171
21.2.1. Configuring plug-in configurations .. 172
21.2.2. Importing and exporting plug-in configurations 173
21.2.3. The Test with file function .. 173

22. Account administration ... 178
22.1. Users administration ... 178

22.1.1. Edit user .. 178
22.1.2. Default group and role membership .. 183

22.2. Groups administration .. 183
22.2.1. Edit group .. 183

22.3. Roles administration ... 185
22.3.1. Pre-defined system roles ... 186
22.3.2. Edit role ... 186

22.4. Disk space/quota .. 189
22.4.1. Edit quota .. 190
22.4.2. Disk usage .. 191

IV. Developer documentation ... 192
23. Migrating code from BASE 2 to BASE 3 ... 193

23.1. Compiling the code against BASE 3 .. 193
23.2. Core API changes .. 193
23.3. Packaging your plug-in so that it installs in BASE 3 194

24. Developer overview of BASE .. 196
24.1. Fixed vs. dynamic database .. 197
24.2. Hibernate and the DbEngine ... 198
24.3. The Batch API ... 198
24.4. Data classes vs. item classes .. 199
24.5. The Query API .. 199
24.6. The Controller API ... 200

BASE 3.3.1 Documentation

viii

24.7. The Extensions API ... 200
24.8. Plug-ins ... 200
24.9. Client applications .. 201

25. Plug-in developer ... 202
25.1. How to organize your plug-in project ... 202

25.1.1. Using Ant ... 202
25.1.2. Make the plug-in compatible with the auto-installation wizard 204

25.2. The Plug-in API ... 205
25.2.1. The main plug-in interfaces .. 205
25.2.2. How the BASE core interacts with the plug-in when... 215
25.2.3. Abort a running a plug-in ... 217
25.2.4. Using custom JSP pages for parameter input 219

25.3. Import plug-ins ... 220
25.3.1. Autodetect file formats .. 220
25.3.2. The AbstractFlatFileImporter superclass .. 222

25.4. Export plug-ins ... 227
25.4.1. Immediate download of exported data ... 227
25.4.2. The AbstractExporterPlugin class .. 228

25.5. Analysis plug-ins ... 229
25.5.1. The AbstractAnalysisPlugin class .. 232
25.5.2. The AnalysisFilterPlugin interface ... 233

25.6. Other plug-ins ... 233
25.6.1. Authentication plug-ins .. 233
25.6.2. Secondary file storage plugins ... 233
25.6.3. File unpacker plug-ins .. 235
25.6.4. File packer plug-ins .. 236

25.7. How BASE load plug-in classes ... 237
25.8. Example plug-ins (with download) ... 238

26. Extensions developer ... 239
26.1. Overview ... 239

26.1.1. Download code examples .. 239
26.1.2. Terminology .. 239

26.2. Hello world as an extension .. 240
26.2.1. Extending multiple extension points with a single extension 242

26.3. Custom action factories ... 242
26.4. Custom images, JSP files, and other resources .. 247

26.4.1. Javascript and stylesheets .. 248
26.4.2. X-JSP files .. 249

26.5. Custom renderers and renderer factories ... 249
26.6. Extension points ... 251

26.6.1. Error handlers .. 253
26.7. Custom servlets .. 253
26.8. Extension points defined by BASE .. 255

26.8.1. Menu: extensions .. 255
26.8.2. Toolbars .. 255
26.8.3. Edit dialogs .. 256
26.8.4. Bioassay set: Tools .. 256
26.8.5. Bioassay set: Overview plots ... 256
26.8.6. Services .. 257
26.8.7. Connection managers ... 257
26.8.8. Fileset validators ... 257
26.8.9. Logging managers ... 258
26.8.10. Item overview loaders .. 259
26.8.11. Item overview validation .. 260
26.8.12. Item overview information ... 261
26.8.13. Table list columns ... 261
26.8.14. Login manager .. 261
26.8.15. Login form .. 263

BASE 3.3.1 Documentation

ix

27. Web services .. 264
27.1. Available services .. 264

27.1.1. Services .. 264
27.2. Client development .. 265

27.2.1. Receiving files ... 266
27.3. Services development .. 267

27.3.1. Generate WSDL-files ... 268
27.4. Example web service client (with download) ... 268

28. The BASE API ... 269
28.1. The Public API of BASE .. 269

28.1.1. What is backwards compatibility? ... 269
28.2. The Data Layer API ... 270

28.2.1. Basic classes and interfaces ... 272
28.2.2. User authentication and access control ... 275
28.2.3. Reporters .. 278
28.2.4. Quota and disk usage ... 280
28.2.5. Client, session and settings .. 281
28.2.6. Files and directories ... 283
28.2.7. Experimental platforms and item subtypes ... 286
28.2.8. Parameters .. 288
28.2.9. Annotations .. 290
28.2.10. Protocols, hardware and software .. 293
28.2.11. Plug-ins, jobs and job agents .. 294
28.2.12. Biomaterial LIMS .. 298
28.2.13. Array LIMS - plates ... 301
28.2.14. Array LIMS - arrays .. 303
28.2.15. Bioassays and raw data .. 305
28.2.16. Experiments and analysis ... 307
28.2.17. Other classes .. 311

28.3. The Core API ... 312
28.3.1. Authentication and sessions ... 312
28.3.2. Access permissions ... 312
28.3.3. Data validation ... 312
28.3.4. Transaction handling .. 312
28.3.5. Create/read/write/delete operations ... 312
28.3.6. Batch operations ... 312
28.3.7. Quota ... 312
28.3.8. Plugin execution / job queue .. 312
28.3.9. Using files to store data .. 312
28.3.10. Sending signals (to plug-ins) ... 318

28.4. The Query API .. 320
28.5. The Dynamic API .. 320
28.6. The Extensions API ... 320

28.6.1. The core part .. 320
28.6.2. The web client part ... 326

28.7. Other useful classes and methods ... 329
29. Write documentation ... 330

29.1. User, administrator and developer documentation with Docbook 330
29.1.1. Documentation layout ... 330
29.1.2. Getting started .. 330
29.1.3. Docbook tags to use ... 335

29.2. Create UML diagrams with MagicDraw .. 340
29.2.1. Organisation ... 340
29.2.2. Classes ... 341
29.2.3. Diagrams .. 346

29.3. Javadoc ... 346
29.3.1. Writing Javadoc .. 347

30. Core developer reference .. 349

BASE 3.3.1 Documentation

x

30.1. Publishing a new release ... 349
30.2. Subversion / building BASE ... 349
30.3. Coding rules and guidelines .. 349

30.3.1. Development process and other important procedures 349
30.3.2. General coding style guidelines ... 350
30.3.3. API changes and backwards compatibility ... 356
30.3.4. Data-layer rules .. 357
30.3.5. Item-class rules .. 371
30.3.6. Batch-class rules .. 389
30.3.7. Test-class rules ... 389

V. FAQ ... 390
31. Frequently Asked Questions with answers ... 391

31.1. Reporter related questions with answers ... 391
31.2. Array design related questions with answers ... 391
31.3. Biomaterial, Protocol, Hardware, Software related questions with answers 392
31.4. Data Files and Raw Data related questions with answers 393
31.5. Analysis related questions with answers .. 394

VI. Appendix ... 395
A. Core plug-ins shipped with BASE ... 396

A.1. Core analysis plug-ins .. 396
A.2. Core export plug-ins ... 397
A.3. Core import plug-ins ... 397

A.3.1. Core batch import plug-ins ... 399
A.4. Core intensity plug-ins .. 399
A.5. Uncategorized core plug-ins .. 399

B. base.config reference ... 401
C. extended-properties.xml reference ... 409
D. Platforms and raw-data-types.xml reference .. 413

D.1. Default platforms and variants installed with BASE .. 413
D.2. raw-data-types.xml reference .. 413

E. web.xml reference .. 417
E.1. Content security policy ... 418

F. jobagent.properties reference ... 419
G. jobagent.sh reference .. 423
H. Other configuration files ... 425

H.1. mysql-queries.xml and postgres-queries.xml ... 425
H.2. log4j.properties ... 425
H.3. hibernate.cfg.xml .. 425
H.4. ehcache.xml .. 425

I. API changes that may affect backwards compatibility ... 426
I.1. BASE 3.3 release ... 426
I.2. BASE 3.2 release ... 427
I.3. BASE 3.1 release ... 428
I.4. BASE 3.0 release ... 428
I.5. All BASE 2.x releases .. 428

J. Things to consider when updating an existing BASE installation 429
J.1. BASE 3.3 .. 429
J.2. BASE 3.2 .. 429
J.3. BASE 3.0 .. 430
J.4. All BASE 2.x releases .. 431

K. File formats ... 432
K.1. The BFS (BASE File Set) format .. 432

K.1.1. The basics of BFS .. 432
K.1.2. Using BFS for spotdata to and from external plug-ins 434

K.2. The BASEfile format ... 437
K.2.1. To be done ... 437

Part I. Overview
BASE is a freely available software solution designed for laboratories looking for a single point of stor-
age for all information related to their experimentation and for storing, managing, and analysing ge-
nomics/transcriptomics data. BASE offers a multi-user local data repository featuring a web brows-
er user interface, laboratory information management system (LIMS) for biomaterials and array pro-
duction, annotations such as clinical information, hierarchical overview of analysis, and integrates

tools like MultiExperiment Viewer1.

BASE is GPLv3 licensed2 and can be freely downloaded and installed by anyone. Once installed and
configured, the system comprise a database layer and a web server coupled to layers of software for
managing and analysing data in the database.

1 http://www.tm4.org/mev/
2 http://www.gnu.org/licenses/gpl-3.0.html

http://www.tm4.org/mev/
http://www.gnu.org/licenses/gpl-3.0.html
http://www.tm4.org/mev/
http://www.gnu.org/licenses/gpl-3.0.html

2

Chapter 1. Why use BASE
BASE was initially developed to manage array-based data but is now extended to support storage
and analysis of sequencing data. The first sequencing application is RNAseq.

We outline two different uses of BASE to give a flavour why you should consider to use BASE. The
first example describes a research project involving sequencing based gene expression analysis and
the second example describes a microarray service facility use of BASE.

1.1. Case I: The SCAN-B BASE installation
at Department of Oncology, Lund University
SCAN-B1 is a project and network of researchers and clinicians that was initialised in the fall 2009.
The project is centred on a prospective study where all new breast cancer patients in southern Swe-
den are asked to enrol. Within the covered region approximately 1500 patients are diagnosed with
breast cancer annually. The overall aim is to continuously collect and analyse the consecutive, pop-
ulation-based, breast cancer cohort. Analyses include generation of gene expression and sequencing
data with the ultimate goal to build an infrastructure for future real-time clinical implementation.

SCAN-B uses BASE to store and manage all information related to enrolled patients and collected
sample material including clinical information and experimental data. Analysis and execution of
standard analysis pipelines for sequencing data will be performed through BASE.

The SCAN-B BASE installation consists of three main parts; first, the hardware on which the system
runs; secondly, the BASE software and database, as well as configured analysis plugins; thirdly,
an external file system for storage of sequencing data that are referenced from BASE. In addition,
maintenance of the hardware and configured database/software is required. The server hardware
comprises one main computer and raided hard drive system. It also includes a backup solution
configured to backup the entire database 2 times per week. Computational nodes are connected to
the main computer and used to run configured analysis plugins in a seamless integrated fashion.
Maintenance includes managing the backup-schedule, updating the main BASE software, develop-
ing, configuring, and maintaining analysis plugins, and maintaining the underlying database and
external storage file systems.

Whereas the BASE software itself is freely available to anyone, a particular BASE installation at a
research site is in general not freely accessible. Although BASE can be downloaded and installed
on a regular of-the-shelf personal computer with relative ease by anyone, considerable effort and
costs are associated with maintaining a BASE installation of the size and scope of the SCAN-B BASE
installation. A pristine BASE installation includes generic features and functionality to support a
framework of procedures to manage data collection in large projects. Within SCAN-B large effort is
spent on defining the required procedures where laboratory work is mirrored in BASE. This implies

interplay with adopting the BASE software (the Reggie extension2 is an example of adaptation on
BASE to specific needs in SCAN-B) and the laboratory work to achieve efficient data collection. To
achieve high quality data production, measures for continuous quality assurance and collection of
data associated with patients, samples, and laboratory processing must also be implemented.

1 http://www.med.lu.se/english/klinvetlund/canceromics/consortia/scan_b
2 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.reggie

http://www.med.lu.se/english/klinvetlund/canceromics/consortia/scan_b
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.reggie
http://www.med.lu.se/english/klinvetlund/canceromics/consortia/scan_b
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.reggie

Why use BASE

3

1.2. Case II: The BASE installation at SCI-
BLU, Department of Oncology, Lund Univer-
sity
In the spring of 2004, Lund University created Swegene Centre for Integrative Biology at Lund Uni-
versity (SCIBLU), which comprise the merger of five of the most successful Swegene resource and
development platforms into one unit, located in the Lund University Biomedical Centre (BMC). SCI-
BLU offers integrated service within the main -omics areas. The DNA microarray technology within
SCIBLU was initially established in 2000 as a cancer research resource at the department of On-
cology and in conjunction with this the development of BASE was initiated.

At SCIBLU a BASE installation is maintained and used as a production installation that manages
information surrounding array fabrication (array LIMS) as well as array data generated by the SCI-
BLU provided services. This particular BASE installation was initially set up in 2003 and to date
manage array data from more than 13 000 hybridisation covering a variety of technical platforms
such as cDNA, oligo, and BeadChip expression arrays, as well as BAC and oligo aCGH arrays.

The SCIBLU BASE installation consists of two main parts; first, the hardware on which the system
runs; secondly, the BASE software and database, as well as configured analysis plugins. Regular
maintenance of the hardware and configured database/software is also required. The hardware
comprises one main computer and raided hard drive system. It also includes a backup solution
configured to backup the entire database 2 times per week. Finally, the hardware includes 2 com-
putational servers connected to the main computer and used to run configured analysis plugins in
a seamless integrated fashion. The software used for the SCIBLU BASE installation is freely avail-
able from the BASE project site. Maintenance include managing the backup-schedule, updating the
main BASE software, updating and managing probe annotations, management of user accounts,
configuring and maintaining analysis plugins, and maintaining the underlying database.

Users of the microarray services offered by SCIBLU, e.g., expression analysis or aCGH, are provided
access to the SCIBLU production BASE installation as part of the included services. The access
comprises user account, access to array LIMS (when in-house produced arrays are utilised), and
hard drive space to cover space needed for storing the data generated through the SCIBLU provided
service. Additional disk space can be acquired and is associated with an additional cost for the user.
Examples of when additional disk space is needed include scenarios where users want to perform
extensive data analysis within BASE and decide to store the analysis results within BASE, e.g., many
parallel analysis branches or extensive generation of data plots and figures. Other examples include
when users want to import data from third party providers (public data repositories or alternative
array data providers) to perform meta-analysis with their data generated within SCIBLU.

4

Chapter 2. BASE features
The BASE application features many components; MIAME compliance, multi-user, data sharing,
data access management, array and biomaterial LIMS, multiple array platforms, RNAseq sequenc-
ing support, extensibility, configurable plug-ins, annotation customisation, streamlined access to

analysis tools, integration of MultiExperiment Viewer (MeV)1, web services API, and more. To support
all components the underlying relational database has grown to become very large and complex,
especially since BASE itself works with objects posing additional database tables to keep track of
objects stored in a relational database. Thus, rather than trying to describe every feature in detail
here, we highlight some of the more important features.

2.1. Web interface
The entire system is accessed through a web-interface over the Internet using a standard web brows-
er, such as Firefox, Safari, Opera, or Internet Explorer. Access privileges to a particular BASE instal-
lation are managed by personal accounts through the web-interface. A local administrator creates
new user accounts with specific roles and access privileges and has an overall managerial responsi-
bility for an individual BASE installation. With exception for the administrator with global data ac-
cess, individual users have sole access to and control their inputted data. Users have the possibility
to share data they own (or have share credentials for) to other users of the same BASE installation.

2.2. Information and annotation manage-
ment
BASE features a biomaterial LIMS tracking biological material from its source to hybridisation/se-
quencing and ultimately to raw data and analysis. All events throughout sample handling are tracked
and information on used and remaining quantities, physical sample locations, quality control infor-
mation, and sample relations is stored in BASE. Racks or boxes holding biomaterials can be creat-
ed as BioPlates and plate events are easily performed for extraction or labelling events. Although
becoming less commonly used, the array production LIMS of previous BASE versions is retained to
support researchers with spotting facilities, e.g., protein array production and BAC array printing
that may not be commercially available.

Events in biomaterial and array LIMS are annotable with protocols and event dates, and most items
can be annotated with customisable annotation types such as floats, integers, dates, and Boolean
flags. Change history for biomaterial items is available if configured and can be used to track mod-
ifications in the database. Annotations are either free form or from a preset list of values, and can
be marked as required for MIAME compliance. The annotation system is searchable and the user
can select any annotations to be an experimental factors in analysis whereby it becomes available
to analysis plugins and plot-tools.

2.3. Data sharing and privacy
One of the important features of BASE is its capabilities as a local data repository. The repository
functionality is amended with data grouping, sharing, and privacy policies. A BASE project is used
to group items (biomaterial, raw data, and experiments) into a logical entity, and a BASE experiment
is a collection of bioassays, e.g., array data, grouped logically together for further analysis. All items
can co-exist in several projects and experiments without any unnecessary copying of information.

Data privacy is guarded by the data owner and BASE allows the owner to set data access rules. To
this end, each item in BASE is owned by a user enabling him to share data with colleagues. The

1 http://www.tm4.org/mev/

http://www.tm4.org/mev/
http://www.tm4.org/mev/

BASE features

5

grouping of data in projects allows the data owner to simply include other users in a project in order
to share data. Each item can have different access levels even within a project, and project members
can have different privileges. The data access rules are very flexible and can be overwhelming since
access levels on almost any item can be individually set. However, using projects, the proper access
levels can be set at a single point of interaction.

2.4. File and directory structure
BASE has an integrated file system to provide the possibility for researchers to collect all data files
related to a project in one single storage location. Data files are uploaded using a web browser or
an ftp client. The file storage is an integral part of a strategy to store all experiment relevant data in
BASE, even data types not already supported in analysis. Collecting all data allows future reuse of
the data as more data are produced, and new analysis tools becomes available.

2.5. Plugin and extension infrastructure
BASE features a hierarchically organised analysis interface that allows data filtering, normalisation,
transformation, and other analyses. Parameters and settings are automatically stored for each step
in the analysis. The selection of analysis tools depends on array type and available plug-ins where a
wide range of tools are pre-installed with BASE, and optional plug-ins can be downloaded from the
BASE plug-in site . BASE capitalise from other software tools, such as MEV, by integrating them
into the user interface. Such integration provide streamlined access to analysis modules in external
tools. BASE even features a rudimentary manual transform creator that enables researchers to add
analysis steps within the hierarchical overview of analysis performed independently of BASE. The
transform creator enables storage of result files and parameter information for archival, tracking,
and sharing purposes.

The analysis of genomics data is continuously evolving with new methods and techniques. To this
end BASE provides extensions and plug-in programming interfaces (APIs) to enable straightforward
additions of new analysis tools. The use of the APIs is well documented and there are numerous
examples on how to create extensions. The MEV and ftp-server integration all utilise the extension
mechanism, and the automatically generated overview plots available in the experimental analysis
view are also extensions. The plug-in API is used for all data imports and exports, and most analysis
tools, providing new developers a lot of example code to examine when they create BASE plug-ins.

2.6. Batch upload and download of data
File, annotation, and item upload can be done asynchronously as data are generated or informa-
tion becomes available. To relieve researchers from the tedious task of entering data one by one a
set of batch import were created; the information generated throughout the experimental work is
uploaded to BASE in plain tab-separated files. These files are supplied to batch importer plug-ins
that parse the files and create items and associations according to the information in the files. The
same plug-ins can be used to batch update many items. Similarly, annotating items is done by cre-
ating tab-separated files with annotation information, uploading these to BASE, and loading the
file content into the database using annotation importers. If needed, annotations are easily updated
with the same mechanism.

Files uploaded to BASE are stored in the directory structure within BASE and multiple files are
easily transferred to BASE either packaged in compressed files with a single upload action, or by
using an ftp client supporting transfer of file structures. Similarly, downloading multiple files is
straightforward either using an ftp client or by a single click in the BASE web interface. Download of
items is done through item listing views enabling users to filter and select what information should
be downloaded.

BASE features

6

2.7. Supported array platforms and raw data
formats
There are many types of microarrays, techniques, and brands available for researchers; one- or two-
channel hybridizations, spotted cDNA/oligo arrays, Affymetrix (GeneChip), Illumina (SNP, DASL,
WGEX, microRNA), aCGH, SNP, tiling arrays, and many more. In addition expression data can be
derived from sequencing data, i.e., RNASeq. Data is produced in different file formats that must be
treated differently depending on type.

Many platforms and experimental setups are supported in downstream analysis but some microar-
ray techniques cannot currently be analysed within BASE simply because lack of support in avail-
able plug-ins. The problem is resolved by creating new, or extending available, plug-ins that add
analysis capabilities of platforms and techniques not readily supported in analysis. Extending anal-
ysis capabilities to new technologies is only a matter of local needs and resources. We add support
for platforms in use at the Lund University microarray facility and make our tools freely available
to the community.

For two channel array platforms it is straightforward to customise BASE for a specific array platform,
the platform simply needs to be adapted to the (BASE) Generic platform. The adaptation is to create
a raw data format definition and to configure raw data importers, or make use of already available
raw data formats. However, it is not always possible to make an natural mapping of a platform to the
Generic platform. Platforms such as Affymetrix and Illumina platforms cannot naturally be mapped
on to the Generic two channel platform. For Affymetrix, BASE comes with a specific Affymetrix

platform and Illumina can be supported by customising BASE (go to the Illumina package2 web site
for more information on adding Illumina support to BASE).

How to adapt new array platforms to the Generic platform format or how to create a new platform
type in BASE can be read elsewhere in this document. Here we list different array platforms used in
BASE and also list raw data types supported by BASE. However, not all platforms nor raw data types
listed below are available out-of-the box and a BASE administrator must customise his local BASE
installation for their specific need. What comes pre-configured when BASE is installed is indicated
in the lists below.

2.7.1. Vendor specific and custom printing array
platforms
Not all array platforms listed below are available by default. The comments to specific platforms
explain how to enable the use of the array platform in BASE. In some cases there is no confirmed
usage of a platform but we believe it has been tested by anonymous users.

Affymetrix
The Affymetrix platform comes pre-configured with a new BASE installation. Affymetrix platform
in this context are the Affymetrix expression arrays. So far there has been no reason for expand-
ing the Array platform to other chip-types. In principle any Affymetrix chip type can be stored
in BASE but current plug-ins will always assume that expression data is stored and analysed.
This can be resolved by adding variants of the Affymetrix platform but the Lund BASE team
currently has no plans to create Affymetrix variants.

Agilent

Custom printing
The array layout options are endless and imagination is the only limitation ... almost. BASE can
import many in-house array designs and platforms. The custom arrays usually fall back on one
of the raw data types already available such as GenePix.

2 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

BASE features

7

Illumina
There are several variants of the Illumina platform. Using several variants allows BASE to adapt
its handling of different Illumina chip types. Illumina platform support is not included in a

standard BASE installation but there is a Illumina package3 available for seamless integration
of the Illumina array platform to BASE.

ImaGene
No successful use confirmed but ImaGene raw data is available in BASE.

Sequencing
Expression data from sequencing experiments. Cufflinks raw-data type is available for expres-
sion values from sequencing experiments.

Unlisted
In principle any platform generating a matrix of data can be imported into BASE. Simply utilise
the available raw data formats and data importers.

2.7.2. Available raw data types
Raw data comes in many different formats. These formats are usually defined by scanner software
vendors and BASE must keep track of the different formats for analysis and plotting. BASE supports
many formats out the box, but some formats need to be added manually by the BASE administrator
(indicated in the list below).

Affymetrix

AIDA

Agilent

BZScan

ChipSkipper

Cufflinks

GenePix

GeneTAC

Illumina
The Illumina array platform usage is recommended to be based on the Illumina Bead Summary
(IBS) raw data format below.

Illumina Bead Summary (IBS)

Not available in BASE directly but it is added with the Illumina plug-in4 that adds Illumina
array platform support to BASE.

ImaGene

QuantArray Biotin

QuantArray Cy

SpotFinder

3 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
4 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina

BASE features

8

2.8. Supported sequencing applications
BASE was originally developed for management and analysis of array based data. Recent version,
starting at version 3, have been adopted to support sequencing based data. Being a newly developed
feature it is not as mature as the array part of BASE.

For sequencing data in general, BASE can be used for data management and sharing. BASE cur-
rently has extended support for sequencing applications such as RNAseq where data is transformed
to gene expression measurements. For such applications array designs can be created based on gene

structure defined in GTF formatted files5. For example, GTF files for all RefSeqs or known genes.

2.9. Repository and standards
The Microarray Gene Expression Data Society (MGED) develops and maintains standards for data
acquisition, representation, and interchange such as the MIAME guidelines, the MAGE-TAB inter-
change format, and the MGED Ontology for microarray experiments. BASE does not enforce the
use of the MGED standards but support storage of information required by MIAME. BASE has an
experiment item overview functionality useful for validating information related to experiments. The
validation level is user selectable of which the option regarding MIAME compliance is most relevant
here. When users or server administrators create annotation types in BASE these annotation values
can be marked as required by MIAME and optionally defined to be a list of pre-defined values from a
controlled vocabulary. Validation will check for inconsistencies and report errors, and give the user
an opportunity to fix issues immediately or later. After resolving the issues raised by the validation,
data can be exported for submission to public repositories such as ArrayExpress, Gene Expression
Omnibus (GEO), and CIBEX.

5 http://en.wikipedia.org/wiki/Gene_transfer_format

http://en.wikipedia.org/wiki/Gene_transfer_format
http://en.wikipedia.org/wiki/Gene_transfer_format

9

Chapter 3. Resources
There are several resources available for those who are using BASE or have some other kind of
interested in the BASE project. This chapter contains information about those resources and also
some short instructions on how to use each one of them.

3.1. BASE project site
The BASE project site is located at http://base.thep.lu.se. Here is a lot of useful information about
the project and the program, e.g. documentation/manuals, download-pages, contact information
and much more. The most important parts of the page are covered in this section.

3.1.1. Download
The download page is accessed from the download section, on the home page, by following the link

to Download Page1. From this page you can download BASE releases as packaged tar.gz files or
checkout the source code directly from the Subversion repository. See the separate parts on the web
page to get more information how to proceed with each one of them.

Packaged BASE releases
Both source-packages and binary-packages are available for each release of the program.

Repository access
With this option the visitor can get the source code directly from Subversion. There are at least
three different version that are available to checkout from the repository.

• The latest production release. This will give you the same source code as one of the packaged
releases.

• The latest non-released bugfix branch. Use this if you are affected by a bug that has been
fixed but not yet released.

• Bleeding edge of the software, which is the latest revision of the program. The code is not
guaranteed to work correctly and it is recommended to backup important data in the database
before updating. Use this at your own risk, we cannot guarantee that you will be able to
upgrade the installation to another version or release.

3.1.2. Ticket system
A ticket is a note about a bug or a new feature that has not yet been implemented. To show the list of

outstanding tickets use the View Tickets2 button on BASE web site. It is a good idea to have a look
at this list before reporting a bug or requesting a new feature. Perhaps someone has registered the
issue as a ticket already. This list can also be used to see how the BASE development is proceeding
and when some particular request is planned to be fixed.

To report bugs, add feature requests, and comment an existing ticket, you needs to be logged in to
the trac environment. This is done by clicking on the login-link to the right in the upper corner
on the home page. The Feedback-section, also on the home page, contains more information how
to proceed.

3.1.3. Roadmap
The roadmap of BASE is accessed from the Roadmap3 button on the home page. This page contains
information about the plans for future development, including the tickets that should be fixed for

3 http://base.thep.lu.se/roadmap

http://base.thep.lu.se
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/query
http://base.thep.lu.se/roadmap
http://base.thep.lu.se/roadmap

Resources

10

each milestone. Usually, only the next upcoming release has a date set. The BASE Future Release
milestone is used to collected tickets that we think should be fixed but are less important or require
too much work. Contributions are welcome.

3.1.4. Documentation
All documentation that are associated with the project can be found in the Documentation-section
on the start page.

Manuals
Useful information for the common user and the administrator, like user documentation, in-
stallation instructions and administration guide. These different documents will eventually be
replaced with this document when it includes the corresponding texts.

Specifications
This part contains specification for the separate divisions of the project, such as core specifica-
tion, web-client specification and more.

Developer information
Information for those who are interested to be involved in the development of BASE.

Future development
Link to a list of ideas for future development that are not covered and monitored in the milestones
on the road map page. In other words - ideas that are not planned to be done within nearest
6 to 12 month.

3.2. BASE plug-ins site
Plug-ins which are not included in the installation of BASE, have their own site, called BASE plug-ins

web site4 which includes a download page for submitted none-core plug-ins. Here is also information
how to become a plug-in developer, with commit access to the repository, and how to submit a
plug-in to the download page. You will also be able to find example code for plug-ins, extensions,
web services, etc.

3.3. Demo server
There is a demo server up running for anyone who wants to explore BASE without having to install
it. Follow the link on BASE web site to the demo server or go directly to http://base2.thep.lu.se/

demo/ 5

Use base2 as login and base2 as password to login to the demo server. The base2 user account
has read privileges to all data on the demo server and can view almost every list page. If extended
privileges are wanted, please contact the administrator of the demo server (see the bottom of the
browser when visiting the demo server).

3.4. Mailing lists
BASE project has three different mailing lists available for subscription. Visit the mailing list page6

to get more information about each one of the mailing lists. All posted mails are saved in an archive
for each list, it can therefore be a good idea to have a look here before posting a new thread.

These are the available mailing lists, more details about each one of them can be found on the
mailing list page.

4 http://baseplugins.thep.lu.se/
5 http://base2.thep.lu.se/demo/
6 http://base.thep.lu.se/wiki/MailingLists

http://baseplugins.thep.lu.se/
http://baseplugins.thep.lu.se/
http://base2.thep.lu.se/demo/
http://base2.thep.lu.se/demo/
http://base.thep.lu.se/wiki/MailingLists
http://baseplugins.thep.lu.se/
http://base2.thep.lu.se/demo/
http://base.thep.lu.se/wiki/MailingLists

Resources

11

• basedb-users

• basedb-devel

• basedb-announce

3.5. BASE-hacks
There is a trac/subversion server keeping track of changes made to third party projects that are
changed to make them work with BASE. Open source project usually have a requirement that

changes are made public. On the BASE-hacks web site7 you will find a list of modified packages
and information about the changes performed.

7 http://dev.thep.lu.se/basehacks

http://dev.thep.lu.se/basehacks
http://dev.thep.lu.se/basehacks

Part II. User documentation

13

Chapter 4. Overview of user
documentation
The 'User documentation' part is quite extensive and covers everything from how to Log in on a
BASE server and find your way through the program, to working with experiments and doing some
useful analysis. The intention with this chapter is to give an overview of the following chapters so it
will be easier for you to know where to look for certain information in case you don't want to read
the whole part from the beginning to the end.

4.1. Working environment
Before you start working with any big experiment or project in BASE it could be a good idea to get
to know the environment and perhaps personalize some behavior and appearance of the program.
When this is done your daily work in BASE will be much easier and you will feel more comfortable
working with the program.

Most of the things that have to do with the working environment are gathered in one chapter, where
the first subsection, Section 5.1, “Introduction” (page 16) , gives a good guidance how to start
using BASE including a general explanation how to navigate your way through the program.

The second subsection, Section 5.2, “Configuring your account” (page 19) , describes how to
personalize BASE with contact information, preferences and changing password. The preferences
are for instance some appearance like date format, text size or the look of the toolbar buttons.

The last two subsections, Section 5.3, “Working with items” (page 25) and Section 5.4, “Listing
items” (page 30) , in the web client chapter explains how to work with BASE. No matter what
you are going to do the user interface contains a lot of common functions that works the same
everywhere. For example, how to list and search for items, how to create new items and modify and
delete existing items. Subsequent chapters with detailed information about each type of item will
usually not include descriptions of the common functionality.

4.2. Start working with BASE
There are some working principles that need to be understood by all users in BASE. These concern
the permission system and how to get the workflow to move on without any disturbance caused
by insufficient permissions. The key is to work in projects, which is covered in detail in Chapter 6,
Projects and the permission system (page 44) .

Understanding the permission system and how to work in projects will not only make it more simple
for you to work in BASE but also for your co-workers who want access to your data.

The next thing to do is to add some relevant data to work with. Most of the different items can be
created manually from the web client, but some items and data must be imported from files. Before
importing a file, it has to be uploaded on the BASE-server's file system. Chapter 7, File management
(page 53) gives you information about the server's file system and how to upload the files.

Chapter 18, Import of data (page 135) explains how the import is done and Chapter 19, Export
of data (page 144) covers how data later on can be exported from the database back into files,
often simple text files or xml files.

Each different item has it's own section in this part of the documentation, where more specific
information and also some screen shots can be found. Go back to the table of contents for this part
and look up the item you want to know more about.

Overview of user documentation

14

4.2.1. Administrative tasks
Most of the tasks in this section require more privileges than the normal user credentials. As always,
there are many ways to do things so steps presented here is the path to get going with BASE as fast
as possible without creating havoc in future use of the BASE server.

1. Log in as root using the password you set during BASE initialization. Create an account and
give it the administrator-role. Switch user to the new admin account and use this for all future
administrative tasks.

Note

The root-account should only be used to create the first administrator account and nothing
else.

2. First thing to do, when logged in as administrator, is to create other user-accounts and give them
appropriate roles, most of them should be assigned to the User-role.

Information related to user-accounts can be found at Chapter 22, Account administration (page
178).

3. Next step for you as an administrator is to import reporter-map and corresponding reporters to
BASE. For import of Genepix data you can use the Reporter importer plug-in and Reporter
map importer plug-in that come with BASE. Go to Array LIMS � Array designs or View � Reporters
respectively and start the import from there. You can read more about data-import in Chapter 18,
Import of data (page 135)

4.2.2. User tasks
A normal user is not allowed to add array design, reporter information, and a lot of other information
to BASE. The reason for this is that a lot of information should only exist as one copy in the database.
For example, reporters should only exist in one copy because everyone uses the same reporters.
There is no need to store several copies of the same array design.

A user will normally upload experimental data to BASE for import into the database. To be able to
import the data, the array design which is used, must be available in BASE at import time. If the
array design is not available, a user with the proper credential must add the array design to BASE.

1. The first thing for an user to do is creating a project to work in and set this as the active project.
This should be done before any other items are created. Section 6.2, “Projects” (page 45) tell
you more about how working in projects can help you and your co-workers.

2. Next step is to create raw bioassays and up-load raw data to BASE. This is done in the raw
bioassay section. (View � Raw bioassays) . For more information see Section 17.2, “Raw bioassays”
(page 125).

3. Now when there are data to work with, you can create your first experiment. You reach the ex-
periment section through the menu View � Experiments. Further reading in Section 17.3, “Ex-
periments” (page 129).

4. a. The analysis often starts with the creation of a root bioassay set. Open the recently created
experiment and go to the Bioassay sets tab. Click on the New root bioassay set button to
start the creation.

b. With a root bioassay set you can now continue your analysis with different kinds of analysis
plug-in. To the right of the each listed bioassay set is a set of icons for the actions that can
be performed. Section 17.4, “Analysing data within BASE” (page 133) goes to the bottom of
analysis in BASE.

Overview of user documentation

15

This concludes the short step-by-step get going text. Far from all functionality in BASE has been
covered here. E.g. nothing about LIMS or biomaterials have been mentioned. But you should now
at least be familiar with getting to that point when it is possible to do some analysis.

16

Chapter 5. Using the web client
5.1. Introduction

5.1.1. Logging in
There are three things that you need to know before you can use BASE:

1. The address (URL) to a BASE server

2. A username to login with

3. A password

You may, for example, try the BASE demo server. Go to the URL http://base2.thep.lu.se/demo/ and
enter base2 for the login and base2 for the password.

You need to get all three things from an administrator of the BASE server. If you know only the
address to the BASE server, you may check the front page if the administrator has added any in-
formation about how to get a username/password there. Look for the Get an account! link on the
front page.

Logging in is simple, just enter your login and password in the form on the front page and click
the Login button.

5.1.2. Forgotten password
If you forget your password you will need to get a new one. BASE stores the passwords in an encrypted
form that does not allow anyone, not even the server administrator, to find out the un-encrypted
password.

To get a new password you will have to contact the server administrator. There may be a Forgot your
password? link on the front page where the server administrator has entered information about
how to get a new password.

5.1.3. The home page
When you have been logged in the home page will be displayed. It displays some useful information.
You can also go to the home page using the View � Home menu.

http://base2.thep.lu.se/demo/

Using the web client

17

Figure 5.1. The home page

New messages
Messages are, for example, sent by plug-ins to notify you about finished jobs. In the future, you
may get messages from other sources as well. As of today, messages are not used for communi-
cation between users.

Projects
A list of projects that you are a member of. Projects are an important part of BASE and are the
best way to share data when you are cooperating with other users. We recommend that you
always use a project when working with BASE. For more information read Chapter 6, Projects
and the permission system (page 44). The list displays the most recently used projects first
and then fills up with the rest sorted by name.

Disk usage
An overview of how much disk space you have been assigned and how much you are using.

Help
Links for getting help and reporting bugs. The number of links displayed here may vary depend-
ing on the server configuration.

News and announcements
A list of important news and announcements from the server administrator. Here you may, for
example, find information about server upgrades and maintenance.

Using the web client

18

Subscribe to the RSS news feed.

Click on the RSS icon in the News and announcements title bar. This allows you to
subscribe to the news feed from the BASE server so that you don't miss anything inter-
esting.

5.1.4. Using the menu bar
On the top of the home page is the Menu bar. This is the main navigation tool in BASE. It works
the same way as the regular menu system found in most other applications. Use the mouse to click
and select an item from the menu.

Most of the menu is in two levels, ie. clicking on a top-level menu will open a submenu just below it.
Clicking on something in the submenu will take you to another page or open a pop-up dialog window.
For example, the Biomaterial LIMS � Samples menu will take you to the page listing samples and
BASE � Contact information opens a dialog where you can modify your contact information details.

The menu bar also contains shortcuts to some often-used actions:

 Projects
A list of all projects you are a member of. The most recently used projects are listed first, then
the list is filled with the rest of your projects up to a maximum of 15. If you have more projects
an option to display the remaining projects is activated. Selecting a project in the list will make
that project the active project.

Tip

The sort order in the menu of non-recent projects is the same as the sort order on the
projects list page. If you, for example, want to sort the newest project first (after the most
recently used ones), select to sort by the Registered column in descending order on the
list page. The menu will automatically use the same order.

 Refresh page
Refresh/reload the current page. This is useful when you add or modify items in BASE. Most of
the time the page is refreshed automatically, but in some cases you will have to use this button
to refresh the page.

Warning

Do not use your browser's Refresh button. Most browsers will take you to the login page
again.

 Recent items
Shortcut to the most recently viewed items. The number of items are configurable and you can
also make some item types sticky. This will for example keep the shortcut to the last experiment
even if you have viewed lots of other items more recently. See the section called “The Recent
items tab” (page 25) for configuration information.

 Logged in user
Displays the name of the currently logged in user and allows you to quickly log out and switch
to another user.

5.1.5. Getting help
Besides reading this document there are more ways to get help:

Using the web client

19

On-line context-sensitive help

Whenever you find a small help icon or button you may click it to get help about the part
of the page you are currently viewing. The icon is located in the title bar in most pop-up dialog
windows and in the toolbar in most other pages.

Using the Help menu
The Help menu contains links for getting on-line help. These links may be configured by a server
administrator, so they may be different from server to server. By default links for reporting a bug
and accessing this document are installed.

Mailing lists and other resources
See Chapter 3, Resources (page 9).

5.2. Configuring your account
5.2.1. Contact information
Use the BASE � Contact information menu to bring up the user information dialog.

Figure 5.2. Contact information

This dialog has three tabs, Contact information (selected), Password and Other information. The
logged in user can update the following contact information details.

Multi-user accounts

If you are using a multi-user account, for example a demo-account, you do not have permission
to change the contact information.

Full name
Your full name. You are not allowed to change this. If it is not correct, contact an administrator
to do it for you.

Using the web client

20

Email
Your email address (optional). If an email has been specified and if the server administrator has
enabled email notifications, you also have the option to select if messages should be sent as
emails. This can be useful to keep track of jobs that take a long time to complete.

Organisation
The name of the organisation you work for or represent (optional).

Address
Your postal address as it should be printed on letters to you (optional).

Phone
Your phone number (optional). You may enter multiple phone numbers, for example your work
phone number and a mobile number.

Fax
Your fax number (optional).

Url
An URL to your home page or your organisation's home page (optional).

Press Save to save the changes or Cancel to abort.

5.2.2. Other information
Use the BASE � Other information… menu to bring up the other information dialog.

Figure 5.3. Other information

This dialog has three tabs, Contact information, Password and Other information (selected).

The look of the Other information tab can differ a bit between different servers, depending on what
settings the server is installed with. There are three inputs in a fresh BASE installation but it is

Using the web client

21

only the Description text area that is static, the others can be removed or more fields can be added
(managed by the server administrator). The three fields, included in a the BASE installation, are

Mobile
Your mobile number(Optional).

Skype
Your Skype contact information(Optional).

Description
Text area where you can put useful information that couldn't be stored anywhere else(Optional).

Press Save to save the changes or Cancel to abort.

5.2.3. Changing password
Use the BASE � Change password menu to bring up the change password dialog.

Figure 5.4. Change password

This dialog has three tabs, Contact information, Password (selected) and Other information.

New password
Enter the new password.

Retype password
Retype the same password. You must do this to avoid spelling mistakes.

Multi-user accounts

If you are using a multi-user account, for example a demo-account, you do not have permission
to change the password.

Using the web client

22

Empty passwords

If you leave both fields empty the password will not be changed. It is not possible to have an
empty password.

5.2.4. Preferences
Use the BASE � Preferences menu to bring up the preferences dialog. This dialog has three tabs,
Appearance, Plugins and Recent items.

The Appearance tab

Figure 5.5. The Appearance tab

This tab contains settings that affect the appearance of the web client.

Font size
Select a basic font size. You can choose between five sizes: extra small (XS), small (S), medium
(M), large (L) and extra large (XL). The default font size is medium.

Scale factor
The scale factor affects the size of pop-up windows. This setting exists because different browsers
render pages differently. If you often find that pop-up windows are too small you can change
this setting to make them bigger.

Note

The scale factor is automatically changed if the font size is changed.

Display long texts
This setting is used to control how long description texts are displayed in tables and other places
with limited space. There are three settings:

Using the web client

23

• Always: The full text is always displayed. This may cause tables, etc. to become hard to read
since cells will automatically grow to be able to display the full text.

• On hover: A short version of the text is displayed and the full text is automatically displayed
when the mouse is moved over the text. Texts that are not fully visible are indicated with a
dotted line to the right.

• On click: A short version of the text is displayed and the full text is displayed when the mouse
is clicked somewhere on the short text. Texts that are not fully visible are indicated with a
grey line to the right.

Warning
The 'On click' mode may not perform so well if lots of items are displayed in a single list.
This is particularly so with Internet Explorer (version 7) which is 5-10 times slower than
Firefox to render the page. If you experience problems with this mode you should either
use a different mode or display less items on a single page.

Toolbar
You may choose if the toolbar buttons should have only images, only text or both images and
text. The default is that they have both images and text.

Ratio color range
Select three colors to use when displaying data that is suitable for color coding, for example
the intensity ratio in two-color experiments. The default setting is blue-white-yellow. The list of
presets contains other useful color combinations (for example, the BASE version 1 red-yellow-
green) and the most recently used color combinations.

Date format
A format string describing how dates should be displayed. We support all formatting options

supported by the Java language. For more information see: SimpleDateFormat documentation1

The most useful format patterns are:

• yy: two-digit year

• yyyy: four-digit year

• MM: two-digit month

• MMM: month name (short)

• MMMM: month name (full)

• dd: two-digit day in month

The list of presets contains the most commonly/recently used date formats.

Date-time format
A format string describing how dates with times should be displayed. We support all formatting
options supported by the Java language. For more information see: SimpleDateFormat docu-

mentations2 The most useful time-format patterns are:

• HH: two-digit hour (0-23)

• hh: two-digit hour (1-12)

• a: AM/PM marker

1 http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
2 http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Using the web client

24

• mm: two-digit minute

• ss: two-digit second

Decimals
The base number of decimals to display for numerical floating point values. The default is 2. This
setting is used for values between 1 and 10. For higher or lower values, the number of decimals
is adapted in order to not loose information (eg. 0.0059 instead of 0.01) or give the impression
of very high precision (eg. 135000 instead of 135000.00).

The Plugins tab

Figure 5.6. The Plugins tab

This tab contains settings that affect plug-in execution.

Messages
Mark the checkbox if you want to have a message sent to you when a plug-in completes execution.
This setting can be overridden each time you start a plug-in. You'll receive the message as a
notification in BASE, but it may also be possible to get the message as an email.

Remove jobs
This checkbox should be marked if you want the jobs, done by import or export plug-ins, to be
marked as removed if they finished successfully. This setting can be overridden each time you
start a plug-in.

Show warnings
This checkbox should be marked if you want to show warning messages from plug-ins in the
Select plug-in dialog. Warning-level messages usually originates from plug-ins that are unre-
lated to the current task and are only of interest to plug-in developers. Error messages that are
related to the current task are always shown.

Using the web client

25

The Recent items tab

Figure 5.7. The Recent items tab

This tab contains settings that affect the Recent items menu and selection lists in many edit dialogs.

Recently viewed items
The number of recently viewed items to remember. The default is to remember 6 items. The
remembered items will be displayed in the Recent items menu in the menu bar.

Recently used items
The number of recently used items to remember. The default is to remember 4 items. The re-
membered items will be displayed in edit dialogs where they have been used before. Each type of
edit operation has it's own list of remembered items. For example, there is one list that remem-
bers the most recently used protocols when creating a sample, and there is another list that
remembers the most recently used scanners when creating a scan.

Load the names of all items
If checked, the names of the items will be loaded and displayed in the menu, otherwise only the
ID and type of item is displayed.

Sticky items
Always remember the last viewed item of the selected types. For example, if you have selected
Experiment as a sticky item, the last viewed experiment will be remembered even if you view
hundreds of other items. Use the arrow buttons to move item types between the lists and sort
the sticky items list. Sticky items will be displayed in the Recent items menu in the menu bar.

5.3. Working with items
No matter what you are doing in BASE some things works more or less in the same way. This section
covers things that are common for most parts of BASE.

Using the web client

26

You mostly work with a single type of item at a time. This is reflected in the menu system. For
example, use Biomaterial LIMS � Samples to work with samples, and View � Experiments to work
with experiments. In most cases the list view for that type of item is displayed. The list view, as
the name says, is used to list all items. There are two more standard views, the single-item view
and the edit view.

List view
This view lists all items of a certain type. The view allows you to search and it is possible to
configure which information to show for each item. It also contains functions that can be used on
multiple items at the same time, for example, delete, share and export. See Section 5.4, “Listing
items” (page 30) for more information.

Single-item view
Displays information about a single item. For some items it is very little, but for some it is very
much and the information may be divided into multiple tabs.

Edit view
This view is used for editing the information about a single item. It is always displayed as a
pop-up window. Quite often the popup has multiple tabs, but the most important information
is found on the first tab. Information that is required is always found on the first tab.

5.3.1. Create a new item
New items are mostly created from the list view. For example, to create a new experiment go to the
View � Experiments page. Here you will find a New… button in the toolbar. The button is disabled if
you do not have permission to create new experiments. Otherwise, click on it and enter any required
information in the pop-up dialog. Sometimes there are multiple tabs in this dialog. In the case
of experiments there are three tabs: Experiment, Publication and Experimental factors. As a
general rule, only the first tab has information that is required. The information in all other tabs
are optional.

In some places you will also find actions that create items directly in the list. For example in the list
of samples or on the single-item view for a sample you can create an extract using that sample as
the parent. If you use such links the parent item will in most cases be selected automatically, which
saves you a few clicks when creating new items.

Click on the Save button to save the new item to the database or on the Cancel button to abort.

Note

To speed up data entry when adding multiple new items there are a few tricks you can use
to make the web client supply default values for most properties. To find a default value the
following checklist is used in this order:

1. If the list have an active filter the filter values are used as default property values for the
new item. For example, if you are listing experiments with Genepix raw data type the new
experiment will automatically have Genepix selected. This trick should work for all proper-
ties except annotations, if it does not report it as a bug to the development team.

2. When you link to other items the same item will be used the next time. For example, if
you create an extract and selects an extraction protocol the same protocol is used the next
time you create another extract. In fact, BASE will remember as many items as specified by
the Recently used items setting (default is 4), allowing you to quickly select one of those
protocols. the section called “The Recent items tab” (page 25) contains more information
about the setting.

3. If you have a project active and that project has specified default values those values will
be used for new items. A project can specify defaults for protocols, hardware and software
and a few other settings.

Using the web client

27

5.3.2. Edit an existing item
On all single-item views there is an Edit… button in the toolbar that opens a pop-up dialog for
editing the properties of the item. This button is disabled if the logged in user does not have write
permission for the item.

You can also open the edit pop-up in most other places where the item appears, for example, in lists
or the single-item view of a related item. Press and hold one of the CTRL, ALT or SHIFT keys while
clicking on the link and the edit window will open in a pop-up. If you do not have write permission
on the item there is no meaning to open the edit pop-up and you will be taken to the single-item
view page instead.

Click on the Save button to save the changes to the database or on the Cancel button to abort.

5.3.3. Delete items
You can delete items either from the list view or from a single-item view. In both cases, deleted items
are only moved to the trashcan. No information is removed from the database. This allows you to
restore items if you later find out that you need them again. In fact, there is nothing special about
a removed item. It can still be used for the same things as any non-removed item can.

Important

To really delete items from the database you have two options:

1. Go to the trashcan View � Trashcan and delete it from there. From the trashcan you can
delete several items in one go. See Section 5.5, “Trashcan” (page 37).

2. Click on the small trashcan icon in the list or single-item view. You can only delete one
item at a time.

To delete items from the list view you must first mark the checkbox for each item you want to delete.
Then, click on the Delete button. The list should refresh itself automatically. If you want to confirm
that the items have been removed use the view / presets dropdown and select the Removed option.
The removed items should now be displayed in the list with a small trashcan icon to indicate that
they are located in the trashcan.

To delete items from the single-item view, click on the Delete button in the toolbar. The page will
refresh itself automatically and a small trashcan icon should be displayed. If you do not have per-
mission to delete the item the delete button is disabled.

5.3.4. Restore deleted items
You can restore deleted items either from the trashcan, from the list view, or from the single-item
view. This section only covers the last two cases. The trashcan is described in Section 5.5, “Trashcan”
(page 37).

To delete items from the list view you must first make the deleted items appear in the list. This
is easy, just use the view / presets dropdown and select the Removed option. The list should
refresh itself automatically. The removed items are displayed in the list with a small trashcan icon
to indicate that they are located in the trashcan. Then, mark the checkbox for each item that you
want to restore and click the Restore button. The list should refresh itself automatically and the
trashcan icon should be gone from the restored items.

To restore items from the single-item view, click on the Restore button in the toolbar. The page
will refresh itself automatically and the small trashcan icon should be gone. If you do not have
permission to restore the item the restore button is disabled.

Using the web client

28

5.3.5. Share items to other users
Sharing data with other users is an important feature of BASE, which allows you cooperate in teams.
If you follow the instructions in Chapter 6, Projects and the permission system (page 44) you
will find that you almost never have to share items manually to other users. This is because whenever
you work with an active project each new item you create will automatically be shared according to
the settings of that project. In most cases, this is all you need.

If you still need to manually share your data with other users, here is how to do it.

From a list view, mark the checkbox for each item you want to share. Then, click on the Share…
button. If you are on a single-item page, click on the Share… button on that page. In both cases,
this will open the Set access permissions dialog window.

Figure 5.8. Sharing items to other users

Members
The list displays the users, groups and projects that already has access to the items you selected.
The list shows the name and the permission level. The permission level uses a one-letter code
as follows:

• R = Read

• U = Use

• W = Write

• D = Delete

• O = Set owner

• P = Set permission

Instead of a permission code, the word varying may be displayed. This happens if the items you
selected have been shared with different permission.

Using the web client

29

The Permission templates part of the list is always empty to begin with.

Permissions
When you select a user, group or project in the list, the checkboxes will change to indicate the
current permissions. The exception is if the permissions are varying, in which case no check-
boxes are checked. To change the permissions just check the permissions you want to grant
or uncheck the permissions you want to revoke. You can select more than one user, group or
project and change the permissions for all of them at once.

The permission boxes are disabled if a permission template is selected. The permissions are
already part of the template and can't be changed here.

Add users
Opens a pop-up window that allows you to select users to share the items to. In the pop-up
window, mark one or more users and click on the Ok button. The pop-up window will only list
users that you have permission to read. Unless you are an administrator, this usually means
that you can only see users that:

• you share group memberships with (the Everyone group or groups with hidden members
doesn't count)

• are members of the currently active project, if any.

Users that already have access to the item are not included in the list. If you don't see a user that
you want to share an item to, you'll need to talk to an administrator for setting up the proper
group membership.

Add groups
Opens a pop-up window that allows you to select groups to share the items to. In the pop-up
window, mark one or more groups and click on the Ok button. Unless you are an administrator,
the pop-up window will only list groups where you are a member. It will not list groups that
already have access to the items. The Everyone groups is normally not visible unless have a
specific permission to share items with this group.

Add projects
Opens a pop-up window that allows you to select projects to share the items to. In the pop-up
window, mark one or more projects and click on the Ok button. Unless you are an administrator,
the pop-up window will only list projects where you are a member. It will not list projects that
already have access to the items.

Templates
Opens a pop-up window that allows you to select permission templates. In the pop-up window,
mark one or more templates and click on the Ok button. Unless you are an administrator, the
pop-up window will only list templates that you are allowed to use. It will not list templates that
have already been added.

Note

The permissions from the selected templates are copied to the items when the access
permissions are saved. If you re-open the share dialog, the actual permissions are shown
and the permission templates section is empty. Modifying the permission template later
doesn't affect the permissions on existing items. See Section 6.3, “Permission templates”
(page 52) for more information about permission templates.

Remove
Click on this button to revoke access permissions from the selected users, groups and projects.

Apply permissions to all sub-directories and their files
This option shows up if at least one of the selected items is a directory. If this option is selected
the permissions given to the directory will recursively be copied to all files and sub-directories.
Existing permissions on those items will be overwritten with the new permissions.

Using the web client

30

Use the Save button to save your changes or the Cancel button to close the pop-up without saving.

5.3.6. Change owner of items
Sometimes it may be necessary to change the owner of an item. This can be done by everyone with
Set owner permission on the item. For a user to have the rights to change owner of an item, the
item must either be owned by or shared with Set owner permission to the user . See Section 5.3.5,
“Share items to other users” (page 28).

An user with Set owner permission can go to a list view (or the single-item view), mark the check-
boxes for the items to change owner of, and click on the Set owner button. A dialog window, like
the screen-shot below, will appear.

New owner
The user to be the new owner of selected item(s). By default the current user will be selected
but other users can be picked from the currently used part of the drop-down list or by clicking
on Select.

Use the Save button to set the new owner or the Cancel button to close the pop-up without saving.

Figure 5.9. Select a new owner

Warning

If you are the original owner of the items, you should be aware of that after the change you
may no longer have access to the items. If you make a mistake you may have to talk to an
administrator to correct it.

5.4. Listing items
All pages that lists items are very similar in their appearance and functionality. In this section we
will describe the things that are common for most (if not all) list pages.

Use the menu to open a page listing items. Most list pages can only list one type of items. For example:
use the View � Samples menu to list samples and the View � Experiments menu to list experiments.

Tip
An example of a list page that can list items of several types is found by going to View � All
items. This page lists all items that you are the owner of. It has a few limitations:

Using the web client

31

• It support only a limited set of columns (id, item type, name and description) since these are
the only properties that are common among all items. It is also possible to display sharing
information.

• The list may have not have full support for filtering and sorting. This is due to a limitation
in the query system used to generate the list.

There are also several similarities:

• It supports all of the regular multi-item operations such as delete, restore, share and change
owner.

• Clicking on the name of the item will take you to the single-item view of that item. Holding
down CTRL, ALT or SHIFT while clicking, will open the edit pop-up.

Figure 5.10. A typical list page

The typical list page contains the following important elements:

1. Toolbar
A toolbar with buttons for various actions such as New… for creating a new item, Delete for
deleting items and Columns… for configuring columns. Depending on the permissions of the
logged in user some buttons may be disabled (greyed out) or not shown at all.

2. Navigation bar
If there are many items the list will be divided into pages, each one showing a limited number of
items. The navigation bar allows you to move to other pages and specify how many items each

Using the web client

32

page should display. The navigation bar is repeated at the bottom of the list so you do not have
to scroll back to the top of a long list just to get to another page.

3. List of presets
A list with preconfigured settings which allows you to quickly switch between different layouts
(sort order, visible columns, filter settings, etc).

4. Column headers
The columns headers can be used for selecting sort order.

5. Filter bar
The filter bar allows you to search for items.

5.4.1. Ordering the list
Most lists are by default sorted by the name of the item. This can be changed by clicking on the
column header of another column. If you click on the same column twice the sort order is reversed.
A downwards or upwards pointing arrow is displayed next to the column header in the column that
is currently used for sorting. Column headers that are black cannot be used for sorting.

It is possible to use more than one column for sorting. Press and hold one of the CTRL, ALT or
SHIFT keys while clicking on another column header. The original sorting is kept and the new
column is used for sub-sorting the list. The procedure can be repeated with more columns if you
need to sort on three or more columns. To revert to sort by only one column again click a column
header without holding down any key.

5.4.2. Filtering the list
If the list contains many items you may need to use a filter to be able to find the item you are looking
for. The input boxes on the line below the column headers are used for filtering. Most columns are
filtered using a free-text input box, but some columns that can only take a few distinct values use
a selection list or radio buttons instead. The selection list and radio buttons are very simple to use.
Just select the alternative that you want to filter on. The list will be automatically updated when
the selection has been made.

The free-text filter is a bit more complex. By default, an exact match is required, use % as a wildcard
character that matches any character. For example, the filter

Experiment A

only matches the same exact string, but the filter

Exp%

matches

Experiment A, Experiment B, etc.

If you want to filter on several values at the same time, separate the values in the filter input box
with the “|” character. For example, a filter text like

Experiment A|C%

matches both “Experiment A” and values that begin with “C”.

Using the web client

33

You can also use operators to find items which has a value that is greater than, less than or not
equal to a specific value. This is mostly useful on numeric or date columns but also works on text
columns. The operator must be entered first in the free-text box, for example

<=10

to find items which has a value less than or equal to 10. Here is a list of the supported operators:

List of operators supported by the free-text filter

<
Less than

<=
Less than or equal to

>
Greater than

>=
Greater than or equal to

=
Equal to (useful to find items with a null value). Supports filtering on more then one value.

<>, !=
Not equal to (useful to find items with a non-null value). Supports filtering on more then one
value.

==
Same as = but interprets “|”, “%” and other special characters literally. Use this when you need
an exact string match.

><
Within a range. Two values separated by “|” are required. For example, ><10|20 to find values
between 10 and 20 (inclusive).

Units

Some (numeric) columns have values with units. There are, for example, the Original quantity
and Remaining quantity columns for biomaterials, which have values in micrograms (µg), and
annotations which may have any unit.

When filtering on a column that has a unit, numeric values without units are interpreted as the
default unit for that column. But it is also possible to add a unit to the filter value. The examples
below are filtering on the original quantity column of a biomaterial:

>=0.5mg

matches biomaterials with an original quantity >=500µg.

=100|200|300µg

matches biomaterials with exactly 100, 200 or 300 micrograms.

It is also possible to mix units in a single filter:

=100|200|300µg|0.5|1mg

Using the web client

34

which matches 100, 200, 300, 500 and 1000 micrograms.

Be aware of rounding errors

All filter values with a unit that is different from the default unit are converted to the default
unit before being applied. Since numeric conversions are never exact down to the last decimal,
this may result in problems to filter with an exact match. The last example above could, for
example, be converted to: 100, 200, 300, 500.000001 and 999.99999998.

Hard-to-type characters

Some units contains hard-to-type characters. For example, the greek letter µ in µg, and m²
and m³ for areas and volumes. In all those cases it is also possible to use ug, m2 and m3,
respectively.

Units are case-sensitive

All units are case sensitive. The main reason for this is that it must be possible to tell the
difference between milli (m) and mega (M) prefixes, for example, mJ and MJ.

5.4.3. Configuring which columns to show
Most lists show only a small subset of the columns it is capable of showing. Use the Columns…
button to open a dialog that allows you to select which columns to show and the order in which
they are shown.

Figure 5.11. Configuring which columns to show

Visible columns
Shows the columns that are currently visible. Use the up/down arrow buttons to arrange the
order of the visible columns. The topmost column is shown to the left. Use the right arrow

Using the web client

35

button to move columns from this list to the hidden columns list. Columns marked with an ×
are required and cannot be hidden. In most lists the Name column is the only column that is
required.

Hidden columns
Shows columns that are not currently visible in the list. Use the left arrow button to move
columns from this list to the visible columns list.

Presets
A dropdown list that allows you to select a set of preconfigured columns. You may also create
your own preset if you often need to switch between different configurations. The list of presets
is the same as the one described below, but if used from this dialog the presets only affects the
visible columns and not filters or sort order.

Use the Save button to apply your changes or the Cancel button to close the pop-up without saving.

5.4.4. Presets
The view / presets dropdown has three main functions:

1. Switch between different configuration presets. The top of the dropdown contains user-defined
presets (Saved preset #1 and #2) and a few preconfigured presets. The user-defined presets are
used to store a complete table configuration, including:

• Which columns are visible and their order

• The column (or columns) used for sorting

• Filter settings

• The number of items per page and the current page

The preconfigured presets only affects the visible columns as follows:

• All columns - Show all columns.

• Required columns - Show only the required columns. Usually only the Name column is re-
quired.

• Default columns - Show the default set of columns.

• Other… - Open the configure columns dialog box, described in Section 5.4.3, “Configuring
which columns to show” (page 34).

2. Filter items by the removed status and the access permissions to an item.

• Removed - If checked, items that have been moved to the trashcan are shown, otherwise they
are hidden.

• Owned by me - If checked, items that the logged in user owns are displayed, otherwise they
are hidden.

• Shared to me - If checked, items that are owned by other users but shared to the logged in
user are displayed, otherwise they are hidden.

• In current project - If checked, items that are linked with the current project are displayed,
otherwise they are hidden. It does not matter if the logged in user is the owner or not. This
option is only available if a project is active.

• Owned by others - This option is only available to administrators and will display items that
are owned by other users.

Using the web client

36

The default is to display item that the current user owns and, if a project is active, items in that
project.

3. Administrate the presets

• Clear filter - Clears all filters.

• Save as… - Save the current configuration as a preset.

• Manage… - Opens a dialog where you can remove saved presets. You can also load saved presets
from the dialog, but it is quicker to just use the dropdown list for this.

Save a preset
If you select the Save as… option from the view / presets dropdown the Save preset as dialog
is opened.

Figure 5.13. Save preset as

For item
The type of item the preset is saved for.

Name
The name of the preset. The name must be unique.

Overwrite existing
If a preset with the same name already exists, it is overwritten if this checkbox is checked.

Public
This options is only available for users which has the SHARE_TO_EVERYONE permission. If
checked the preset is visible to all users.

Use the Ok button to save the preset or the Cancel button to close the pop-up without saving.

Manage presets
If you select the Manage… option from the view / presets dropdown the Manage presets dialog
is opened.

Using the web client

37

Figure 5.14. Manage presets

From this dialog you can delete or load presets.

To delete presets, first mark the checkbox in front of each preset you want to delete. Then, click on
the Delete… button. You will get a warning about that the action cannot be undone. Unlike other
items, the presets are not moved to the trashcan. Click on Ok to delete the preset.

Edit a preset

It is not possible to edit a preset directly. To change an existing preset you must:

1. Load the preset.

2. Use the interface to change column settings, filter, sort order, etc.

3. Save the preset with the same name.

Use the Close button to close the pop-up.

5.5. Trashcan
All items that have been deleted, and are owned by you, are listed in your trashcan. This list page
is accessed with View � Trashcan and it differs a bit from the other common list pages. The most
significant difference is that the trashcan page can contain more then one item type, actually all
removable item types in BASE can be listed in the trashcan. Items that neither can be removed or
deleted, i.e., items like sessions, nor clients' help texts since these are deleted from the database
immediately in list/item view will be shown in the trashcan page.

Warning

Some item types do not have any owner and these are listed in the trashcans for everyone with
delete permission on that specific item type.

Things that the trashcan page have in common with other list pages are the possibility to restore
and view/edit items, see Section 5.3.4, “Restore deleted items” (page 27) and Section 5.3.2, “Edit
an existing item” (page 27) . If an item is restored, it will of course disappear from the trashcan.

Using the web client

38

5.5.1. Delete items permanently
Items can be permanently deleted from BASE only if they are not used by other items. Items that

are used have the icon in the first column and by clicking on it you can get more information
about the dependencies, see Section 5.5.2, “View dependencies of a trashed item” (page 38) .

Note

This view is NOT the same view page as when clicking on the item's name, which brings you
to the item's view page.

To delete one or several items permanently from the trashcan you first have to select them and then
to click on the Delete button. Press then on either Ok (completes the deletion) or Cancel (no items
will be deleted) in the dialog window that appears.

Empty trashcan

If all items in the trashcan should be deleted permanently the Empty trash button can be used.
This function will remove all items that are listed in your trashcan, except those items which other
items, not marked for deletion or cannot be deleted, are dependent on.

5.5.2. View dependencies of a trashed item
This view can only be accessed from trashed items that are linked together with other items. Beside
the item's item type, name, and description there is a list at the bottom of the view page with
those items that are using the current item in some way.

Using the web client

39

Figure 5.15. Item view of a trashed item.

1. This icon indicates that the item cannot be deleted permanently cause of some dependencies,
listed below.

2. Common properties for all removable items.

3. A list of other items that are using the current item, blocking permanent removal.

5.6. Item overview
With the Item overview function you can get an overview of all bioassays, extracts, samples, anno-
tations, raw data sets, etc. that are related to a given item. In the overview you can also validate the
data to find possibly missing or incorrect information.

You can access the overview for an item by navigating to the single-item view of the item you are
interested in. Then, switch to the Overview tab that is present on that page. Here is an example
of what is displayed:

Using the web client

40

Figure 5.16. The item overview

The page is divided into three sections:

• To the left is a tree displaying items that are related to the current item. The tree is loaded gradually
when you click your way through the sublevels. The only exception is after a validation has been
done, in this case the whole tree is loaded through the validation-process.

• The lower right shows a list of warnings and error messages that was found when validating the
data. This section is empty if no validation has been done. Click on the Validate button to validate
the data and load errors and warnings. In the example you can see that we have failed to specify
a value for the Temperature protocol parameter for one of the samples.

• The upper right shows information about the currently selected item in the tree. This part will
also contain more information about errors or warnings for this item, but only if a validation has
been done. It may also present you with one or more suggestions about how to fix the problem and
with a link that takes you to the most probable location where you can fix the error or warning.

Using the web client

41

5.6.1. Validation options
Click on the Validation options button in the toolbar to open the Validation options dialog.

Figure 5.17. Validation options

The validation procedure is highly configurable and you can select what you want to ignore, and
what should be displayed as an error or warning.

Presets
The list contains predefined and user defined validation options. Use the Save as… button to
save the current options as a user defined preset. The Remove… button is used to remove the
currently selected preset. Predefined presets cannot be deleted.

Project defaults
The options in this section are used to check if your experiment uses the same values as set
by the project default values of the currently active project (see Section 6.2, “Projects” (page
45)). If no project is active these options are ignored. The validation is only performed if the
project has at least one item with a matching type. For example, if no default array design has
been added to the project, all array designs are allowed. For items that can have a subtype, the
subtype is also considered. For example, if only a default sampling protocol has been selected,
no warnings are generated for extraction protocols.

Using the web client

42

Missing items
The options in this section are used to check if you have specified values for optional items. For
example, there is an option that warns you if you have not specified a protocol. For items that can
have a subtype, the rule here is to use the information about related subtypes before reporting a
missing item. For example, the labeled extract subtype is related to the label subtype and if a
label is missing it is reported as a warning. If there is no related subtype no warning is generated.

Subtypes
The options in this section are used to check that related items have a subtype that matches the
subtype of the main item. For example, if we have an extract which is a labeled extract subtype
the subtype for the related tag should be label, but if the extract is a library the subtype of
the tag should be barcode.

Annotations
The options in this section are used to check problems related to annotations. The most impor-
tant ones are listed here:

• Missing MIAME annotation value: Checks that you have specified values for all annotations
marked as Required for MIAME.

• Missing factor value: Checks that you have specified values for all annotations used as ex-
perimental factors in the experiment. This is only checked when an experiment is selected
as the root item.

• Missing parameter value: Checks that you have specified values for all protocol parameters.

• Annotation is protocol parameter: Checks if an item has been annotated with a an anno-
tation that is actually a protocol parameter.

• Annotation has invalid value: Checks if annotation values are correct with respect to the
rules given by the annotation type. This might include numeric values that are outside the
valid range, or values not in the list of allows values for an enumerated annotation type.

• Inheriting annotation from non-parent: Checks if inherited annotations really comes from
a parent item. This might happen if you rearrange parent-child relationship because you found
that they were incorrectly linked.

Files
The options in this section are related to the validity of data files that can be attached to some
items, for example, raw bioassays and array designs. The data files are usually validated imme-
diately when they are used and the result is saved to the database. The options in this dialog
can be used to find (or ignore) problems with data files.

Denied access
The options in this section are used to check if you do not have access (read permission) to an
item in the experiment hierarchy. If this happens the validation cannot proceed in that branch.
This might mask other validation problems.

Link consistency
The options in this section are used to check that links between (multiple) items are consistent
with each other. The most important options are:

• Array design mismatch: Checks if the array design specified for a raw bioassay is the same
array design specified for the physical bioassay.

• Multiple array designs: Checks if all raw bioassays in an experiment use the same array
design or not. This is only checked when the root item is an experiment.

• Circular reference to pooled item : If you have used pooling, checks that no circular refer-
ences have been created.

Using the web client

43

• Multiple extracts with same tag+position: Checks if the extracts on a physical bioassay
have a unique combination of tag+position. This is usually required to be able to assign mea-
sured data correctly downstreams.

Other
This section collects options that does not fit into any of the other sections. The most important
options are:

• Non-unique name: Checks if two items of the same type have the same name. It is usually
a good idea to have unique names within an experiment if the data is going to be exported
and in other circumstances.

Click on the Save button to use the current settings. The display will automatically refresh itself.

5.6.2. Fixing validation failures
The overview includes a function that allows you to quickly fix most of the problems found during
the validation. The easiest way to use the function is:

1. Click on an error or warning in the list of failures in the lower right pane. The tree in the left
pane and the item overview in the top right pane will automatically be updated to show the exact
location of the faulty item.

2. The upper right pane should contain a list labeled Failure details with more information about
each failure and also one or more suggestions for fixing the problem. For example, a failure due
to a missing item should suggest that you add or select an item.

3. The suggestions should also have links that takes you to an edit view where you can do the
changes.

4. After saving the changes you must click on the Validate button to update the interface. If you
want, you can fix more than one failure before clicking on the button.

Inactive links?
If you do not have permission to fix a problem the links will be inactive and you'll have to talk
to someone with more powers.

44

Chapter 6. Projects and the
permission system
6.1. The permission system
BASE is a multi-user environment that supports cooperation between users while protecting all data
against unauthorized access or modification. To make this possible an elaborate permission system
has been developed that allows a user to specify exactly the permission to give to other users and at
the same time makes it easy to handle the permissions of multiple items with just a few interactions.
For this to work smoothly there are a few recommendations that all users should follow. The first
and most important recommendation is:

Always use a project!
By collecting items in a project the life will be a lot easier when you want to share your data
with others. This is because you can always treat all items in a project as one collection and
grant or revoke access to the project as a whole.

6.1.1. Permission levels
Whenever you try to create or access existing items in BASE the core will check that you have the
proper permission to do so. There are several permission levels:

Read
Permission to read information about the item, such as the name and description.

Use
Permission to use the information. In most cases this means linking with other items. For ex-
ample, if you have permission to use a protocol you may specify that protocol as the extraction
protocol when creating an extract from a sample. In the case of plug-ins, you need this permis-
sion to be able to execute them.

Write
Permission to change information about the item.

Delete
Permission to delete the item.

Change owner
Permission to change the owner of an item. This is implemented as a Set owner function in the
web client (Section 5.3.6, “Change owner of items” (page 30)), where you can change the owner
of items that you have permission to do so on.

Change permissions
Permission to change the permissions on the item.

Create
Permission to create new items. This permission can only be given to roles.

Deny
Deny all access to the item. This permission can only be given to roles.

Note
A user's permissions need to be reloaded for the permissions that have been changed should
take effect. This is done either manually with the menu choice BASE � Reload permissions or
automatically next time the user logs in to BASE.

Projects and the
permission system

45

6.1.2. Getting access to an item
There are several ways that permission to access an item can be granted to you. The list below is a
description of how the permission checks are implemented in the BASE core:

1. Check if you are the root user. The root user has full permission to everything and the permission
check stops here.

2. Check if you are a member of a role that gives you access to the item. Role-based permissions can
only be specified based on generic item types and is valid for all items of that type. The role-based
permissions also include a special deny permission that prevents a user from accessing any item.
In that case, the permission check stops here.

3. Check if you are the owner of the item. As the owner you have full permission to the item and
the permission check stops here. This step is not done for items that doesn't have an owner.

4. Check if you have been granted access to the item by the sharing system (cf. Section 5.3.5,
“Share items to other users” (page 28)). The sharing system can grant access to individual users,
groups of users and to projects. We recommend that you always use projects to share your items.
This step is not done for items that can't be shared.

5. Some items implement special permission checks. For example:

• News: You always have read access to news if today's date falls between the start and end date
of the news item.

• Groups: You have read access to all groups where you are a member.

• Users: You have read permission to all users that share group membership with, excluding the
Everyone group. When a project is active, you also have read permission to all users that are
members of that project.

There are more items with special permission checks but we do not list those here.

6.1.3. Plug-in permissions
Another aspect of the permission system is that plug-ins may also have permissions of their own.
The default is that plug-ins run with the same permissions as the user that invoked the plug-in.
Sometimes this can be seen as a security risk if the plug-in is not trusted. A malicious plug-in can,
for example, delete the entire database if invoked by the root user.

An administrator can choose to give a plug-in only those permissions that is required to complete
it's task. If the plug-in permission system is enabled for a plug-in the default is to deny all actions.
Then, the administrator must assign permissions to the plug-in. There are two variants:

• A permission can be granted regardless of if the user that invoked the plug-in had the permission
or not. This makes it possible to develop a plug-in that allows users to do things that they normally
do not have permission to do directly in the web interface.

• A permission can be granted only if the user also has the permission. This is the same as not
using the plug-in permission system, except that unspecified permissions are always denied.

Note
Plug-in developers can supply information about the wanted permissions making it easy for
the administrator to just check the permissions and accept them with just a single click if they
make sense. See Section 21.1.6, “Plug-in permissions” (page 169) for more information.

6.2. Projects
Projects are an important part of BASE and the permission system for several reasons:

Projects and the
permission system

46

• They do not require an administrator to setup and use. All regular users may create a project, add
items to it and share it with other users. You are in complete control of who gets access to the
project, the items it contains and which permission levels to use.

• All items in a project are treated as one collection. If a new member joins the team, just give the
new person access to the project and that person will be able to access all items in the project.

• When you create new items, they are automatically shared using the settings from the active
project. There is almost no need to share items manually. All you have to remember is to set an
active project, and this is easy accessible from the menu bar.

• Filter out items that you do not want to see. When you have set an active project you may choose to
only see items that are part of that project and no other items (Section 5.4.4, “Presets” (page 35)).

• It's easy to share multiple items between projects. Items may be part of more than one project.
If you create a new project that builds on a previous one you can easily share some or all of the
existing items to the new project from one central place, the Items tab on the project's single-item
view.

• It is possible to assign default protocols, software, hardware and other items to a project. This
makes it easier when creating new items since BASE will automatically suggest, for example the
extraction protocol used when creating a new extract. The default items are also used by the item
overview validation functionality, which makes it possible to spot mistakes. See Section 5.6, “Item
overview” (page 39).

6.2.1. Creating a project
You can list and manage all of your projects by going to View � Projects. Use the New… button to
create a new projects.

Figure 6.1. Projects properties

Projects and the
permission system

47

This tab allows users to enter essential information about a project.

Name
The name of the project. We recommend that project names are unique, since at some times it
may need to be referenced by name.

Default permissions
This setting specify the permissions to give to new items that are created while this project is the
active project. The recommended setting is delete permission. Optionally, a permission template
may be selected, in which case the permissions are copied from the template to the new item.
See Section 6.3, “Permission templates” (page 52) for more information.

Description
A optional description of the project.

6.2.2. The active project
The active project concept is central to the sharing system. You should always, with few exceptions,
have a project active when you work with BASE. The most important reason is that new items will
automatically be shared using the settings in the active project. This considerably reduces the time
needed for managing access permissions. Without an active project you would have to manually set
the permission on all items you create. If you have hundreds of items this is a time-consuming and
boring task best to be avoided.

If you work with multiple projects you will probably find the filtering function that hides items that
are not part of the active project to be useful. As a matter of fact, if you try to access an item that
is part of another (not active) project you will get an error message saying that you do not have
permission to access the item (unless you are the owner).

Selecting an active project
Since it's important to always have an active project there are several ways to make a project the
active one.

• The easiest way and the one you will probably use most of the time is to use the menu bar shortcut.

Look in the menu for the project icon . Next to it, the name of the active project is displayed. If

you see no active project here, it means that you have not selected a project to work in. Click
on the icon or project name to open a drop-down menu and select a project to set as the active
project. If another project is already active it will automatically be inactivated.

The most recently used projects are listed first, then the list is filled with the rest of your projects
up to a maximum of 15. If you have more projects an option to display the remaining projects
is activated.

Tip

The sort order of the non-recent projects is the same as the sort order on the projects
list page. If you, for example, want to sort the newest project first, select to sort by the
Registered column in descending order on the list page. The menu will automatically use
the same order.

• Use the BASE � Select project menu and select the project from the submenu that opens up.

• Go to the homepage using the View � Home menu and select a project from the list displayed there.

Note
Only one project can be active at a time.

Caution
If you change the active project while viewing an item that you no longer has access to in
the context of the new project an error message about missing permission will be displayed.

Projects and the
permission system

48

Unfortunately, this is all that is displayed and it may be difficult to navigate to a working page
again. In the worst case, you may have to go to the login page and login again.

Default permissions for the active project

When a project is active all new items you create are automatically shared using the settings from
the active project. If the active project has a permission template the permissions from the template
are copied to the new item. If the project doesn't have a permission template, the new item is shared
to the active project with the configured default level. By default, projects doesn't have a permission
template and the default permissions are set to read, use, write and delete. It is possible to change
the default permission level by modifying the settings for the project. Simply open the edit-view page
for the project and select the permissions you want and save. From now on, all new items will be
shared with the specified permissions. Items that are already in the project are not affected by the
change.

6.2.3. How to give other users access to your project
First, you will need to open the Edit project dialog. Here is how to do that:

1. Navigate to the single-item view of your project from the View � Projects list.

2. Click on the Edit… button to open the Edit project dialog.

3. Switch to the Members tab. From this page you can add and remove users and change the access
levels of existing ones.

Figure 6.2. Manage members of a project

Members
The members list contains users and groups that are already members of the project. The list
shows the name and the permission level. The permission level uses a one-letter code as follows:

Projects and the
permission system

49

• R = Read

• U = Use

• W = Write

• D = Delete

• O = Set owner

• P = Set permission

Permissions
When you select an user or group in the list the current permission will be checked. To change
the permissions just check the permissions you want to grant or uncheck the permissions you
want to revoke. You may select more than one user and/or group and change the permissions
for all of them at once.

Note

In most cases, you should give the project members use permission. This will allow a user
to use all items in the project as well as add new items to it. If you give them write or
delete permission they will be able to modify or delete all items including those that they
do not own.

This rule is valid for all items that are shared to the project with the default delete per-
mission. Items that are shared with a lower permission, for example, use, can be accessed
with at most that permission.

Add users
Opens a popup window that allows you to add users to the project. In the popup window, mark
one or more users and click on the Ok button. The popup window will only list users that you
have permission to read. Unless you are an administrator, this usually means that you can only
see users that:

• you share group memberships with (the Everyone group and groups with hidden members
doesn't count)

• are members of the currently active project, if any.

Users that already have access to the project are not included in the list. If you don't see a user
that you want to add to the project, you'll need to talk to an administrator for setting up the
proper group membership.

Add groups
Opens a popup window that allows you to add groups to the project. In the popup window, mark
one or more groups and click on the Ok button. Unless you are an administrator, the popup
window will only list groups that you are a member of. It will not list groups that are already
part of the project.

Remove
Click on this button to remove the selected users and/or groups from the project.

Use the Save button to save your changes or the Cancel button to close the popup without saving.

6.2.4. Default items
A number of default item can be assigned to a project. It is possible to select one raw data type and
any number of platforms, variants, protocols, hardware, software and array designs. The default

Projects and the
permission system

50

items are used by BASE to suggest default values. The subtype (see Chapter 12, Item subtypes (page
87)) of each item is used as a filter so that, for example, an extraction protocol is suggested when
creating an extract, and a hybridization protocol when creating a hybridization. Use the various Add
buttons to add items to the project and the Remove button to remove them.

Note

Make sure that the items that are selected as default items also are shared to the project with
at least use permission. Otherwise the default items will not show up for other members of
the project, which may result in registering incorrect data.

Figure 6.3. Project default items

6.2.5. Working with the items in the project
If you go to the single-item view for a project you will find that there is an extra tab, Items, on
that page.

Projects and the
permission system

51

Figure 6.4.

Clicking on that tab will display a page that is similar to a list view. However there are some differ-
ences:

• The list is not limited to one type of item. It can display all items that are part of the project.

• It support only a limited set of columns (id, name, description, owner and a few more) since these
are the only properties that are common among all items.

• The list cannot be sorted. This is due to a limitation in the query system used to generate the list.

Note
The list only works for the active project. For all other projects it will only display items that
are owned by the logged in user.

Projects and the
permission system

52

There are also several similarities:

• It supports all of the regular multi-item operations such as delete, restore, share and change
owner.

• Clicking on the name of the item will take you to the single-item view of that item. Holding down
CTRL, ALT or SHIFT while clicking, will open the edit popup.

Tip

This list is very useful when you are creating a new project, in which you want to reuse items
from an old project.

• Activate the old project and go to this view.

• Mark the checkbox for all items that you want to use in the new project.

• Click on the Share… button and share the items to the new project.

If you have more than one old project, repeat the above procedure.

6.3. Permission templates
A permission template is a pre-defined set of permissions for users, groups and/or projects. The
template makes it easy to quickly share items to multiple users, groups and projects, possible with
different permissions for everyone. There are three major use-cases were permission templates are
useful:

• A permission template can be associated with project. When the project is selected as the active
project, the permissions from the template are copied to any new items that are created. Note
that the new items may or may not be shared with the active project, depending on the settings
in the permission template.

• Permission templates can be selected in the share dialog, making it easier to manually share items
to multiple users, groups and projects in just a few clicks.

• Permission templates can be used with some batch item importers, making it easier for adminis-
trators which only needs a single data file even if the data belong to different projects.

Permission templates are managed from the View � Permission templates menu. The template is a
very simple item that only has a name (required) and a description (optional). We recommend that
the names of the templates are kept unique, but this is not enforced by BASE. To assign permissions
to the template use the Set permissions button. This is the same dialog as the share dialog.

Permissions are copied

When a permission template is used the permissions are copied to the items. Modifications to
the template that are made afterwards doesn't affect the permissions for the items on which
the template was used.

53

Chapter 7. File management
7.1. File system
Files in BASE are managed from the page at View � Files. The basic layout on the page is the same
as for all the other list pages in BASE but there are some differences e.g. there is a navigation tree to
the left, used to browse the directory structure, and there are some buttons in the toolbar, that are
special for files and directories. The figure below is a representation of the files and directories-page
and is followed with a short description to some of the special functions.

Figure 7.1. The file page

1. Home directory for current user
This is the logged in user's home directory with sub directories. It is visible if the current user
has a home directory and is then always located at the top of the navigation tree. Click on a
directory to display it's contents to the right or click on the plus sign to expand the directory
and view the sub directories. Note that the directory tree is lazily loaded. Subdirectories that
hasn't yet been opened have light gray icon which is removed if they turn out to be empty.

Note

A directory can only be opened from the navigation tree or from the directory icon in the
list. A click on a directory's name in the list will open the directory's edit window.

File management

54

2. Other users
The other users' home directories that the current user has permission to read are listed here.

Missing directory?

Not all users have a home directory connected to their accounts. If a user is missing, it
most certainly depends on that the user account have not got a home directory. Home
directories are managed by the administrator of the BASE server.

3. Button toolbar
The button toolbar contains functions that are relevent for the navigation tree. Use the Refresh
button to update the directory tree, for example, after creating a new subdirectory. Use the
Search button to search for files and directories no matter where they are located. The search
form is displayed to the right and is the same as the usual file and directory listing, except that
it will not show any files if there is no filter.

4. Current directory
Shows the full BASE path to current directory.

5. View a file's contents
A click on this icon will open the file's contents in a new window. If the browser does not has
support to view the file there will be a dialog window to download the file instead.

6. Download file
Download the file to a local computer with this icon. The download will start in a new dialog
window.

7. Re-upload a file
This icon is only visible for those files that have been moved offline and can be used to re-upload
the file to the BASE. Start to upload the file to the same position by clicking on the icon.

Replace an existing file

It is possible to re-upload file that are on-line, but this has to be done from the single-item
view.

7.1.1. Disk space quota
Normally, a user is assigned limited disk space for files. More information about how much quota the
current account has and how much of it that is occupied can be found at the account's home page,
described in Section 5.1.3, “The home page” (page 16). See also Section 22.4, “Disk space/quota”
(page 189) for more information about the quota system.

7.2. Handling files

7.2.1. Upload a new file
Uploading a file is started by clicking on Upload file… in the toolbar. The uploaded file will be placed
in current directory.

File management

55

Figure 7.2. Upload new file

Directory
Shows the current directory, where the file will be uploaded. This property cannot be changed
and is only for information.

File
This field is required and needs to have a valid file path for the local computer before the upload
is started. Use Browse… to choose which file to upload.

Replace existing
Tick this checkbox if you want to overwrite an existing file that has the same name as the one
you are going to upload. In contrast with other items, file names must be unique since they are
often referenced by name.

Write protected
Mark this checkbox if you want the file to be write protected. A write protected file cannot be
deleted, moved offline or replaced with another file. It is still possible to change other metadata,
such as the name, description, file type, MIME type, etc.

Store compressed
You can select if you want BASE to store your file in a compressed format or in it's normal
format. Compressing the file may save a lot of disk space and it also uses less quota. There are
three options:

• auto: Let BASE automatically decide if the file should be compressed or not. The file is com-
pressed if (1): it is uploaded to a directory that has the compress files flag set or (2): if the
matching MIME type has the compress files flag set.

• yes: Store the file in a compressed format.

File management

56

• no: Store the file in it's normal format.

Type
This is the file-type that the uploaded file should get. Select - none - if the file should not be
associated with any file type.

Character set
If you are uploading a text file, it may be a good idea to select the character set used for the file.
The most common character set is UTF-8 or ISO-8859-1. It may be important to get this setting
correct if you are going to import data from the file later.

Description
A description about the uploaded file can be put into this text area. Use the magnifying glass to
edit the text in a pop-up window with a larger text area.

Max transfer rate
This shows the maximum transfer rate that the upload will approximately reach. The transfer
rate is set by the server admin and cannot be changed.

Compressed file
These settings are only active if you select a compressed file format that BASE knows how to
unpack. BASE ships with support for some of the most common compressed file formats, such
as zip and tar, but this can be extended by the use of plug-ins. See Section 25.6.3, “File unpacker
plug-ins” (page 235) for more information.

• Unpack file: Mark this checkbox if the compressed file should be unpacked after it had been
uploaded. The files will be unpacked with the same sub-directory structure as in the com-
pressed file.

• Overwrite existing files: Mark this checkbox if the unpacking is allowed to overwrite existing
files.

• Keep the compressed file: Mark this checkbox if you want to keep the compressed file after
upload. Otherwise, only the unpacked files are kept.

Finish the configuration by clicking on either Upload, which will start uploading the selected file,
or Cancel to abort the upload procedure.

Replace an existing file

It is possible to replace an existing file. This is done by clicking on the replace link on the single-item
view for the file you want to replace. If the file has been moved offline, you can also use the icon
in the actions-column, see number 7 in Figure 7.1, “The file page” (page 53). The procedure to
upload the file is the same as when uploading a new file, except that compressed files cannot be
unpacked. There is also an extra option, Validate MD5, that tells BASE to check that the file is the
same as the one it is replacing. This option is useful when you are re-uploading a file that has been
moved offline and want to be certain that it is the same file as the original.

Note
You cannot replace a file which has been marked as write protected.

7.2.2. External files
Files doesn't have to be stored on the BASE server. It is possible to register an external file by giving
the URL to it. In most cases, BASE will be able to use the external file in the same way as a file
that has been uploaded to the BASE server. To create an external file reference, use the New URL...
button.

File management

57

Figure 7.3. Create external file

The dialog is more or less the same as the Edit file dialog, but has additional fields for the URL
and an optional File server.

URL
The full URL to the referenced file. BASE ships with support http and https URLs, but the
administrator may have installed support for other protocols.

Load metadata
Check this box if you want BASE to try to load metadata such as MIME type, size, last modifi-
cation date etc. for the file. This will also verify that the file actually exists.

Server
Select a file server for this file. This is optional, but is needed to access password-protected files
or for some https connections.

File management

58

7.2.3. File servers
Figure 7.4. Fileserver properties

File server are used for external files that are password protected and for files that are using the
https protocol and require certificates to connect to the server.

Name
The name of the file server.

Connection manager
The auto setting allows BASE to automatically select a manager based on the file URL. It is
possible to force a specific connection manager from this list. The list of available connection
managers can be extended by plug-ins. See Section 26.8.7, “Connection managers” (page 257)
for more information.

Host
If specified, overrides the host (and/or port) part of the file URL with the value in this field. This
is useful, if for example, a file can be accessed using a "public" path that is entered as the URL
for the file and an "internal" path that is used from the BASE server.

Username/password
If the file server requires authorization to access the files you should add a username and
password. This will be used by BASE to access the files. Currently, BASE supports Basic and
Digest authentication.

Description
Enter a description of the file server.

Certificates
On this tab you may specify server and client certificates. A server certificate may be needed
to access files with the https protocol on servers that use certificates that can't automatically

File management

59

be trusted, for example, a self-signed certificate. The server certificate is uploaded as a file and
must be a X.509 certificate in either binary or base64-encoded DER format.

A client certificate may be needed to access files with the https protocol on servers that require
that clients authenticate themselves with a certificate. The certificate is typically issued by the
owner of the server and may be password-protected. The client certificate is uploaded as a file
and must be in PKCS #12 format.

Use the Remove existing... checkboxes to remove previously uploaded certificates. Leave ev-
erything empty to keep things as they are.

7.2.4. Edit a file
The edit window to set a file's property in can either be open with Edit… that is located in the
toolbar at the file's view page or by holding down CTRL, ALT or SHIFT when clicking on the file's
name in the list. It requires that the current user has write permission on the file to be able to edit
and set the properties.

Path
This is the path where the file is located. This can only be changed by moving the file. Read more
about how this is done in Section 7.2.5, “Move files” (page 59).

URL, Server
See External files above.

Name
The file's name, which cannot be left empty and must be unique in current directory. The max-
imum length of the file name is 255 characters and it can contain blank spaces but not any of
~, \, /, :, ;, *, ?, <, > or |.

Write protected
Mark this checkbox if you want the file to be write protected. A write protected file cannot be
deleted, moved offline or replaced with another file. It is still possible to change other metadata,
such as the name, description, file type, MIME type, etc.

Type
Sets which kind of type the file is. Select the file type to use from the drop down list with available
types. The option -none- should be used if the file should not be associated with any kind of
file type.

MIME type
The file's content/media type. This is normally set automatically when uploading the file into
BASE but it can be changed by an user, that has write permissions, at any time.

Description
This text area can be used to store relevant information about file and it's contents. Use the
magnifying glass, located to the right under the text area, to edit the text in a larger window.

Finish the editing process by pressing either Save to save the properties to the database or Cancel
to abort and discard the changes.

7.2.5. Move files
These functions are used to manage the location of the files on the server. They are all accessed
from the Move button on the list view of from the single-item view. On the list view, you must first
select one or more files / directories.

Write protect your files!

If you mark a file as write protected it will not be possible to delete, move or replace the file.
Use this options for important data files that you do not want to loose by accident.

File management

60

To another directory

Files and directories can be moved to other directories for re-organization. The user need write
permission on the target directory to be able to move the files/directories to it.

First, select all files and directories in the current path that should be moved and then click on
Move… � To another directory in the toolbar to open a window with the directory tree where the
target directory can be picked.

Choose a directory which the selected items should be moved to. It is possible to create new sub-
directories with the New… button.

Click on Ok to carry out the move or Cancel to abort.

Offline

Moving a file offline means that the actual file contents is deleted from the server's disk space but
information about the file will still exist as an item in the database. This makes it possible to save
disk space but still be able to associated the file with other items in BASE.

First, select all files in current path that should be moved offline and then click on Move… � Offline
in the toolbar.

Warning

Be careful! The selected files will be removed from the server. The only way to recover the
contents again is to re-upload the files.

To the secondary storage

This option is only available if the server administrator has enabled it.

The secondary storage is a kind of storage were it is appropriate to store files that have been used
and no longer requires immediate access. Moving a file to and from the secondary storage is the job
of a plug-in, which is usually executed once or twice a day.

First, select all files in the current path that should be moved and then click on Move… � To sec-
ondary location in the toolbar. The only thing that will happen is that BASE sets a flag on each file.
The next time the secondary storage plug-in is executed, the files will be moved to the secondary
storage. The actual file contents is deleted from the server's disk.

While the file is in the secondary storage BASE behaves in the same way as if the file is offline.
Th file cannot be used to import data from, or other things. To use the file again, the file must be
moved back to the primary storage.

To bring files back from the secondary storage, select the files and then click on Move… � To primary
location in the toolbar. The files will be moved back the next time the secondary storage plug-in
is executed.

Do not forget to set quota for the secondary storage

The default installation does not assign quota for the secondary storage. Unless the adminis-
trator assigns quota the move will silently fail.

7.2.6. Viewing and downloading files
In Actions column in the list view there are icons you can click on to perform different kinds of
actions on a file, like downloading the file and viewing the file. The same icons appear on the sin-

File management

61

gle-item view and in most other places where files are used. You cannot view or download files that
have been moved offline or to the secondary storage.

Download a file

This will let the user to download the contents of a file to a path on a local computer. The window that
opens contains the selected file's name, size e.t.c. and it will also open a download dialog window
where the user can choose what to do with the file locally.

Download does not start

Click on the file's path name in the pop-up window if the download dialog window does not
appears.

Close the pop-up window and return to file page with Close.

View the contents of file

A file's contents can be displayed directly in the web browser if the browser supports displaying that
kind of files. Typically all HTML, text files and images are supported. Click on the icon to view the
contents in a new window. If the type is not supported by the browser there will be a dialog-window
to download the file instead.

Download/compress multiple files

You can download multiple files/directories at the same time. First, from the file browser, select
one or more files/directories. Then, click on the Export button. Select the Packed file exporter
plug-in and choose one of the file formats below it. On the Next page you can specify other options
for the download:

• Save as: The path to a file on the BASE file system where the selected files and directories should
be packed. Leave this field empty to download the files to your own computer.

• Overwrite: If you are saving to the BASE file system you may select if it is allowed to overwrite
an existing file or not.

• Remove files/directories: If you select this option the selected files and directories will be marked
as removed. You must still go to the Trashcan and remove the items permanently.

7.2.7. Directories
Directories in BASE are folders where files can be organized into. Click on New directory… in the
toolbar to create a directory in current path and edit the properties as described below.

File management

62

Figure 7.5. Directory properties

Properties

Path
This property is read-only in the edit window but can be changed by moving the directory,
described in Section 7.2.5, “Move files” (page 59).

Name
The directory's name to identify it with in the list. This field must have a value and it has to be
an unique name for the current directory.

Compress new files
Enable this option to let BASE store files that are uploaded to this directory in a compressed
format. This option only affect files that are uploaded later, it doesn't affect already existing files
or files that are moved between directories. Check the Recursive button to apply this setting
to all subdirectories.

Share new files and sub-directories automatically
Enable this option to let BASE automatically share new files and directories with the same per-
missions as have been specified on this directory. This option is useful when you have assigned
a specific directory as a common area for a group of users and you want to make sure that all
users has access to all files. Some restrictions apply:

• Permissions for the Everyone group are not inherited if the logged in user doesn't have the
SHARE_TO_EVERYONE permission.

• If a project is active the new file/directory will be shared to the active project as well.

Check the Recursive button to apply this setting to all subdirectories.

File management

63

Description
Any relevant information about the directory can be written in this text area. The magnifying
glass down to the right can be used to edit the description text in a larger text area, just click
on the icon to open it in a separate pop-up window.

The editing process is completed with either Save, to save the properties into the database, or with
Cancel to discard the changes. Both of the buttons will close the edit window and if the directory
is updated the list will be reloaded with the directory's new properties.

Note
The new directory does not appear in the navigation tree to the left automatically. You must
click on the Refresh button.

64

Chapter 8. Jobs
A job is a task that is performed by a plug-in. Some jobs can be configured to execute immediately
(for a few plug-ins it is mandatory that the job runs immediately), but normally jobs are placed
in the job queue after they have been configured. The jobs will then be picked out for execution
depending on their priority and waiting time in the queue.

Creating and configuring a job is made from a context, eg. a particular list page or singe-item page,
which is supported by the plug-in you want to use. If no context is needed, the job configuration
is started from the plug-in's single item view. Typically, there are three main types of jobs, import,
export and other jobs. They usually show up as Import, Export and Run plug-in buttons in the
gui. In the experiment analysis section two more types of plug-ins are used, intensity and analysis.

Click on View � Jobs to list your jobs. Details of a single job is displayed in a pop-up window. This
window opens either if you click on a job's name from the list page of jobs or when a job configuration
is finished. The window contain two tabs, one with information about the job and another with the
parameters for the plug-in used in the job.

The values listed on the Parameters tab depends on what the plug-in needs from the user. If a
specific plug-in configuration was used, those parameters are also listed here.

Figure 8.1. Job properties

Jobs

65

The properties are set either when configuring the job or by the system. No parameters can be edit
after a job is created.

Name
The name of the job is set in the last step of a job configuration.

Plugin
The plug-in to use in the job.

Configuration
Name of the plug-in configuration that is used.

User
The user who created/configured the job.

Experiment
Name of the experiment which the job was configured within.

Description
A description of the job. Like the name-property it can be set in the job configuration.

Priority
Priority the job has in the job queue.

Status
Shows the status of the job. A job can have one of following status.

• Not configured - The plug-in has not been configured properly and is not placed in the job
queue.

• Waiting - The job is waiting in the job queue.

• Preparing - The job queue is preparing to executed the job.

• Executing - The job is being executed.

• Done - Indicates that the job has finished successfully.

• Error - The job has finsished with an error.

• Aborting - The job has received an abort signal from the user and tries to abort the work.
This field will also display any messages from the plug-in while it is running and the final
message after it's completion.

Percent complete
Progress of the job. How detailed this is depends on how often the plug-in reports it's progress.

Created
Date and time when the job was created and registered in the database.

Scheduled
Date and time when the job was added to the job queue. This is usually the same as the created
date and time, but can be different if the job has been restared after an error.

Started
Date and time when execution of the job started.

Ended
Date and time when the job stopped running. Either because it was finished, aborted or inter-
rupted by an error.

Running time
Time the job has been running.

Jobs

66

Server
Name of the server, where the job was performed.

Job agent
The job agent the job is/was running on. It is also possible to set this value before a job is exe-
cuted. If that has been done only the selected job agent will accept the job. This options is nor-
mally only given to powers users and needs the Select job agent permission. See Section 22.3.2,
“Edit role” (page 186).

Depending on the status of the job, there may also be one or more buttons on the form.

Abort
Aborts a job that is running or hasn't started yet. Jobs that hasn't started can always be aborted.
Jobs that are already executing can only be aborted if the plug-in supports it. The button will
not be visible if the plug-in doesn't supports being aborted.

Restart job
Retry a failed job with the same parameters. Sometimes the reason that a job failed can be fixed.
For example, by changing the permissions on items the job needs to access. Use this button
to place the job in the job queue again. It is not possible to change job parameters with one
exception, if the job uses a plug-in configuration and the configuration has been changed it is
possible to select if the old or new configuration values should be used.

Re-configure job
Retry a failed job with different parameters. This feeture is supported by most but not all plug-ins.
It is very useful when the failure is due to a misconfiguration and the job may succeed if it was
configured differently.

Really run
Some plug-ins have support for a dry-run mode that executes the job but doesn't save any
changes to the database. If the dry run completes successfully, this button can be used to run
the job for real.

Close
Close the window.

67

Chapter 9. Reporters
Reporter, a term coined by the MAGE object model refers to spotted DNA sequence on a microarray.
Reporters are therefore usually described by a sequence and a series of database identifiers qual-
ifying that sequence. Reporters are generally understood as the thing biologists are interested in
when carrying out DNA microarray experiments.

In BASE, reporters also refer to Affymetrix Probeset ID but reporters can be used to describe genes,
transcripts, exons or any other sequence entity of biological relevance.

9.1. Reporter types
Reporter Type allows classification of reporters based on their usage and qualification defined
during the array design specification. You can manage the reporter types by going to Administrate
� Types � Reporter types.

Figure 9.1. Reporter type properties

Name
The name of the reporter type. It is advised to define the name so that it is compatible with the

MIAME requirements1 and recommendations issues by microarray data repositories. Alternately,
the local reporter type could be submitted to those repositories for term inclusion.

Description
A description of the reporter type.

9.2. Reporters
Go to View � Reporters to view and manage the reporters.

1 http://www.mged.org/Workgroups/MIAME/miame.html

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Reporters

68

9.2.1. Import/update reporter from files
Reporters are used to represent genes, transcripts, exons and therefore come in their thousands.
To solve this problem, BASE relies on Reporter import plug-ins. Those need to be specifically
configured to deal with a particular input file format. This input file can be typically be an Axon GAL
file or an Affymetrix CSV file which both provide information about reporters and their annotations.
See Chapter 18, Import of data (page 135) for more information about importing and Section 21.2,
“Plug-in configurations” (page 171) for more information about configuring file formats.

Dealing with Affymetrix probesets

In BASE, Affymetrix probesets should be treated as reporters. The probeset ID could be stored
in both the Name and the External ID fields of the reporter table. Storing the probeset ID
should be enough as most analysis tools allow retrieval of updated information based on the
probeset ID from web resources.

For some Affymetrix chips the associated CSV file does not list all reporters on the actual chip.
This will lead to problems in later use of the affected chip types. Simply use the associated CDF
file to import the missing probesets into BASE, make sure not to upgrade existing reporters
when starting the plug-in.

9.2.2. Manual management of reporters
Reporters can also be created or edited manually one-by-one. This follows the same pattern as for
all other items and is described in general terms in Section 5.3, “Working with items” (page 25).

Figure 9.2. Reporter properties

This tab shows core information that would be common to all BASE instances.

Name
The name of the reporter. This is often the same as the External ID.

Reporters

69

External ID
The external ID of the reporter as it is defined in some database. The ID must be unique within
BASE. The external ID is what plug-ins uses to match reporter information found in raw data
files, array design files, etc.

Type
Optionally select a reporter type.

Gene symbol
The gene this reporter represents.

Figure 9.3. Extended reporter properties

Reporters belong to a special class whose properties can be defined and extended by system admin-
istrators. This is done by modifying the extended-properties.xml file during database configu-
ration or upgrade. All fields on this tab are automatically generated based on this configuration
and can be different from one server to the next. See Section 20.2, “Installation instructions” (page
150) and Appendix C, extended-properties.xml reference (page 409) for more information.

Note

It is possible to configure the extended properties so that links to the primary external databas-

es can be made. For example, the Cluster ID is linked to the UniGene database at NCBI2.

2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

Reporters

70

9.2.3. Deleting reporters
Deleted reporters cannot be restored

Reporters are treated differently from other items (e.g biosources or protocols) since they does
not use the trashcan mechanism (see Section 5.5, “Trashcan” (page 37)). The deletion happens
immediately and is an unrecoverable event. BASE will always show a warning message which
you must confirm before the reporters are deleted.

Reporters which has been referenced to from reporter lists, raw data, array designs, plates or any
other item cannot be deleted.

Batch deletion

A common problem is to delete reporters that has been accidentally created. The regular web inter-
face is usually no good since it only allows you to delete a limited number of reporters at a time. To
solve this problem the reporter import plug-in can be used in delete mode. You can use the same file
as you used when importing. Just select the delete option for the mode parameter in the configu-
ration wizard and continue as usual. If the plug-in is used in delete mode from a reporter list it will
only remove the reporters from the reporter list. The reporters are not deleted from the database.

Note

It may be a bit confusing to delete things from an import plug-in. But since plug-ins can only
belong to one category and we wanted to re-use existing file format definitions this was our
only option.

9.3. Reporter lists
BASE allows for defining sets of reporters for a particular use, for instance to define a list of reporters
to be used on an array. There are several ways to do so:

• Use the New reporter list button on the View � Reporters page. This creates a reporter list with
the current selection or filtered out reporters.

• Use the New button on the View � Reporter lists page. This creates an initially empty reporter list
that can be filled later.

• Use the New reporter list button on the Features tab on the single-item view page for an array
design. This creates a reporter list with all or some of the reporters used on the array design.

• Use the New reporter list button on the Raw data tab on the single-item view page for a raw
bioassay. This creates a reporter list with all or some of the reporters used by the raw bioassay.

• Use the New reporter list button on the Spot data tab on the single-item view page for a bioassay
set in the experiment analysis section. This creates a reporter list with all or some of the reporters
used by the current bioassay set.

• Use the New reporter list button on the Reporter search tab in experiment explorer. This creates
a reporter list with all or some of the reporters used by the current bioassay set.

Reporters

71

Figure 9.4. The Create reporter list called from the reporters page.

Name
The name of the reporter list.

External ID
An optional external ID. This value is useful, for example, for a tool that automatically updates
the reporter list from some external source. It is not used by BASE.

Which reporters
Select one of the options for specifying which reporters should be included in the list. This option
is only available when creating a new reporter list, not when editing an existing list. The default
is to create a list with all reporters that are in the current list.

Description
A description of the reporter list.

Tip

To add or remove reporters to the list use the Reporters tab on the single-item view page of a
reporter list. This tab lists all reporters in the list and there are functions for removing, adding
and importing reporters to the list.

9.3.1. Merging reporter lists
It is possible to modify a reporter list by merging it with other reporter lists. Go to the single-item
view page for a reporter list. There should be three buttons in the toolbar corresponding to three
main merge variants:

• Union: Add all reporters from the source lists to the destination list.

• Intersection: Keep only reporters that are present in all selected lists.

Reporters

72

• Complement: Keep only reporters that are unique for the destination list.

All three buttons open up the same dialog with different default selections.

Figure 9.5. Merge reporter lists

This list
Shows the name of the current reporter list.

What to do
In this drop-down list you can select if you want to add, keep or remove reporters from the
selected list based on if a reporter is present in one or all of some other reporter lists (selected
below). The image to the right gives an overview what will happen for the currently selected
alternatives. The red-colored areas indicate which reporters that are included in the final list.
The white-colored areas indicate reporters that doesn't pass the filter and are excluded from
the final list.

Reporter lists
You will need to select at least one more list to merge with.

73

Chapter 10. Annotations
10.1. Annotation Types
BASE has been engineered to closely map the MIAME concepts1. However, since MIAME is focused
on microarray processing workflow, information about the description biological samples themselves
was left out. BASE users are free to annotate biomaterials (and most BASE items) as they wish, from
basic free text description to more advanced ontology based terms. To accommodate the annotation
needs of users eager with detailed sample annotations and also the needs of very different communi-
ties, BASE provides a mechanism that allows a high level of annotation customization. BASE allows
to create descriptive elements for both quantitative annotation and qualitative annotation of Bioma-
terials via the Annotation Type mechanism. Actually, annotation types can be used to annotate
not only Biomaterials but almost all BASE items, from Plates to Protocols and Bioassay sets.

Go to Administrate � Types � Annotation types to manage your annotation types.

To create a new annotation type, click on the New… button. This behaves differently than other
buttons found elsewhere and you must select one of the 9 different types which can be split in 4
main groups.

• Integer, Long, Float and Double for numerical annotation types.

• String and Text for textual annotation types. The difference is that String:s can have a maximum
length of 255 characters and can have an attached list of predefined value. Text annotation types
have no practical limit and are always free-text.

• Boolean for declaring annotation types that can take one TRUE/FALSE values.

• Date and Timestamp for declaring annotation types used as calendar/time stamps.

Note

These distinctions matter essentially to database administrators who need fine tuning of
database settings. Therefore, creation of annotation type should be supervised by system ad-
ministrators.

The Edit annotation type window is opened in a pop-up. It contains several tabs.

1 http://www.mged.org/Workgroups/MIAME/miame.html

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Annotations

74

10.1.1. Properties
Figure 10.1. Annotation type properties

Name
The name of the annotation type.

External ID
An ID identifying this annotation type in an external database. This value can be used by tools
that need to update annotation types in BASE from external sources. The value does not have
to be unique and is not used by BASE.

Multiplicity
The maximum number of values that can be entered for this annotation type. The default is 1.
A value of 0, means that any number of values can be used.

Default value
A value that can be used as the default when adding values.

Required for MIAME
If a value must be specified for this annotation type in order for the experiment to be compliant
with MIAME.

Protocol parameter
If the annotation type is a protocol parameter. As a protocol parameter an item can only be
annotated if a protocol that includes this parameter has been used. See Section 13.1, “Protocol
parameters” (page 91) for more information.

Description
A short textual description to clarify the usage.

Annotations

75

10.1.2. Options

Figure 10.2. Annotation type options

The available options in this tab depends on the type of annotation type, eg. if is a string, numeric
or another type.

Interface
Select the type of graphical element to use for entering values for the annotation type. You can
select between three different options:

• text box: The user must enter the value in a free-text box.

• selection list: The user must select values from a list of predefined values.

• radiobuttons/checkboxes: The user must select values by marking checkboxes or radiobut-
tons.

The last two options requires that a list of values are available. Enter possible values in the
Values which will be activated automatically.

Tip

In term of usability, a drop-down list can be more easily navigated especially when the
number of possible values is large, and because selection-list and drop-down list allow
use of arrow and tab for selection.

Min/max value
Available for numerical annotation types only. Specifies the minimum and maximum allowed
value. If left empty, the bound(s) are undefined and any value is allowed.

Annotations

76

Max length
The maximum allowed length of a string annotation value. If empty, 255 is the maximum length.
If you need longer values than that, use a text annotation type.

Input box width/height
A suggested display width and height of the element used for input. These values are ignored
in the current implementation.

Values
A list of predefined values that the user is allowed to select from. This option is only activated
if the Interface option is set to selection list or radiobuttons/checkboxes. Actual values can
be supplied using one line for each value (a return entry is used as separator).

10.1.3. Item types

Figure 10.3. Annotation type items

On this tab you select the item types that you wish to annotate with the annotation type. Simply
use left and right buttons to move selection options between the Enabled for and Disabled for lists.

Note

If the annotation type has been marked as a Protocol parameter, these settings are ignored,
with one exception. If you wish to view parameter values in the list view for a specific item
type you must select the item type here. Otherwise the parameter will not be present as a
displayable column.

Annotations

77

10.1.4. Units
Figure 10.4. Annotation type units

Numerical annotation types can optionally be given a quantity and unit.

Quantity
Select which quantity to use for the annotation type. If you don't want to use units, select the
do not use units option.

The quantity can't be changed later

Once a quantity has been selected and saved for an annotation type, it is not possible to
change it to another quantity.

Default unit
This list will be populated with units from the selected quantity. You must select one default
unit which is the unit that is used if a user leaves out the unit when annotating an item. The
selected unit is also the unit that is used internally when storing the values in the database.

Do not change the default unit

If you change the default unit for an existing annotation type, all annotation values that
exists for it, must be converted to the new unit. This may result in loss of precision due
to rounding/truncation errors.

Use units
By default, all units of the selected quantity can be used when annotating items. If you want, you
may force the users to use some specific units by moving units into the Use units list. This is
recommended since the range of available units is usually quite large. For example, if the weight
of something is normally measured in milligrams, it may make sense to leave out kilograms, and
only use microgram, milligram and gram.

Annotations

78

10.1.5. Categories

Figure 10.5. Annotation type categories

Annotation type can be grouped together by placing them in one or more categories. This enhances
display by avoid overcrowding the list of annotation types presented to users. It also allows to improve
the display of information.

The Categories list displays the currently associated categories. Use the Add categories button to
add more categories, or the Remove button to remove the selected categories.

Create categories with the same name as item subtypes

If you, for example, have defined multiple subtypes of extracts (see Chapter 12, Item subtypes
(page 87)), it usually so that some annotation types are only intended for one subtype while
some other annotation types are only intended for the other subtype. If you create categories
with the same name as the item subtypes, BASE will automatically select the corresponding
category when annotating an extract with a subtype. This makes the interface cleaner and
easier to use since irrelevant annotation types are hidden. Note that it is possible for annota-
tions to be part of more than one category so it is also possible to define annotation types that
are intended for all types of extracts by including them in both categories.

10.2. Annotating items
Entering annotation values follow the same pattern for all items that can have annotations. They
all have a Annotations & parameters tab in their edit view. On this tab you can specify values
for all annotation types assigned to the type of item, and all parameters that are attached to the
protocol used to create the item. Some items, for example biosources and array designs cannot
have a protocol. In their case the tab is labelled Annotations.

Annotations

79

Figure 10.6. Annotating a sample

Click on an entry in the list of annotation types to show a form for entering a value for it to the right.
Depending on the options set on the annotation type the form may be a simple free text field, a list
of checkboxes or radiobuttons, or something else.

Annotation types with an X in front of their names already have a value.

Annotation types marked with angle brackets () are protocol parameters.

Select an option in the Categories list to filter the annotation types based on the categories they
belong to. This list contains all available categories, and three special ones:

• all: Display all annotation types

• protocol parameters: Display only those annotation types that are parameters to the current
protocol.

• uncategorized: Display only annotation types that has not been put into a category.

10.2.1. Inheriting annotations from other items
An item may inherit annotations from any of it's parent items. E.g. an extract can inherit annota-
tions from the sample or biosource it was created from. This is an important feature to make the

Annotations

80

experimental factors work. Annotations that should be used as experimental factors must be in-
herited to the raw bioassay level. See Section 17.3.2, “Experimental factors” (page 132) for more
information about experimental factors.

Figure 10.7. Inheriting annotations from a parent item

On this screen is a tree-like structure in two levels. The first level lists all parent items which has at
least one annotations. The second level lists the annotations and protocol parameters for the item.
Selecting an item in the first level will inherit all annotations from that item, including those that
you maybe add later. Selecting an annotation or protocol parameter at the second level will inherit
only the selected one.

Note

• The inheritance is implemented by reference. This means that if you change the value of an
annotation the new value is automatically picked up by those inheriting it.

• You cannot inherit annotations from an item which does not have annotations.

• If you delete an annotation from a parent item, the inheritance will be lost, even if you later
add a value again.

Warning

If you rearrange links to parent items after you have specified inheritance, it may happen that
you are inheriting annotation from non-parent items. This will be flagged with a warning icon

Annotations

81

in the list, and must be fixed manually. The item overview tool is an excellent help for locating
this kind of problems. See Section 5.6, “Item overview” (page 39).

10.2.2. Mass annotation import plug-in
BASE includes a plug-in for importing annotations to multiple items in one go. The plug-in read
annotation values from a simple column-based text file. Usually, a tab is used as the delimiter
between columns, but this is configurable. The first row should contain the column headers. One
column should contain the name or the external ID of the item. The rest of the columns can each
be mapped to an annotation type and contains the annotation values. If a column header exactly
match the name of an annotation type, the plug-in will automatically create the mapping, otherwise
you must do it manually. You don't have to map all columns if you don't want to.

Each column can only contain a single annotation value for each row. If you have annotation types
that accept multiple values you can map two or more columns to the same annotation type, or you
can add an extra row only giving the name and the extra annotation value. Here is a simple example
of a valid file with comma as column separator:

'Time' and 'Age' are integer types
'Subtype' is a string enumeration
'Comment' is a text type that accept multiple values
Name,Time (hours),Age (years),Subtype,Comment
Sample #1,0,0,alfa,Very good
Sample #2,24,0,beta,Not so bad
Sample #2,,,,Yet another comment

The plug-in can be used with or without a configuration. The configuration keeps the regular ex-
pressions and other settings used to parse the file. If you often import annotations from the same file
format, we recommend that you use a configuration. The mapping from file columns to annotation
types is not part of the configuration, it must be done each time the plug-in is used.

The plug-in can be used from the list view of all annotatable items. Using the plug-in is a three-step
wizard:

1. Select a file to import from and the regular expressions and other settings used to parse the file.
In this step you also select the column that contains the name or external ID the items. If a
configuration is used all settings on this page, except the file to import from, already has values.

2. The plug-in will start parsing the file until it finds the column headers. You are asked to select
an annotation type for each column.

3. Set error handling options and some other import options.

82

Chapter 11. Experimental platforms
and data file types
11.1. Platforms
An experimental platform in BASE can be seen as an item representing the set of data file types
that are produced or needed by a given experimental setup. For example, the Affymetrix platform
(as defined in BASE) uses CEL files for raw data and CDF files for array design information. The
concept of a platform is also tightly coupled to the ability to keep data in files instead of importing
it to the database. When you have selected a platform for a raw bioassay or an array design, you
also know which files you should provide.

BASE comes pre-installed with three platforms.

• A generic platform that can be used with almost any type of data that can be imported into the
database from simple column-based text files.

• The Affymetrix platform which keep data in CEL and CDF files instead of importing into the
database.

• A sequencing platform which uses GTF files to define array designs and FPKM counts as raw data.

Other platforms, such as Illumina, are available as non-core plug-in packages, see Section 3.2,
“BASE plug-ins site” (page 10). An administrator may define additional platforms and file types.

You can manage platforms going to Administrate � Platforms � Experimental platforms.

Figure 11.1. Platform properties

Experimental plat-
forms and data file types

83

Name
The name of the platform

External ID
An ID that is used to identify the platform. The ID must be unique and can't be changed once
the platform has been created.

File-only
If the platform is a file-only platform or not. File-only platforms can't have it's data imported into
the database. This option can't be changed once the platform has been created.

Raw data type
If you have selected file-only=no, you may select a raw data type. This will lock this platform to
the selected raw data type. If you select - any -, raw data of any raw data type can be used. This
option can't be changed once the platform has been created.

Channels
If you have selected file-only=yes, you must enter the number of channels the platform uses.
This information is needed in the analysis module of BASE to create the proper database tables.
This option can't be changed once the platform has been created.

Description
A description of the platform.

Figure 11.2. Select data file types

Data file types
This list contains the file types already associated with this platform. An [x] at the end of the
name indicates a required file.

Required
Mark this checkbox to indicate that the file is required for the platform.

Experimental plat-
forms and data file types

84

Note

The requried flag is not enforced when creating items. It is used for generating warnings
when validating an experiment and can be checked by plug-ins that may need the file in
order to run.

Allow multiple files
Mark this checkbox if it is possible to have more than one file of the given type. In most cases, a
single file is used, but some platforms (for example Illumina) may split data into multiple files.

Add data file types
Opens a popup window that allows you to add more file types to the platform.

Remove
Removes the selected file types from the platform.

11.2. Platform variants
It is possible for an administrator to define variants of a platform. The main purpose for this is to
be able to select additional file types that are only used in some cases. The file types defined by the
parent platform are always inherited by the variants.

You can create new variants from the single-item view of a platform. This view also has a Variants
tab which lists all variants that has been defined for a platform.

11.3. Data file types
Each file type used by a platform must be registered as a data file type. For example, CEL and CDF
files are file types used by the Affymetrix platform. There are several purposes of a data file type:

• Describe the file type and make it identifiable. Each file type must have a unique ID which makes
it possible to find out if a specific file has been added to an item. For example, to find the CEL
file of a raw bioassay.

• Connect a specific file type with a generic file type. For example, the CEL file is used to store raw
data for an experiment. Another platform may use a different file type. Both file types are of the
generic type raw data. This makes it possible for client applications or plug-ins to find the raw data
for an experiment without actually knowing which file types that are used on various platforms.

• Make it possible to validate and extract metadata from attached files. This is done by extensions.
Currently, BASE ships with extensions for CEL, CDF and GTF files, but the administrator may
have installed extensions for other file types. See Section 26.8.8, “Fileset validators” (page 257)
for more information about creating extensions.

You can manage data file types by going to Administrate � Platforms � Data file types.

Experimental plat-
forms and data file types

85

Figure 11.3. Data file type properties

Name
The name of the file type.

External ID
An ID that is used to identify the file type. The ID must be unique and can't be changed once
the file type has been created.

Item type
The type of item files of this file type can be attached to. This option can't be changed once the
file type has been created.

File extension
The commonly used file extension for files of this type. Optional.

Generic type
The generic type of data that files of this type contains. For example, CEL files contains raw data
and CDF files contains a reporter map (in BASE terms).

Description
A description of the file type.

11.4. Selecting files for an item
Selecting files for an item follows the same pattern for all items that supports it. They all have a
Data files tab in their edit view. On this tab you can select files for all file types that are defined
by the platform or subtype of the item.

Experimental plat-
forms and data file types

86

Figure 11.4. Selecting files for an array design

The list contains all file types that are defined by by the platform or subtype that is selected on the
Properties tab. Use the Browse or Add icons to select files from the file manager. Note that for some
file types only a single file can be selected, but for other file types multiple files are allowed. The
dropdown list contains recently used files as well as an option to clear the selected file.

Validate files
Mark this checkbox if you want to validate and extract metadata from the selected files. The
checkbox is automatically checked if changes are made.

Note

Validation and metadata extraction is performed by extensions. The checkbox is only visible
if there is at least one installed extension that supports validation of the current file types.

87

Chapter 12. Item subtypes
Several of the main item types in BASE can be subclassified by subtypes. This includes for example,
biosources, samples and extracts as well as protocols, hardware and software. One of the main
reasons for subtypes is to group items together and allowing users to filter out items that are or no
interest in the current context. For example, the protocol selection list when creating an extract is
filtered to only show Extraction protocols.

The filtering can be even more fine-grained by linking subtypes to each other. For example, in a
standard BASE installation there are two extract subtypes: Labeled extract and Library. The la-
beled extract subtype is linked with the Labeling protocol subtype and the library subtype is linked
with the Library preparation protocol subtype. So by assigning the correct subtype to a protocol,
BASE knows which one that should be used when creating a labeled extract and which one should
be used when creating a library.

Project default items

This feature can be a real time-saver when used together with project default items (see Sec-
tion 6.2.4, “Default items” (page 49)). When creating new items (eg. a biomaterial) BASE will
search among the default items in the active project for protocols, hardware, software, etc. and
automatically select the best match based on the subtype of the new item.

Subtypes are typically added to a BASE server by an administrator and can be managed from Ad-
ministrate � Types � Item subtypes.

12.1. Item subtype properties
Figure 12.1. Item subtype properties

Item subtypes

88

Name
The name of the subtype.

Main item type
Select the main item type that the subtype can used on. This can't be changed later.

Description
A optional description of the subtype.

Related subtypes
This section allows you to select other subtyps that are related to the current subtype. The
possible options depend on the which the main item type is. For example, for biosource there
are no other related subtypes, but a derived bioassay can have a related physical bioassay and
extract as well as protocol, hardware and software subtypes.

12.2. File types
Figure 12.2. Item subtype file types

If the main item type for a subtype is a derived bioassay (which has support for linking of data
files) it is possible to select data file types (see Section 11.3, “Data file types” (page 84)) that can
be used for items of the given subtype. This is very similar to how the selected platform of a raw
bioassay or array design dictates which files types that can be used.

File types
The list contains the file types that are currently associated with the item subtype.

Required
Mark this checkbox to indicate that the file is required for all items of the given subtype.

Item subtypes

89

Note

The requried flag is not enforced when creating items. It is used for generating warnings
when validating an experiment and can be checked by plug-ins that may need the file in
order to run.

Allow multiple files
Mark this checkbox if it is possible to have more than one file of the given type. In most cases,
a single file is used, but some subtypes, for example Scan, may generate multiple images.

Add file types
Click on this button to open a popup window for selecting more file types to associated with
the item subtype.

Remove
Click on this button to remove the association with the selected file types.

90

Chapter 13. Protocols
A protocol is a document describing some kind of process that is typically performed in the lab
to create an item of some type (for example, how to create an extract from a sample). It can also
represent a procedure for running software programs to extract measured data (for example, from
a scanned microarray image). A protocol in the simplest form is just a name with an optional link to
a file. The file may for example be a PDF or some other document with a more detailed description.

Protocols are typically added to a BASE server by an administrator and can be managed from Ad-
ministrate � Protocols.

Figure 13.1. Protocol properties

This tab allows users to enter essential information about a protocol.

Name
The name of the protocol.

Type
The protocol type of the protocol. The list may evolve depending on additions by the server
administrator. Selecting the proper protocol type is important and enables BASE to automatically
guess the most likely protocol when creating new items. See Chapter 12, Item subtypes (page
87) for more information.

External ID
An ID identifying this protocol in an external database. The value does not have to be unique.

File
A document containing the protocol description, e.g. PDF documents from kit providers to the
protocol. Use the Select button to select or upload a file.

Protocols

91

Description
A description of the protocol.

13.1. Protocol parameters
BASE users may declare parameters attached to a particular protocol. Parameters are selected from
a list of annotation types which have been flagged as parameters. Annotation types which has been
selected as parameters show up in the regular annotation dialog whenever the protocol is used for
an item. For more information see Chapter 10, Annotations (page 73).

Figure 13.2. Protocol parameters

Annotation types
This list contains the annotation types selected as parameters for the protocol.

Add annotation types
Use this button to open a pop-up where you can select annotation type to use for parameters.
The list only shows annotations types which has the Protocol parameter flag set.

Remove
Removes the selected annotation types from the list.

The Annotations tab allows BASE users to use annotation types to refine protocol description. More
about annotating items can be read in Section 10.2, “Annotating items” (page 78).

92

Chapter 14. Hardware and software
14.1. Hardware
A hardware is used in BASE to represent a piece of equipment in the lab that is used in the exper-
iments. Information about hardware is typically added to a BASE server by an administrator and
can be managed from Administrate � Hardware.

Figure 14.1. Hardware properties

Name
The name of the hardware.

Type
The hardware type of the hardware. The list may evolve depending on additions by the server
administrator. Selecting the proper hardware type is important and enables BASE to automati-
cally guess the most likely hardware when creating new items. See Chapter 12, Item subtypes
(page 87) for more information.

Version
The version number or model of the hardware.

Description
A description of the hardware.

14.2. Software
A software item is used in BASE to represent the software that is used to process and analyze data
outside of BASE. Analysis that is done inside BASE is usually represented as plug-ins. Information
about software is typically added to a BASE server by an administrator and can be managed from
Administrate � Software.

Hardware and software

93

Figure 14.2. Software properties

Name
The name of the software.

Type
The software type of the software. The list may evolve depending on additions by the server ad-
ministrator. Selecting the proper software type is important and enables BASE to automatically
guess the most likely software when creating new items. See Chapter 12, Item subtypes (page
87) for more information.

Version
The version number of the software.

Description
A description of the software.

94

Chapter 15. Array LIMS
Arrays are at the core of the BASE business and are essential elements to describe in order to be

MIAME1 compliant. It is also critical to track and manage information about microarray design as
accurately as possible since mistakes could prove extremely costly in downstream analysis. As a
good practice, all array related information should be entered into BASE prior to work on describing
the sample processing and hybridizations or other events making up an experiment is begun.

15.1. Array designs
Array designs should be understood as a plan which can be realized during a printing process
producing microarray slides. During the course of the printing process, reagents may run out leading
to the interruption of this process. All slides created during this printing process belong to the
same printing batch. It is the array slide that will eventually be used in a hybridization event. BASE
allows user to track those 3 entities with great details. This is an important functionality for users
producing their own arrays and for those caring for quality control and tracking of microarray slides
in a printing facility. The following sections detail how to use BASE to help in these tasks.

Non-array platforms also need array designs

Array designs are needed also for non-array platforms (eg. sequencing). In this case a "virtual
array design" is created which is simply a list of all features that is of interest in the experiment.
Since there are no coordinates or positions to identify features a unique id need to be con-
structed in some other way. For example, in sequencing experiments we may use a GTF file to
create a virtual array design using the transcript_id and chromosome as a unique identifier.

Use Array LIMS � Array designs to get to the list page with array designs.

1 http://www.mged.org/Workgroups/MIAME/miame.html

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html

Array LIMS

95

15.1.1. Properties
Figure 15.1. Array design properties

Name
Provide an sensible name for the design (required).

Platform
Select the platform / variant used for the array design. The selected options affects which files
that can be selected on the Data files tab.

Arrays/slide
The number of sub-arrays that can be placed on a single slide. The default value is 1, but some
platforms, for example Illumina, has slides with 6 or 8 arrays. In sequencing platforms, this
value is the number of lanes on a flow cell.

Description
Provide other useful information about the array design in this text area.

Click on the Save button to store the information in BASE or on the Cancel button to abort.

The Data files tab allows BASE users to attach files to the array design. The possible file types are
defined by the array design's platform. See Section 11.4, “Selecting files for an item” (page 85) for
more information.

The Annotations tab allows BASE users to use annotation types to refine array design description.
More about annotating items can be read in Section 10.2, “Annotating items” (page 78).

Array LIMS

96

This Inherited annotations tab contains a list of those annotations that are inherited from the
array design's parents (eg. plates). Information about working with inherited annotations can be
found in Section 10.2.1, “Inheriting annotations from other items” (page 79).

15.1.2. Importing features to an array design
Importing features is an important step in order to fully define an array design. It should be noted
that BASE does not enforce the immediate feature import upon creation of array design. However,
it is STRONGLY advised to do so when creating an array design. Performing the import enables use
of the array design in downstream analysis with no further trouble. It also matters when importing
raw bioassay data and matching those to the corresponding array design.

Depending on which platform and/or data files you selected when you created the array design
the process to import features is different. For example, if you selected the Affymetrix platform,
which is a file-only platform, the feature information has already been extracted from the CDF file
(if you selected one). If the selected platform doesn't extract information from the selected data file
automatically this may be done manually by executing an import plug-in.

From the array design item view, click on the Import button and use the reporter map importer
and an appropriate plug-in configuration when following the instructions in Chapter 18, Import of
data (page 135). If the import run is successful, go to the array design list view. The Has features
column will show Yes (db: x, file: y) where x is the number of features actually imported into the
database.

Note

The Import button only shows up if the logged in user has enough permissions.

Verify that probsets in a CDF file exist as reporters

File-only platforms, such as Affymetrix, require that all probesets must exist as reporters before
data can be analysed. For other platforms this is usually checked when importing the features
to the database. Since no import takes place for file-only platforms, another manual step takes
it place. Use the Import button in the array design item view and select the Affymetrix CDF
probeset importer plug-in. If you have enough permissions this function will also let you
create missing reporters.

15.2. Array batches
Beside the common way of creating items in BASE, an array batch can also be created directly from
an array design, both in list view and single item view.

In list view of array design

Click on the icon available from the Batches column of the array design you want to use.

Tip

As default in BASE the Batches column is hidden and need therefore be made visible first,
see Section 5.4.3, “Configuring which columns to show” (page 34)

New batch… is the corresponding button in single item view. The current array design will auto-
matically be filled in the array design property for the new batch.

Array LIMS

97

Figure 15.2. Array batch properties

Name
The name of the array batch (required).

Array design
Array design that is used for the batch.

Print robot
The print robot that is used.

Protocol
The printing protocol that was followed when producing the array batch

Description
Provide other useful information about the array batch in this text area.

Click on the Save button to store the information in BASE or on the Cancel button to abort.

15.3. Array slides
Use Array LIMS � Array slides to get to the list page of array slides.

15.3.1. Creating array slides
In BASE, array slides can be created, except the common way, by 2 routes:

Array LIMS

98

from the array batch list page

Clicking on the icon in the Slides column for the batch you want to add a slide to. Corre-
sponding button in the view page of a batch is New slide… .

using a wizard to create multiple slides simultaneously
This can be started from three different places:

• array batch list view by clicking on in the Slides column of the batch that should be used.

• Using the Create slides in a single item view of an array batch.

• In the list page of array slides, using the Create multiple… button
The wizard is described further down in Section 15.3.2, “Multiple slides wizard” (page 99).

Figure 15.3. Create new array slide

Name
The name of the array slide (required).

Barcode
Does the array slide have a barcode, it can be put here.

Destroyed
This check-box can be ticked to mark the slide as destroyed, lost or damaged.

Array batch
Array batch that the slide belongs to (required).

Index
The index of the array slide in selected array batch.

Array LIMS

99

Description
Any information useful information about the slide can be in this field.

Click on the Save button to store the information in BASE or on the Cancel button to abort.

15.3.2. Multiple slides wizard
As mentioned above there is an alternative to create one slide at a time if you have many to add. There
is a wizard that can help you to create at the most 999 slides in one go. The wizard is in two steps:

Figure 15.4. Create multiple array slides - step 1

The first step reminds alot of the normal edit window of an array slide:

Name
The name prefix of the array slides. Each array slide will be numbered according to the start
at and pad size settings below.

Array batch
Array batch that the slides belongs to (required).

Quantity
Number of slides to create with this wizard (required and must be between 1 and 999)

Start at
The index number to start from when indexing the name of the slides.

Pad size
The index will be filled out with zeros in front to always have this length.

Array LIMS

100

Click on Next to move on to the second step of the wizard.

Figure 15.5. Create multiple array slides - step 2

This step allows the names of the array slides to be adjusted if needed. It is also possible to enter
barcodes for each of the new slides. The information can either be filled in one-by-one or by using

the "scratchpad" icon . This opens up a larger text window where the names or barcodes can be
entered one per line. This can be useful if the information can be pasted from an external source.

Click on the Save button to store the information in BASE or on the Cancel button to abort the
wizard.

101

Chapter 16. Biomaterial LIMS
The generic term biomaterial refers to any biological material used in an experiment. Biomaterial is
divided in three main components, biosources, samples and extracts. The biomaterials can then
be subclassified further by the use of subtypes (see Chapter 12, Item subtypes (page 87)). BASE
has, for example, defined two extracts subtypes: Labeled extract (used in microarray experiments)
and Library (used in sequencing experiments). The order used in presenting those entities is not
innocuous as it represents the sequence of transformation a source material undergoes until it is
in a state compatible for further exeperimental processing. This progression is actually mimicked
in the BASE Biomaterial LIMS menu again to insist on this natural progression.

• Biosources correspond to the native biological entity used in an experiment prior to any treatment.

• Samples are central to BASE to describe the sample processing. So samples can be created from
other samples if user want to track sample processing event in a finely granular fashion.

• Extracts correspond to nucleic acid material extracted from a tissue sample or a cell culture
sample.

BASE allows users to create any of the these entities fairly freely, however it is expected that users
will follow the natural path of the laboratory workflow.

16.1. Biosources
Biosources correspond to the native biological entity used in an experiment prior to any treat-
ment. Biosources can be added to BASE by most users and are managed from Biomaterial LIMS �
Biosources. Use the New… button to create a new biosource. This brings up the dialog below.

Figure 16.1. Biosource properties

Name
This is the only mandatory field. BASE by default assigns New biosource as name but it is
advised to provide unique sensible names.

Biomaterial LIMS

102

Type
The subtype of the biosource. The list may evolve depending on additions by the server admin-
istrator. Selecting the proper subtype is recommended and enables BASE to automatically guess
the most likely subtype when creating child biomaterial. See Chapter 12, Item subtypes (page
87) for more information.

External ID
An external reference identifiers (e.g. a patient identification code) can be supplied using this
field.

Description
A free text description can be supplied using this field.

The Annotations tab allows BASE users to use annotation types to refine biosource description.
More about annotating items can be read in Section 10.2, “Annotating items” (page 78)

16.2. Samples
Samples result from processing events applied to biosource material or other samples before they
are turned into an extract. In other words, samples can be created from biosource items or from
one or more sample items. When a sample is created from several other samples, a pooling event
is performed.

For every step of transformation from biosource to sample, it is possible to provide information about
the protocol used to perform this task. It is not enforced in BASE but it should serve as guidance
when devising the granularity of the sample processing task. Also, it is good practice to provide
protocol information to ensure MIAME compliance.

Use Biomaterial LIMS � Samples to get to the list of samples.

16.2.1. Create sample
Beside the common way, using the New… button, a sample can be created in one of the following
ways:

from either biosource list- or single view- page.
No matter how complex the sample processing phase is, at least one sample has to be anchored

to a biosource. Therefore, a natural way to create an sample is to click on in the Samples
column of the biosource list view. There is also a corresponding button, New sample… in the
toolbar when viewing a single biosource.

from the sample list page

Child samples can be created from a single parent by clicking on the icon in the Child samples
column. Pooled samples can be created by first selecting the parents from the list of samples
and then click the Pool… button in the toolbar.

Biomaterial LIMS

103

16.2.2. Sample properties

Figure 16.2. Sample properties

Name
The sample's name (required). BASE by default assigns names to samples (by suffixing s# when
creating a sample from an existing biosource or New Sample otherwise) but it is possible to
edit at will.

Type
The subtype of the sample. The list may evolve depending on additions by the server adminis-
trator. Selecting the proper subtype is recommended and enables BASE to automatically guess
the most likely subtype when creating child biomaterial. See Chapter 12, Item subtypes (page
87) for more information.

External ID
An identification used to identify the sample outside BASE.

Original quantity
This is meant to report information about the actual mass of sample created.

Created
A date when the sample was created. The information can be important when running quality
controls on data and account for potential confounding factor (e.g. day effect).

Registered
The date at which the sample was entered in BASE.

Biomaterial LIMS

104

Protocol
The protocol used to produce this sample.

Bioplate
The bioplate where this sample is located.

Biowell
Biowell that holds this sample. Bioplate has to be defined before biowell can be selected.

Description
A text field to report any information that not can be captured otherwise.

16.2.3. Sample parents

Figure 16.3. Sample parents

This is meant to keep track of the sample origin. BASE distinguishes between two cases which are
controlled by the Parent type radio-button in the edit pop-up window.

• If the parent is a biosource the radio-button is set to Biosource. Only a single biosource can be
used as the parent. This option is automatically selected if the user selects a biosource with the
Select biosource button.

• When the parent is one or several other samples the radio-button is set to Sample. This option
is automatically selected if the user add samples with the Add samples button. For each parent
sample, it is possible to specify the amount used in µg. This will automatically update the re-
maining quantity of the parent.

Biomaterial LIMS

105

The Annotations tab allows BASE users to use annotation types to refine sample description. More
about annotating items can be read in Section 10.2, “Annotating items” (page 78)

This Inherited annotations tab contains a list of those annotations that are inherited from the
sample's parents. Information about working with inherited annotations can be found in Sec-
tion 10.2.1, “Inheriting annotations from other items” (page 79).

16.3. Extracts
Extract items should be used to describe the events that transform a sample material into an extract
material. An extract can be created from one sample item or from one or more extract items. When
an extract is created from several other extracts, a pooling event is performed.

During the transformation from samples to extracts, it is possible to provide information about the
protocol used to perform this task. It is not enforced in BASE but it should serve as guidance when
devising the granularity of the sample processing task. Also, it is good practice to provide protocol
information.

Use Biomaterial LIMS � Extracts to get to the list of extracts.

16.3.1. Create extract
Beside the common way, using the New… button, an extract can be created in one of the following
ways:

from either sample list- or single view- page.
No matter how complex the extract processing phase is, at least one extract has to be anchored

to a sample. Therefore, a natural way to create an extract is to click on in the Child extracts
column for the sample that should be a parent of the extract. There is also a corresponding
button, New child extract… in the toolbar when viewing a single sample.

from the extract list page

Child extracts can be created from a single parent by clicking on the icon in the Child extracts
column. Pooled extract can be created by first selecting the parents from the list of extracts and
then press Pool… in the toolbar. The selected extracts will be put into the parent property.

Biomaterial LIMS

106

16.3.2. Extract properties

Figure 16.4. Extract properties

Name
A mandatory field for providing the extract name. BASE by default assigns names to extract (by
suffixing e# when creating an extract from an existing sample or New extract otherwise) but
it is possible to edit it at will.

Type
The subtype of the extract. The list may evolve depending on additions by the server adminis-
trator. Selecting the proper subtype is recommended and enables BASE to automatically guess
the most likely subtype when creating child biomaterial and bioassays. See Chapter 12, Item
subtypes (page 87) for more information.

Tag
If the extract has been marked with a tag, select it here. Note that the subtype of the extract
usually limits what kind of tag that can be used. For example, a labeled extract should be
tagged with a label.

External ID
The extracts identification outside BASE

Original quantity
Holds information about the original mass of the created extract.

Biomaterial LIMS

107

Created
The date when the extract was created. The information can be important when running quality
controls on data and account for potential confounding factor (e.g. day effect)

Registered
This is automatically populated with a date at which the sample was entered in BASE system.

Protocol
The extraction protocol that was used to produce the extract.

Bioplate
The bioplate where this extract is located.

Biowell
Biowell that holds this extract. Bioplate has to be defined before biowell can be selected.

Description
A text field to report any information that not can be captured otherwise.

16.3.3. Extract parents
Figure 16.5. Extract parents

This is meant to keep track of the extract origin. BASE distinguishes between two cases which are
controlled by the Parent type radio-button in the edit pop-up window.

• If the parent is a sample the radio-button is set to Sample. Only a single sample can be used
as the parent. This option is automatically selected if the user selects a sample with the Select
sample button.

Biomaterial LIMS

108

• When the parent is one or several other extracts the radio-button is set to Extract. This option is
automatically selected if the user add extracts with the Add extracts button.

For each parent item, it is possible to specify the amount used in micrograms. This will automatically
update the remaining quantity of the parent.

The Annotations tab allows BASE users to use annotation types to refine extract description. More
about annotating items can be read in Section 10.2, “Annotating items” (page 78)

This Inherited annotations tab contains a list of those annotations that are inherited from the
extract's parents. Information about working with inherited annotations can be found in Sec-
tion 10.2.1, “Inheriting annotations from other items” (page 79).

16.4. Tags
Before attempting to create tagged extracts, users should make sure that the appropriate tag object
is present in BASE. To browse the list of tags, go to Biomaterial LIMS � Tags

Figure 16.6. Tag properties

The tag item is very simple and does not need much explanation. There are only a few properties
for a tag.

Name
The name of the tag (required).

Type
The subtype of the tag. The list may evolve depending on additions by the server administrator.
Selecting the proper subtype is important and enables BASE to automatically guess the most
likely tag when creating tagged extracts (eg. a Label for a Labeled extract or a Barcode for a
Library). See Chapter 12, Item subtypes (page 87) for more information.

Description
An explaining text or other information associated with the tag.

Biomaterial LIMS

109

16.5. Bioplates
With bioplates it is possible to organize biomaterial such as samples and extracts into wells. Each
plate has a number of wells that is defined by the plate geometry.

Use Biomaterial LIMS � Bioplates to get to the list of bioplates.

16.5.1. Bioplate properties

Figure 16.7. Bioplate properties

Name
The bioplate name. The name does not have to be unique but it is recommended to keep it
unique. BASE by default assigns New bioplate as name. This field is mandatory.

Bioplate type
The type of the bioplate may be a generic storage plate that can store any type of biomaterial or a
locked plate that can only store a single type of biomaterial. This field is mandatory and can only
be set for new bioplates. See Section 16.5.3, “Bioplate types” (page 111) for more information.

Plate geometry
Information about the plate design defining the number of rows and columns on the bioplate.
This field is mandatory and can only be set for new bioplates.

Storage location
The location, for example a freezer, where the bioplate is stored. Optional.

Biomaterial LIMS

110

Section
The section within the freezer where the bioplate is stored. Optional.

Tray
The tray within the section where the bioplate is stored. Optional.

Position
The position within the tray where the bioplate is stored. Optional.

Barcode
Barcode of the bioplate. Optional.

Description
Other useful information about the bioplate. Optional.

The Annotations tab allows BASE users to use annotation types to refine bioplate description. More
about annotating items can be read in Section 10.2, “Annotating items” (page 78)

16.5.2. Biowells
Biowells existence are managed through the bioplate they belong to. Creating a bioplate will auto-
matically create the biowells (as given by the selected geometry) on the plate. The wells are initially
empty. To add biomaterial to the plate go to the single-item view page for the bioplate. This page
includes an overview of the layout of the plate. Clicking on an empty well will open a popup dialog
that allows you to select a biomaterial. The same dialog can also be accessed from the Wells tab.
Assigning a biomaterial to a biowell can also be done when editing a sample or extract, or by using
the Place-on-plate wizard.

Figure 16.8. Biowell properties

Bioplate
Shows which bioplate the biowell is located on. This property is read-only.

Well location
The biowell location on the bioplate in row+column format. This property is read-only.

Biomaterial LIMS

111

Biomaterial type
The type of biomaterial stored in this biowell. This property must be selected before before a
biomaterial can be selected. On some plates this is locked due to settings in the bioplate's type.

Biomaterial
Name of the biomaterial in this biowell. Before changing this you must select the appropriate
Biomaterial type. A biomaterial can only be placed in a single well. If the selected biomaterial
is already placed in another location it will be moved.

16.5.3. Bioplate types
Bioplate types are used to subclassify bioplates and may put restrictions on them. BASE ships with
a few pre-defined bioplate types. The Storage plate type is a generic plate type that can be used for
all types of biomaterial and doesn't have any other restrictions on it. The reaction plate types are
locked to a single type of biomaterial and have a restriction that biomaterial can never be moved
out from a well once it has been placed there.

Figure 16.9. Bioplate type properties

Name
The name of the bioplate type.

Biomaterial type
Select if bioplates using this type should be locked to specific biomaterial type or not. This
property can only be set for new bioplate types.

Biomaterial subtype
If a specific biomaterial type has been selected it is also possible to further restrict the use of the
bioplate to a certain biomaterial subtype. The restriction is not enforced by the core but is mainly
used by the gui to provide smart filters in selection lists, in the bioplate event wizards, etc.

Biomaterial LIMS

112

Storage type
The subtype of the hardware item (eg. freezer, cabinet) where bioplates with this bioplate type
usually are stored.

Well lock mode
This option controls the wells on bioplates using this type. There are four options:

• Unlocked: The wells are unlocked and biomaterial can be added and removed freely any num-
ber of times.

• Locked after add+clear: A biomaterial can be placed once in the well and then moved to
another bioplate. After that the well becomes locked and it is not possible to add a different
biomaterial to it.

• Locked after add: The wells are locked as soon as biomaterial is added to them. The bioma-
terial can't be moved to another place or be replaced with other biomaterial.

• Locked at plate creation: The wells are locked as soon as the bioplate has been saved to the
database. This lock mode is primarily intended to be used when plug-ins are creating and
populating the bioplate as a single event.

Description
Other useful information about the bioplate type. Optional.

16.5.4. Bioplate events
Certain actions can be applied collectively to the biomaterial on a bioplate, either as a whole or
a subset that is picked by the user. A list of the available actions can be found on the list page
Biomaterial LIMS � Bioplate event types. Although it is possible to create more event types here there
is usually no meaning to do so, since each event needs a specailized GUI wizard to take care of it.
The possibility to add more event types should be seen as an opportunity for extension development.

Biomaterial LIMS

113

The place-on-plate event

Figure 16.10. Place on plate wizard

This event is available on the sample and extract list pages and can be used to place multiple
biomaterial on a bioplate in one go. Click on the Place on plate button to start the wizard. The
wizard will automatically use the selected biomaterials or, if none are selected, all listed biomaterials
that aren't alredy located on a plate.

Event name
Give a name to the event, or keep the suggested name.

Event date
The date of the event.

Protocol
The protocol used in the event, if any.

Hardware
The hardware item used in the event, if any.

Biomaterial LIMS

114

Description
Other comments about the event.

Select plate...
You need to select an existing plate on which the biomaterial should be placed. It is only possible
to use one plate in each event. If you want to place biomaterial on more than one plate, the
wizard must be repeated for each destination plate.

Clear
Clear all current placement.

Place by row/column
Automatically place the remaining biomaterial by filling empty wells, starting with rows or
columns.

Items to place
This column contains the biomaterial that should be placed on the plate. When a destination
plate has been selected, it is displayed as a grid to the right. To place a biomaterial either use the
Place by row or Place by column buttons, or select an item in this list. When an item has been
selected, click on the destination well on the plate. The coordinate of the well is displayed in the
gray area before the biomaterial name and a line is drawn between it and the destination well.
The destination well is also marked with an icon. If the Auto-select next unmapped item is
selected the selection is automatically moved to the next biomaterial which can then be placed
by selecting another destination well. If a mistake is made it is easy to correct. Simply re-select
the item and then click on the correct well.

When the biomaterial has been placed on the plate (it is not neccessary to place all of them) click
on Save to store everything. BASE will create a plate event for the selected destination plate and
"other"-type events for each biomaterial that was placed on it.

Biomaterial LIMS

115

The move biomaterials event

Figure 16.11. Move biomaterials wizard

This event is available on the single-item view page of a bioplate and can be used to move biomaterial
from one plate to another. Click on the Move biomaterial button to start the wizard.

Event name
Give a name to the event, or keep the suggested name.

Event date
The date of the event.

Protocol
The protocol used in the event, if any.

Hardware
The hardware item used in the event, if any.

Biomaterial LIMS

116

Description
Other comments about the event.

Select plate...
You need to select an existing plate to which the biomaterial should be moved. It is only possible
to use one plate in each event. If you want to move biomaterial to more than one plate, the wizard
must be repeated for each destination plate.

Clear
Clear all current mapping between the source and destination plates.

Place by row/column
Automatically move the remaining biomaterial by filling empty wells, starting with rows or
columns.

Predefined mapping
Use this button to select a predefined mapping between source and destination wells. The bio-
material will be moved according to the mapping.

Source plate
This displays the source plate as a grid with icons that indicate filled and movable wells. When
a destination plate has been selected, it is displayed as a similar grid to the right. To move a
biomaterial either use the Place by row, Place by column or Predefined mapping buttons, or
select a well on the source plate. When a source well has been selected, click on a well on the
destination plate. A line is drawn between the source and destination wells and the icons are
updated to show what is going on. The wells on the destination plate will also show the coordinate
of the mapped source well unless the Show source coordinates checkbox is deselected. If a
mistake is made it is easy to correct. Simply re-select the source well and then click on the
correct destination well.

When the biomaterial has been mapped between the source and destination plates (it is not nec-
cessary to map all of them) click on Save to store everything. BASE will create a plate event for the
selected plates and "other"-type events for each biomaterial that was moved.

Biomaterial LIMS

117

The create child plate event
Figure 16.12. Create child plate wizard - step 1

This event is available on the single-item view page of a bioplate when the bioplate is limited to a
single type of biomaterial (eg. only samples or only extracts). The event is used to create either a
child bioplate with biomaterial that is derived from the biomaterial on the parent plate or to create
one or more physical bioassays. Click on the Create child bioplate button to start the wizard.

The wizard has two steps. In the first step you set properties that are related to the event and to the
creation of child plates and biomaterial. The first step is divied into three main sections.

Event

Event name
Give a name to the event, or keep the suggested name.

Event date
The date of the event.

Protocol
The protocol used in the event, if any.

Biomaterial LIMS

118

Hardware
The hardware item used in the event, if any.

Description
Other comments about the event.

Child biomaterial

Type
The type of child items to create. If the source plate contains samples, you can select between
sample and extract and if the source plate contains extract you can select between extract and
physical bioassay.

Subtype
The subtype to assign to the newly created biomaterial (or physical bioassay). The list of options
is automatically updated based on the selection in the Type list.

Tag
Visible when creating child extracts only. Select the tag to assign to the new extract. If no tag
is selected and the source biomaterial is also extracts, the children will get the same tag as
their parents.

Original quantity
The original quantity of the new biomaterial. Not visible when creating a physical bioassay.

Used quantity
The quantity that was used from the parent biomaterial in the process of creating child bioma-
terial.

Description
Other comments about the new biomaterial.

Child plates

No. of plates
The number of child plates to create. The default value is 1.

Name prefix
The child plates will be named using the prefix plus a running number starting with 0. Eg. New
plate.0.

Geometry
The geometry of the child plates. The default is the same geometry as the parent plate. This
option is replaced with Size of bioassay when creating a physical bioassay.

Plate type
The plate type of the child plates. Not used when creating a physical bioassay.

Freezer
The freezer in which the new child plates are located. Not used when creating a physical bioassay.

Description
Other comments about the new child plates.

Biomaterial LIMS

119

Figure 16.13. Create child plate wizard - step 2

The second step display the source plate and new child plates as a grid. To create child biomaterial
either use the Place by row, Place by column or Predefined mapping buttons, or select a well
on the source plate. When a source well has been selected, click on a well on the destination plate.
A line is drawn between the source and destination wells and the icons are updated to show what
is going on. The wells on the destination plate will also show the coordinate of the mapped source
well unless the Show source coordinates checkbox is deselected. If a mistake is made it is easy to
correct. Simply re-select the source well and then click on the correct destination well.

When a child biomaterial is selected you have the option to override the automatially generated
name. It is also possible to change the name and barcode of the child plate.

Note
The principle is the same when creating physical bioassays, except that no new child bioma-
terial is created.

When the biomaterial has been mapped between the source and destination plates (it is not nec-
cessary to map all of them) click on Save to store everything. BASE will create a plate event for the
selected plates and "create" or "bioassay"-type events for each biomaterial that was used.

Biomaterial LIMS

120

16.6. Biomaterial lists
TODO

16.7. Physical bioassays
A physical bioassay represents the application of one or more extracts to an experimental setup
designed to measure quantities that we are interested in. For example, a Hybridization event cor-
responds to the application of one or more Labeled extracts materials to a microarray slide under
conditions detailed in hybridization protocols. Use View � Physical bioassays to get to the bioassays.

16.7.1. Create physical bioassays
In BASE, there are two possible routes to create a physical bioassay except the common way with
the New… button at the list page.

from the extract list view page
Select at least one extract, to create a bioassay from, by ticking the selection boxes before the
name field. Click on the New physical bioassay… in the toolbar.

from the extract single-item page
When viewing an extract in single-item view, click on the New physical bioassay… button in
the toolbar.

Biomaterial LIMS

121

16.7.2. Bioassay properties
Figure 16.14. Physical bioassay properties

Name
The bioassay's name (required). It is recommended that the default name is replaced with some-
thing that is unique.

Type
The subtype of the bioassay. The list may evolve depending on additions by the server adminis-
trator. Selecting the proper subtype is recommended and enables BASE to automatically guess
the most likely subtype when assignint source biomaterials and when creating derived bioas-
says. See Chapter 12, Item subtypes (page 87) for more information.

Size
The size of the bioassay is the number of independent positions on the bioassay. Depending
on the characteristics of the bioassay, multiple biomaterials may share the same position, but
are then usually required to have different tags. Two biomaterials in different positions can use
the same tag. The default value is 1, but some platforms, for example Illumina BeadArrays, has
slides with 6 or 8 positions and sequencing flow cells have 8 lanes.

Created
A date should be provided. The information can be important when running quality controls on
data and account for potential confounding factor (e.g. to account for a day effect).

Registered
This field is automatically populated with a date at which the hybridization was entered in BASE
system.

Biomaterial LIMS

122

Protocol
The protocol that was used to create the bioassay.

Hardware
Information about the machine (if any) that was used when creating the bioassay.

Array slide
The array slide that was used for the bioassay.

Description
A free text field to report any information that can not be captured otherwise.

16.7.3. Parent extracts
Figure 16.15. Parent extracts

This important tab allows users to select the extracts used by the bioassay, and specify the amount
of material used, expressed in microgram.

Use the Add extracts button to add items and the Remove button to remove items. Select one or
several extracts in the list and write the used mass and position number in the fields below the list.

The Annotations tab allows BASE users to use annotation types to refine bioassay description.
More about annotating items can be read in Section 10.2, “Annotating items” (page 78)

This Inherited annotations tab contains a list of those annotations that are inherited from the
bioassay's parents. Information about working with inherited annotations can be found in Sec-
tion 10.2.1, “Inheriting annotations from other items” (page 79).

123

Chapter 17. Experiments and
analysis
17.1. Derived bioassays
When you have processed your physical bioassay you can register any information that you have
gathered as Derived bioassay items in BASE. The derived bioassay can represent both a physical
process, such as scanning a microarray slide, or a software process such as aligning sequence data
against a reference genome. It is even possible to register child derived bioassays if there are multiple
steps involved that you want to register independently. Each derived bioassay can specify a protocol
(with parameters if needed) and the hardware or software item that was used to create it.

It is also possible to link one or more files to the derived bioassay. This feature requires that a
subtype is selected and that the subtype has been linked with the file types that are useful in that
context. For example, the Scan subtype is linked with Image files. See Chapter 12, Item subtypes
(page 87) for more information.

Note

A derived bioassay can only hold data in the form of files. When the data has been processed
enough to make it a sensible option (performance-wise) to import into the database a Raw
bioassay should be created.

17.1.1. Create derived bioassays
Beside the common way, using the New… button, a derived bioassay can be created in one of the
following ways:

from either physical bioassay list- or single view- page.
A root derived bioassay is a bioassay that has one or more physical bioassays as parents. There-

fore, a natural way to create a derived bioassay is to click on in the Derived bioassays column
in the list view. There is also a corresponding button, New derived bioassay… in the toolbar
both in the list and single-item view.

from either derived bioassays list- or single view- page
A child derived bioassay is a bioassay that has one or more derived bioassays as parents. Click

on the icon in the Child bioassays column to create a new child derived bioassay. There is
also a Merge button in the list view and a New child bioassay button in the single-item view.

Experiments and analysis

124

17.1.2. Derived bioassay properties

Figure 17.1. Derived bioassay properties

Name
The name of the derived bioassay.

Type
The subtype of the derived bioassay. The list may evolve depending on additions by the server
administrator. Selecting the proper subtype is required to be able to attach data files to the
bioassay. It will also help BASE to automatically guess the most likely subtype when creating
child bioassays. See Chapter 12, Item subtypes (page 87) for more information.

Parent type
Select if the parent items should be physical or derived bioassays. This option is only available
when creating new derived bioassays. Once created it is not possible to change the parent type.

Physical bioassays/parents
Use the Add bioassays and Remove buttons to add or remove parent items.

Extract
Select the extract that this derived bioassay is linked with. The Select button opens a selection
list that is pre-filtered with all extracts that are found on the parent physical bioassays including
all parent extracts. Do not select an extract if the derived bioassay represents more than one
extract at this stage.

Experiments and analysis

125

Protocol
The protocol used in the process that created this derived bioassay (optional). Parameters may
be registered as part of the protocol.

Hardware
The machine used in the process that created this derived bioassay (optional).

Software
The software used in the process that created this derived bioassay (optional).

Description
A decription of the derived bioassay (optional).

The Data files tab allows BASE users to select files that contains data for the derived bioassay.
Read more about this in Section 11.4, “Selecting files for an item” (page 85).

The Annotations tab allows BASE users to use annotation types to refine bioassay description.
More about annotating items can be read in Section 10.2, “Annotating items” (page 78)

This Inherited annotations tab contains a list of those annotations that are inherited from the
bioassay's parents. Information about working with inherited annotations can be found in Sec-
tion 10.2.1, “Inheriting annotations from other items” (page 79).

17.2. Raw bioassays
A Raw bioassay is the representation of the result of analyzing data from the physical bioassay
down to the point where we have a file or a set of files containing measurements per feature (eg.
spot, gene, etc.) for a single sample or extract. Further analysis is usually needed before we can
say something about individual features or samples and how they relate to each other. This kind of
analisys is done in Experiments. See Section 17.3, “Experiments” (page 129).

The term Raw bioassay is bit misleading since the real "raw data" is actually the images from a
microarray scan or the output from a sequencer. For historical reasons we have chosen to keep
the term raw bioassay since this represents the first possibility for a transition between file-base
data and database-stored data. Typically, all pre-rawbioassay analysis is done outside of BASE, and
although we now have the possibility to track this in detail, it will probably remain so for some time
in the future. See Section 17.1, “Derived bioassays” (page 123).

17.2.1. Create raw bioassays
Creating a new raw bioassay is a two- or three-step process:

1. Create a new raw bioassay item with the New… button in the raw bioassays list view. It is also
possible to create raw bioassays from the derived bioassays list- and single view- page.

2. Upload the file(s) with the raw data and attach them to the raw bioassay.

3. The used platform may require that data is imported to the database. See Chapter 18, Import of
data (page 135). If the platform is a file-only platform, this step can be skipped.

Supported file formats
BASE has built-in support for most file formats where the data comes in a tab-separated (or
similar) form. Data for one raw bioassay must be in a single file. Support for other file formats
may be added through plug-ins.

Experiments and analysis

126

17.2.2. Raw bioassay properties
Figure 17.2. Raw bioassay properties

Name
The name of the raw bioassay.

Platform
Select the platform / variant used for the raw bioassay. The selected options affects which
files that can be selected on the Data files tab. If the platform supports importing data to the
database you must also select a Raw data type.

Raw data type
The type of raw data. This option is disabled for file-only platforms and for platforms that are
locked to a specific raw data type. This cannot be changed after raw data has been imported.
See Section 17.2.4, “Raw data types” (page 127).

Parent bioassay
The derived bioassay that is the parent of this raw bioassay.

Parent extract
The extract which this raw bioassay has measured. This is normally selected among the extracts
that are linked with the physical bioassay that this raw bioassay is coming from. Selecting the
correct extract is important if the physical bioassay contains more than one extract, since oth-
erwise it may affect how annotations are inherited and used in downstream analysis.

Array design
The array design used on the array slide (optional). If an array design is specified the import
will verify that the raw data has the same reporter on the same position. This prevents mistakes

Experiments and analysis

127

but also speed up analysis since some optimizations can be used when assigning positions in
bioassay sets. The array design can be changed after raw data has been imported, but this
triggers a new validation. If the raw data is stored in the database, the features on the new array
design must match the the raw data. The verification can use three different methods:

• Coordinates: Verify block, meta-grid, row and column coordinates.

• Position: Verify the position number.

• Feature ID: Verify the feature ID. This option can only be used if the raw bioassay is currently
connected to an array design that has feature ID values already.

In all three cases it is also verified that the reporter of the raw data matches the reporter of
the features.

For Affymetrix data, the CEL file is validated against the CDF file of the new array design. If the
validation fails, the array design is not changed.

Software
The software used to generate the raw data (optional).

Protocol
The protocol used when generating the raw data (optional). Software parameters may be regis-
tered as part of the protocol.

Description
A description of the raw bioassay (optional).

The Data files tab allows BASE users to select files that contains data for the raw bioassay. Read
more about this in Section 11.4, “Selecting files for an item” (page 85).

The Annotations tab allows BASE users to use annotation types to refine bioassay description.
More about annotating items can be read in Section 10.2, “Annotating items” (page 78)

This Inherited annotations tab contains a list of those annotations that are inherited from the
bioassay's parents. Information about working with inherited annotations can be found in Sec-
tion 10.2.1, “Inheriting annotations from other items” (page 79).

17.2.3. Import raw data
Depending on the platform, raw data may have to be imported after you have created the raw bioassay
item. This section doesn't apply to file-only platforms. The import is handled by plug-ins. To start
the import click on the Import… button on the single-item view for the raw bioassay. If this button
does not appear it may be because no file format has been specified for the raw data type used by
the raw bioassay or that the logged in user does not have permission to use the import plug-in or
file format. See Chapter 18, Import of data (page 135) for more information.

File-only platforms
File-only platforms, such as Affymetrix, is handled differently and data is not imported into
the database.

17.2.4. Raw data types
A raw data type defines the types of measured values that can be stored for individual features in
the database. Usually this includes some kind of foreground and background intensity values. The
number and meaning of the values usually depends on the hardware and software used to analyze
the data from the experiment. Many tools provide mean and median values, standard deviations,
quality control information, etc. Since there are so many existing tools with many different data file
formats BASE uses a separate database table for each raw data type to store data. The raw data
tables have been optimized for the type of raw data they can hold and only has the columns that

Experiments and analysis

128

are needed to store the data. BASE ships with a large number of pre-defined raw data types. An
administrator may also define additional raw data type. See Appendix D, Platforms and raw-da-
ta-types.xml reference (page 413) for more information.

File-only platforms

In some cases it doesn't make sense to import any data into the database. The main reason is that
performance will suffer as the number of entries in the database gets higher. A typical Genepix file
contains ~55K spots while an Affymetrix file may have millions.

The drawback of keeping the data in files is that none of the generic tools in BASE can read it.
Special plug-ins must be developed for each type of data file that can be used to analyze and visu-
alize the data. For the Affymetrix platform there are implementations of the RMAExpress and Plier
normalizations available on the BASE plug-ins web site. BASE also ships with built-in plug-ins for
extracting metadata from Affymetrix CEL and CDF files (ie. headers, number of spots, etc).

Users of other file-only platforms should check the BASE plug-ins website for plug-ins related to
their platform. If they can't find any we recommend that they try to find other users of the same
platform and try to cooperate in developing the required tools and plug-ins.

17.2.5. Spot images
This section only applies to microarray platforms where a coordinate system is used to identify spots
on the array slides. The raw data must contain X and Y coordinates of each spot.

After raw data has been imported into the database you will find that a Create spot images… button
appears in the toolbar on the single-item view for the raw bioassay. Click on this button to open a
window that allows you to specify parameters for the spot image extraction.

Figure 17.3. Create spot images

Experiments and analysis

129

X/Y scale and offset
For the spot image creation process to be able to find the spots, the X and Y coordinates from
the raw data must be converted into image pixel values. The formula used is: pixelX = (rawX
- offsetX) / scaleX

Important
It is important that you get these values correct, or the spot image creation process may
fail or generate incorrect spot images.

Spot size
The spot size is given in pixels and is the width and hight around each spot that is large enough
to contain the spot without having too much empty space or neighbouring spots around it.

Gamma correction
Gamma correction is needed to make the images look good on computer displays. A value be-
tween 1.8 and 2.2 is usually best. See http://en.wikipedia.org/wiki/Gamma_correction for more
information.

Quality
The quality setting to use when saving the generated spot images as JPEG images. A value
between 0 = poor and 1 = good can be used.

Red, green and blue image files
You must select which scanned image files to use for the red, green and blue component of the
generated spot images. Use the Select… buttons to select existing images or upload new ones.
The original image files must be 8- or 16-bit grey scale images. Some scanners, for example
Genepix, can create TIFF files with more than one image in each file. BASE supports this and
uses the images in the order they appear in the TIFF file.

Note
Avoid TIFF images which also contains previews of the full image. BASE may use the
wrong image with an error as the result. If you have multi-image TIFF files these must
only contain the full images.

Save as
Specify the path and filename where the generated spot images should be saved. The process
will create a single zip file containing all the images.

Overwrite existing file
If a file with the same name already exists you must mark this checkbox to overwrite it.

Click on the Create button to add the spot image creation job to the job queue, or on Cancel to abort.

17.3. Experiments
Experiments are the starting point for analysis. When you have uploaded and imported your raw
data, collected and registered all information and annotations about samples, bioassays, and other
items, it is time to collect everything in an experiment.

To create a new experiment you can either mark one ore more raw biossays on the raw bioassays
list view and use the New experiment button. You can also create a new experiment from the
experiments list view.

http://en.wikipedia.org/wiki/Gamma_correction

Experiments and analysis

130

17.3.1. Experiment properties

Figure 17.4. Experiment properties

Name
The name of the experiment.

Raw data type
The raw data type to use in the experiment. All raw bioassays must have raw data with this type.

Directory
A directory in the BASE file system where plug-ins can save files that are generated during the
analysis. This is optional and if not given the plug-ins must ask about a directory each time they
need it. Use the Select button to browse the file system or create a new directory.

Raw bioassays
The raw bioassays you want to analyze in this experiment. If you created the experiment from
the raw bioassays list the selected raw bioassays are already filled in. Use the Add raw bioassays
button to add more raw bioassays or the Remove button to remove the selected raw bioassays
from the list.

Description
A description of the experiment.

Click on the Save button to save the changes or on Cancel to abort.

Experiments and analysis

131

The publication tab

Figure 17.5. Experiment publication

On this tab you can enter information about a publication that is the result of the experiment. All
of this information is optional.

PubMedId
The ID of the publication in the PubMed1 database.

Title
The title of the publication.

Publication date
The date the article was published. Use the Calendar button to select a date from a pop-up
window.

Abstract
The article abstract.

Experiment design
An explanation of the experiment design.

Experiment type
A description of the experiment type.

Affiliations
Partners and other related organisations that have helped with the experiment.

1 http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pubmed/

Experiments and analysis

132

Authors
The list of authors of the publication.

Publication
The body text of the publication.

Click on the Save button to save the changes or on Cancel to abort.

17.3.2. Experimental factors

Figure 17.6. Experimental factors

The experimental factors of an experiment are the variables you are studying in the experiment.
Typically the value of an experimental factor is varied between samples or group of samples. Different
treatment methods is an example of an experimental factor.

In the BASE world an experimental factor is the same as an annotation type. Since you probably
have lots of annotations on your items that are not relevant for the experiment you must select the
annotations types that should make up the experimental factors of the experiment.

Use the Add annotation types button to select the annotation types that should be used as exper-
imental factors. The Remove button removes the selected annotation types.

Click on the Save button to save the changes or on Cancel to abort.

To be able to use the values of the experimental factors in the analysis of your data the values must
be accessible from the raw bioassays. Since most of your annotations are probably made at the
sample or biosource level the raw bioassays must inherit those annotations. Read Section 10.2.1,
“Inheriting annotations from other items” (page 79) for more information about this.

Experiments and analysis

133

Tip

Use the Item overview function to verify that all your raw bioassays has been annotated or
inherited values for all experimental factors. If not, you should do that before starting with
the analysis.

17.4. Analysing data within BASE
TODO

17.4.1. Transformations and bioassay sets
TODO

The root bioassay set

TODO

Overview plots

TODO

17.4.2. Filtering data
TODO

Formulas

TODO

17.4.3. Normalizing data
TODO

17.4.4. Other analysis plug-ins
TODO

17.4.5. The plot tool
TODO

Scatter plots

TODO

Histogram plots

TODO

Filtering plots

TODO

Save plots

TODO

Experiments and analysis

134

17.4.6. Experiment explorer
TODO

Reporter view

TODO

Reporter search

TODO

135

Chapter 18. Import of data
In some places the only way to get data into BASE is to import it from a file. This typically includes
raw data, array design features, reporters and other things, which would be inconvenient to
enter by hand due to the large number of data items. There is also convenience batch importers for
importing other items such as biosources, samples, and annotations. The batch importers are
described later in this chapter after the general import description.

Normally, a plug-in handles one type of items and may require a configuration. For example, most
import plug-ins need some information about how to find headers and data lines in files. BASE
ships with a number of import plug-ins as a part of the core plug-ins package, cf. Section A.3, “Core
import plug-ins” (page 397). The core plug-in section links to configuration examples for some of
the plugins. Go to Administrate � Plug-ins & extensions � Plug-in definitions to check which plug-ins
are installed on your BASE server. When BASE finds a plug-in that supports import of a certain type
of item an Import button is displayed in the toolbar on either the list view or the single-item view.

No "Import" button?

If the import button is missing from a page were you would expect to find them this usually
means that:

• The logged in user does not have permission to use the plug-in.

• The plug-in requires a configuration, but no one has been created or the logged in user does
not have permission to use any of the existing configurations.

Contact the server administrator or a similar user that has permission to administrate the
plug-ins.

18.1. General import procedure
Starting a data import is done by a wizard-like interface. There are a number of step you have to
go through:

1. Select a plug-in and file format to use, or use the auto detect option.

2. If you selected the auto detection function, you must select a file to use.

3. Specify plug-in parameters.

4. Add the import job to the job queue.

5. Wait for the job to finish.

18.1.1. Select plug-in and file format
Click on the Import button in the toolbar to start the import wizard. The first step is to select which
plug-in and, if supported, which file format to use. There is also an auto detect option that lets you
select a file and have BASE try to find a suitable plug-in/file format to use.

Import of data

136

Figure 18.1. Select plug-in and file format

Plugin + file format
This is a combined list of plug-ins and their respective file format configurations. The list only
includes combinations that the logged in user has permission to use. If you select an entry a
short description about the plug-in and configuration is displayed below the lists. More infor-
mation about the plug-ins can be found under the menu choices Administrate � Plug-ins & ex-
tensions � Plug-in definitions and Administrate � Plug-ins & extensions � Plug-in configuration

File format vs. Configuration

A file format is the same thing as a plug-in configuration. It may be confusing that the
interface sometimes use file format and sometimes use configuration, but for now, we'll
have to live with it.

Proceed to the next step by clicking on the Next button.

The auto detect function
The auto detect function lets you select a file and have BASE try to find a suitable plug-in and file
format. This option is selected by default in the combined plug-in and file format list when there is
at least one plug-in that supports auto detection.

Support of auto detect

Not all plug-ins support auto detection. The ones that do are marked in the list with ×.

Select the auto detect (all) option to search for a file format in all plug-ins that supports the fea-
ture, or select the auto detect (plugin) option to only search the file formats for a specific plug-in.
Continue to the next step by clicking on the Next button.

You must now select a file to import from.

Import of data

137

Figure 18.2. Select file for auto detection

Plugin
Displays the selected plug-in or all if the auto-detection is used on all supporting plug-ins.

File
Enter the path and file name for the file you want to use. Use the Browse… button to browse
after the file in BASE's file system. If the file does not exist in the file system you have the option
to upload it. Read more about this in Chapter 7, File management (page 53).

Character set
The character set used in text files. If the selected file has been configured with a character set
the correct option is automatically selected. In all cases, you have the option to override the
default selection. Most files, typically use either the UTF-8 or ISO-8859-1 character set.

Recently used
A list of files you have recently used for auto detection.

Click on the Next button to start the auto detection. There are three possible outcomes:

• Exactly one matching plug-in and file format is found. The next step is to configure any additional
parameters needed by the plug-in. This is the same step as if you had selected the same plug-in
and file format in the first step.

• If no matching plug-in and file format is found an error message is displayed. If logged in with
enough permissions to do so there is an option to create a new file format/configuration.

• If multiple matching plug-ins and file formats are found you will be taken back to the first step.
This time the lists will only include the matching plug-ins/file formats and the auto detect option
is not present.

Import of data

138

18.1.2. Specify plug-in parameters
When you have selected a plug-in and file format or used the auto detect function to find one, a form
where you you can enter additional parameters for the plug-in is displayed.

Figure 18.3. Specify plug-in parameters

The top of the window displays the names of the selected plug-in and configuration, a list with
parameters to the left, an area for input fields to the right and buttons to proceed with at the
bottom. Click on a parameter in the parameter list to show the form fields for entering values for the
parameter to the right. Parameters with an X in front of their names already have a value. Parameters
marked with a blue rectangle are required and must be given a value before it is possible to proceed.

The parameter list is very different from plug-in to plug-in. Common parameters for import plug-ins
are:

File
The file to import data from. A value is already set if you used the auto detect function.

File parser regular expressions
Various regular expressions that are used when parsing the file to ensure that the data is found.
In most cases, all values are taken from the matched configuration and can be left as is.

Error handling
A section which contains different options how to handle errors when parsing the file. Normally
you can select if the import should fail as a whole or if only the line with the error should be
skipped.

Import of data

139

Continue to the next step by clicking the Next button.

18.1.3. Add the import job to the job queue
Figure 18.4. Job name and options

In this window should information about the job be filled in, like name and description. Where name
is required and need to have valid string as a value. There are also two check boxes in this page.

Name
Most plug-ins should suggest a name for the job, but you can change it if you want to.

Use job agent
This option is only available if the BASE system has been configured with job agents and the
logged in user has SELECT_JOBAGENT permission. Select the automatic option to let BASE auto-
matically select a job agent or select a specific option to force the use of that particular job agent.

Send message
Tick this check box if the job should send you a message when it is finished, otherwise untick it

Remove job
If this check box is ticked, the job will be marked as removed when it is finished, on condition
that it was finished successfully. This is only available for import- and export- plugins.

Clicking on Finish when everything is set will end the job configuration and place the job in the
job queue. A self-refreshing window appears with information about the job's status and execution
time. How long time it takes before the job starts to run depends on which priority it and the other
jobs in the queue have. The job does not depend on the status window to be able to run and the
window can be closed without interrupting the execution.

Import of data

140

View job status

A job's status can be viewed at any time by opening it from the job list page, View � Jobs.

18.2. Batch import of data
There are in general several possibilities to import data into BASE. Bulk data such as reporter
information and raw data imports are handled by plug-ins created for these tasks. For item types that
are imported in more moderate quantities a suite of batch item importers available (Section A.3.1,
“Core batch import plug-ins” (page 399)). These importers allows the user to create new items in
BASE and define item properties and associations between items using tab-separated (or equivalent)
files.

The batch importers are available for most users and they may have been pre-configured but there
is no requirement to configure the batch importer plug-ins. Here we assume that no plug-in config-
uration exists for the batch importers. Pre-configuration of the importers is really only needed for
facilities that perform the same imports regularly whereas for occasional use the provided wizard
is sufficient. Configuring the importers follows the route described in Section 21.2, “Plug-in config-
urations” (page 171).

The batch importers either creates new items or updates already existing items. In either mode the
plugin can set values for

• Simple properties, eg., string values, numeric values, dates, etc.

• Single-item references, eg., protocol, label, software, owner, etc.

• Multi-item references are references to several other items of the same type. The extracts of a
physical bioassay or pooled samples are two examples of items that refer to several other items; a
physical bioassay may contain several extracts and a sample may be a pool of several samples. In
some cases a multi-item reference is bundled with simple values, eg., used quantity of a source
biomaterial, the position an extract is used on, etc. Multi-item references are never removed by
the importer, only added or updated. Removing an item from a multi-item reference is a manual
procedure to be done using the web interface.

The batch importers do not set values for annotations since this is handled by the annotation im-
porter plug-in (Section 10.2.2, “Mass annotation import plug-in” (page 81)). However, the annota-
tion importer and batch item importers have similar behaviour and functionality to minimize the
learning cost for users.

The importer only works with one type of items at each use and can be used in a dry-run mode
where everything is performed as if a real import is taking place, but the work (transaction) is not
committed to the database. The result of the test can be stored to a log file and the user can examine
the output to see how an actual import would perform. Summary results such as the number of
items imported and the number of failed items are reported after the import is finished, and in the
case of non-recoverable failure the reason is reported.

18.2.1. File format
For proper and efficient use of the batch importers users need to understand how the files to be
imported should be formatted. The input file must be organised into columns separated by a specified
character such as a tab or comma character. The data header line contains the column headers
which defines the contents of each column and defines the beginning of item data in the file. The
item data block continues until the end of the file or to an optional data footer line defining the
end of the data block.

When reading data for an item the plug-in must use some information for identifying items. De-
pending on item type there are two or three options to select the item identifier

Import of data

141

• Using the internal id. This is always unique for a specific BASE server.

• Using the name. This may or may not be unique.

• Some items have an externalId. This may or may not be unique.

• Array slides may have a barcode which is similar to the externalId.

It is important that the identifier selected is unique in the file used, or if the file is used to update
items already existing in BASE the identifier should also be unique in BASE for the user performing
the update. The plug-in will check uniqueness when default parameters are used but the user may
change the default behaviour.

Data for a single item may be split into multiple lines. The first line contains simple properties and
single-item references, and the first multi-item reference. If there are more multi-item references
they should be on the following lines with empty values in all other columns, except for the column
holding the item identifier. The item identifier must have the same value on all lines associated with
the item. Lines containing other data than multi-item references will be ignored or may be considered
as an error depending on plug-in parameter settings. The reason for treating copied data entries as
an error is to catch situations where two items is given the same item identifier by accident.

18.2.2. Running the item batch importer
This section discuss specific parameters and features of the batch importers. The general use of the
batch importers follow the description outlined in Section 18.1, “General import procedure” (page
135) and the setting of column mapping parameters is assisted with the Test with file function
described in Section 21.2.3, “The Test with file function” (page 173). The column headers are
mapped to item properties at each use of the plug-in but, as pointed out above, they can also be
predefined by saving settings as a plug-in configuration. The configuration also includes separator
character and other information that is needed to parse files. The ability to save configurations
depends on user credential and is by default only granted to administrators.

The plug-in parameter follows the standard BASE plug-in layout and shows help information for
selected parameters. The list below comments on some of the parameters available.

Mode
Select the mode of the plug-in. The plug-in can create new items and/or update items already
existing in BASE. This setting is available to allow the user to make a conscious choice of how
to treat missing or already existing items. For example, if the user selects to only update items
already existing the plug-in will complain if an item in the file does not exist in BASE (using
default error condition treatment). This adds an extra layer of security and diagnostics for the
user during import.

Data directory
This option is only available for items that has support for attaching files (eg. array design, de-
rived bioassay, etc.). This setting is used to resolve file references that doesn't include a complete
absolute path.

Identification method
This parameter defines the method to use to find already existing items. The parameter can only
be set to a set of item properties listed in the plug-in parameter dialog. The property selected by
the user must be mapped to a column in the file. If it is not set there is obviously no way for
the plug-in to identify if an item already exists.

Item subtypes
Only look for existing items among the selected subtypes. If no subtype is selected all items
are searched. If exactly one subtype is selected new items are automatically created with this
subtype (unless it is overridden by specific subtype values in the import file).

Import of data

142

Owned by me, Shared to me, In current project, and Owned by others
Defines the set of items the plug-in should look in when it checks whether an item already
exists. The options are the same that are available in list views and the actual set of parameters
depends in user credentials.

When id is used as the Identification method, the plug-in looks for the item irrespective the
setting of these parameters. Of course, the user still must have proper access to the item ref-
erenced.

Column mapping expressions
Use the Test with file function described in Section 21.2.3, “The Test with file function” (page
173) to set the column mapping parameters.

When working with biomaterial items, the Parent type property is used to tell the plug-in how to
find parent items. This only has to be set if the parent item is of the same type as the biomaterial
being imported since the default is to look for the nearest parent type in the predefined hierar-
chy. In ascending order the BASE ordering of parent - child - grandchild - ... item relation is
biosource - sample - extract.

The values accepted for Parent type are BIOSOURCE, SAMPLE or EXTRACT. Sometimes all items
in a file to be imported have the same parent type but there is no column with this information.
This can be resolved by setting the Parent type mapping to a constant string (eg. no backslash
'\' character).

Project default items

When creating new items some properties (eg. protocol, software, hardware, etc.) are as-
signed default values from the currently active project if no mapping has been specified for
that property. It is also possible to access project default values when a a mapping is used.
Use =default() as a mapping expression to set the property to the project default value
or =default(col('foo')) to use the value from column foo if it is not empty and the
project default otherwise. Do not forget to enable the Complex column mappings option.

Permissions
This is a column mapping that can be used to update the permissions set on items. Normally,
new items are only shared to the active project (if any). By naming a permission template, new
items are shared using the permissions from that template instead. Permissions on already
existing items are merged with the permission from the template.

After setting the parameters, select Next. Another parameter dialog will appear where error handling
options can be set among with

Log file
Setting this parameter will turn on logging. The plug-in will give detailed information about how
the file is parsed. This is useful for resolving file parsing issues.

Dry run
Enable or disable test run of the plug-in. If enabled the plug-in will parse and simulate an import.
When enabling this option you should set the Log file also. The dry run mode allows testing of
large imports and updates by creating a log file that can be examined for inconsistencies before
actually performing the action without a safety net.

During file parsing the plug-in will look for items referenced on each line. There are three outcomes
of this item search

• No item is found. Depending on parameter settings this may abort the plug-in, the plug-in may
ignore the line, or a new item is created.

• One item is found. This is the item that is going to be updated.

• More than one item is found. Depending on parameter settings this may abort the plug-in or the
plug-in may ignore the line.

Import of data

143

18.2.3. Comments on the item batch importers
The item batch importers are not designed to change or create annotations. There is another plug-in
for this, see Section 10.2.2, “Mass annotation import plug-in” (page 81) for an introduction to the
annotation importer.

There is no need to map all columns when running the importer. When new items are created usually
the only mandatory entry is Name, and when running the plug-in in update mode only the column
defining the item identification property needs to be defined. This can be utilized when only one or
a few properties needs to be updated; map only columns that should be changed and the plug-in
will ignore the other properties and leave them as they are already stored in BASE. This also means
that if one property should be deleted then that property must be mapped and the value must be
empty in the file. Note, multi-item reference cannot be deleted with the batch importer, and deletion
of multi-item references must be done using the web interface.

When parent and other relations are created using the plug-in the referenced items are properly
linked and updated. This means that when a quantity that decreases a referenced item is used,
the referenced item is updated accordingly. In consequence, if the relation is removed in a later
update - maybe wrong parent was referenced - the referenced item is restored and any decrease of
quantities are also reset.

A common mistake is to forget to make sure that some of the referenced items already exists in
BASE, or at least are accessible for the user performing the import. Items such as protocols and
labels must be added before referencing them. This is of course also true for other items but during
batch import one usually follows the natural order of first importing biosources, samples, extracts,
and so on. In this way the parents are always present and may be referenced without any issues.

144

Chapter 19. Export of data
Before data stored in BASE can be used outside of BASE, the data must first be exported to a file.
When the export job finishes the file can be downloaded from the BASE file system or optionally
downloaded immediately. Exporting data is possible for almost all kind of data and the export is
done by a job that runs an export plug-in for the current context. An export job is started by clicking
on Export… in the toolbar, the click action will open a pop-up window allowing you to select plug-in
and specify parameters for it.

Normally, specific plug-ins handles different type of items, but some plug-ins, for example the table
exporter plug-in, can work with several types of items. BASE ships with a number of export plug-ins
as a part of the core plug-ins package, cf. Section A.2, “Core export plug-ins” (page 397). Go to
Administrate � Plug-ins & extensions � Plug-in definitions to check which plug-ins are installed on
your BASE server. When BASE finds a plug-in that supports export of a certain type of item an
Export button is displayed in the toolbar on either the list view or the single-item view.

No "Export" button?

If the export button is missing from a page were you would expect to find them this usually
means that:

• The logged in user does not have permission to use the plug-in.

• The plug-in requires a configuration, but no one has been created or the logged in user does
not have permission to use any of the existing configurations.

Contact the server administrator or a similar user that has permission to administrate the
plug-ins.

19.1. Select plug-in and configuration
This dialog is very similar to the dialog for selecting an import plug-in. See Figure 18.1, “Select
plug-in and file format” (page 136) for a screenshot example.

The first thing in the configuration process is to choose which plug-in to use and a configuration for
those plug-ins that require it. More information about the plug-ins can be found in each plug-in's
documentation.

Note
If there is only one plug-in and configuration available, this step is skipped and you are taken
directly to next step.

Plugin + configuration
Select the plug-in and configuration to use. The list only shows combinations that the logged
in user has permission to use.

Click on Next to show the configuration of parameters for the job.

19.2. Specify plug-in parameters
The top of the window displays the names of the selected plug-in and configuration, a list with
parameters to the left, an area for input fields to the right and buttons to proceed with at the
bottom. Click on a parameter in the parameter list to show the form fields for entering values for the
parameter to the right. Parameters with an X in front of their names already have a value. Parameters
marked with a blue rectangle are required and must be given a value before it is possible to proceed.

The parameters list is very different from plug-in to plug-in. Common parameters for export plug-ins
are:

Export of data

145

Save as
The path and file name in the BASE file system where the exported data should be saved. Some
plug-ins support immediate download to the local file system if you leave the file parameter
empty. For saving the exported data within the BASE file system, it's recommended to use the
Browse… button to get the right path and then complement it with the file's name.

Click on Next to proceed to next configuration window.

Immediate download of the exported data

If the selected plug-in supports immediate download and the file parameter were left empty a new
window with a Download button is displayed. Click on this button to start the plug-in execution. Do
not close the window until a message saying that the export was successful (or failed) is displayed.
Your browser should open a dialog asking you were to save the file on your local computer.

Figure 19.1. Download immediately

Saving the exported data in the BASE file system

If you choose to save the file within the BASE file system, there will be a window where the job
should get a name and optionally a description. There are also two check boxes in this window.

Send message
Tick this check box if the job should send you a message when it is finished, otherwise untick it

Remove job
If this is ticked, the job will be marked as removed when it is finished, on condition that it was
finished successfully. This is only available for import- and export- plugins.

By then clicking on Finish the configuration process will end and the job will be put in the job
queue. A self-refreshing window appears with information about the job's status and execution time.

Export of data

146

The job is not dependent on the status window to run and it therefore be closed without interrupting
the execution of the job.

View job status

A job's status can be viewed at any time by opening it from the job list page, View � Jobs.

19.3. The table exporter plug-in
The table exporter is a generic export plug-in that works with almost all list views in BASE. It can
export the lists as an XML-file or a tab-separated text file. The table exporter is started, like the
other export plug-ins, by clicking on Export… in the toolbar.

Then select the Table exporter and click on the Next button. The plug-in selection step is only
displayed if there is more than one export plug-in that can be used in the current context. Usually,
the table exporter is the only plug-in and you will be take directly to the configuration dialog.

Unlike other plug-ins, the table exporter does not use the generic parameter input dialog. It has a
customized dialog that should be easier to use.

Figure 19.2. The table exporter configuration dialog

Export of data

147

Format
The generated file can be either a tab-separated text file or an XML file. The XML-file option
will generate a tag for each item and these will contain a child tag with property value for each
selected column.

Which items?
This option decide which items that should be included in the exported data.

• Selected items: Only selected items will be exported. This options is not available if no items
have been selected on the list page.

• Current page: Exports all items viewed on the current list page.

• All pages: Items on all pages will be exported.

Which columns?
Names of those columns that should be included in the export should be listed in the Exported
columns to the left. A column name is moved to the other list-box by first marking it and then
clicking on one of the buttons located between the list-boxes.

The order in which the columns should be exported in can be changed with the buttons to the
left of the list. Simply mark a name of a column and click on the buttons to move the name
either up or down in the list.

Using presets

Use the drop down list of presets, located under the option name, to easily get predefined
or own presets of column settings.

Units
If the export includes annotation with units, the exporter normally uses the same unit that was
used when annotating each item. This can be different from item to item. Select this option to
force all annotation values to use the same unit (=the default unit for the annotation type).

Column prefix
Adds a prefix to each column header. This is useful for keeping column names unique when
combining multiple files outside of BASE.

Save as
The path and file name where the exported data should be saved. Leave the text field empty if
the file is to be downloaded immediately or enter a path within the BASE file system to store
the file on the server. Check Overwrite existing file if an already existing file with the same
name should be overwritten.

Click on Ok to proceed when all options have been set for the export.

Part III. Admin documentation

149

Chapter 20. Installation and upgrade
instructions

Note

These instructions apply only to the BASE release which this document is a part of. The

instructions here assume that Apache Tomcat 71 is used on the server side. Other servlet
engines may work but we only test with Tomcat.

20.1. Upgrade instructions
Important information for upgrading to the current release

This section list some important information that may or may not apply when upgrading from
the previous BASE release to the current release (eg. 3.2 to 3.3). If you are upgrading from
a BASE installation that is older (eg. 2.x or 3.0-3.1 to 3.3) you should also read Appendix J,
Things to consider when updating an existing BASE installation (page 429).

Content security policy
The BASE web client now set a rather strict Content Security Policy that prevent browsers
from executing code (including JavaScript) that is considered unsafe. Some extensions may
cease to work due to this. Go to Administrate � Plug-ins & extensions � Overview (after upgrad-
ing) to see if there are any warnings about this. Read more in Section E.1, “Content security
policy” (page 418) for information about how to relax the policy.

Java SE 7 and Tomcat 7 are required
BASE now require Java SE 72 and Tomcat 73. Servers with Java SE 6 or Tomcat 6 should be
updated to newer versions before installing BASE 3.3.

As always, backup your database before attempting an upgrade. The BASE team performs extensive
testing before releasing a new version of BASE but there are always a possibility for unexpected
events during upgrades. In upgrades requiring a change in the underlying database there is no
(supported) way to revert to a previous version of BASE using BASE tools, you need to use your
backup for this use case.

The strategy here is to install the new BASE release to another directory than the one in use. This
requires transfer of configuration settings to the new install but more on that below.

Shut down the Tomcat server
If the BASE application is not shut down already, it is time to do it now. Do something like sudo
/etc/init.d/tomcat7.0 stop

Notify logged in users!

If there are users logged in to your BASE server, it may be nice of you to notify them a few
minutes prior to shutting down the BASE server. See Section 20.4.1, “Sending a broadcast
message to logged in users” (page 159).

Rename your current server
Rename your current BASE installation mv /path/to/base /path/to/base_old.

1 http://tomcat.apache.org/
2 http://www.oracle.com/technetwork/java/javase/downloads/index.html
3 http://tomcat.apache.org/download-70.cgi

http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/download-70.cgi

Installation and up-
grade instructions

150

Download and unpack BASE
There are several ways to download BASE. Please refer to section Section 3.1.1, “Download” (page
9) for information on downloading BASE, and select the item matching your download option:

Pre-compiled package
If you selected to download a pre-compiled package, unpack the downloaded file with tar
zxpf base-...tar.gz.

Source package
If you selected to download a source package, unpack the downloaded file with tar zxpf
base-...src.tar.gz. Change to the new directory, and issue ant package.bin. This will create
a binary package in the current directory. Unpack this new package (outside of the source
file hierarchy).

Subversion checkout
This option is for advanced users only and is not covered here. Please refer to http://
 base.thep.lu.se/ wiki/ BuildingBase for information on this download option.

Transfer files and settings
Settings from the previous installation must be transferred to the new installation. This is most
easily done by comparing the configuration files from the previous install with the new files. Do
not just copy the old files to the new install since new options may have appeared.

In the main BASE configuration file, <base-dir>/www/WEB-INF/classes/base.config, fields
that needs to be transferred are usually db.username, db.password, and userfiles.

Local settings in the raw data tables, <base-dir>/www/WEB-INF/classes/raw-data-
types.xml, may need to be transferred. This also includes all files in the <base-dir>/www/WEB-
INF/classes/raw-data-types and <base-dir>/www/WEB-INF/classes/extended-proper-
ties directories.

Updating database schema
It is recommended that you also perform an update of your database schema. Running the
update scripts are not always necessary when upgrading BASE, but the running the update
scripts are safe even in cases when there is no need to run them. Change directory to <base-
dir>/bin/ and issue

sh ./updatedb.sh [base_root_login] base_root_password
sh ./updateindexes.sh

where base_root_login is the login for the root user and base_root_password is the password.
The login is optional. If not specified, root is used as the login.

Start Tomcat
Start the Tomcat server: sudo /etc/init.d/tomcat7.0 start

Done! Upgrade of BASE is finished.

20.2. Installation instructions
Java

Download and install Java SE 7, available from http:// www.oracle.com/ technetwork/ java/
 javase/ downloads/ index.html. You can select either the JDK or the JRE version.

Important

As of BASE 3.3 Java SE 7 is required. BASE will no longer run on Java SE 6 or lower.

http://base.thep.lu.se/wiki/BuildingBase
http://base.thep.lu.se/wiki/BuildingBase
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installation and up-
grade instructions

151

Set up an SQL database

BASE utilise Hibernate4 for object persistence to a relational database. Hibernate supports many

database engines, but so far we only work with MySQL5 and PostgreSQL6.

MySQL
Download and install MySQL (tested with version 5.1), available from http://
www.mysql.com/. You need to be able to connect to the server over TCP, so the skip-net-
working option must not be used. The InnoDB table engine is also needed, so do not disable
them (not that you would) but you may want to tune the InnoDB behaviour before creat-
ing BASE databases. BASE comes pre-configured for MySQL so there is no need to change
database settings in the BASE configuration files.

PostgreSQL
PostgreSQL 9.1 seems to be working very well with BASE and Hibernate. Download and
install PostgreSQL, available from http:// www.postgresql.org/. You must edit your <base-
dir>/www/WEB-INF/classes/base.config file. Uncomment the settings for PostgreSQL
and comment out the settings for MySQL.

BASE (database engine)
The database names (base2 and base2dynamic are used here), the db_user, and the
db_password can be changed during the creation of the databases. It is recommended to change
the db_password, the other changes are optional and can be made if desired. The database
names, the db_user, and the db_password are needed below when configuring BASE.

Note
Note that the db_user name and db_password set here is used internally by BASE in
communication with the database and is never used to log on to the BASE application.

The database must use the UTF-8 character set

Otherwise there will be a problem with storing values that uses characters outside the
normal Latin1 range, for example unit-related such as µ (micro) and Ω (ohm).

MySQL
Create a new database for BASE, and add a db_user with at least SELECT, INSERT, UP-
DATE, DELETE, CREATE, DROP, INDEX, and ALTER permission for the new database. To
do this, connect to your MySQL server and issue the next lines:

CREATE DATABASE base2 DEFAULT CHARACTER SET utf8;
CREATE DATABASE base2dynamic DEFAULT CHARACTER SET utf8;
GRANT ALL ON base2.* TO db_user@localhost IDENTIFIED BY 'db_password';
GRANT ALL ON base2dynamic.* TO db_user@localhost;

If you download BASE (instructions below) you find a file <base-dir>/misc/sql/
createdb.mysql.sql that contains the above statements and can be used by the mysql
command-line tool (remember to edit the db_user, db_password, and the database names
in the script file before executing the command): mysql -uroot -p < <base-dir>/misc/sql/
createdb.mysql.sql. The header in the script file contains further information about the
script.

PostgreSQL
Create a new database for BASE, and add a db_user with the proper privileges. To do this,
log in as your PostgreSQL user and issue these lines (omit comments):

createuser db_user -P
 # this will prompt for an password for the new user, and issue two
 # more question that should be answered with character 'n' for no.

4 http://www.hibernate.org/
5 http://www.mysql.com
6 http://www.postgresql.org/

http://www.hibernate.org/
http://www.mysql.com
http://www.postgresql.org/
http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.hibernate.org/
http://www.mysql.com
http://www.postgresql.org/

Installation and up-
grade instructions

152

createdb --owner db_user --encoding UTF8 base2
psql base2
 # this will start the psql command line tool. Issue the next line
 # within the tool and quit with a '\q'.
CREATE SCHEMA "dynamic" AUTHORIZATION "db_user";

If you download BASE (instructions below) you find a file <base-dir>/misc/sql/
createdb.postgresql.sql that contains the above statements and can be used by the
psql command-line tool: psql -f <base-dir>/misc/sql/createdb.posgres.sql template1
The header in the script file contains further information about the script.

BASE (download and unpacking)

Download BASE7 and unpack the downloaded file, i.e. tar zxpf base-...tar.gz. If you prefer to
have the bleeding edge version of BASE, perform a checkout of the source from the subversion

repository (subversion checkout instructions at BASE trac site8).

If you choose to download the binary package, skip to the next item. The rest of us, read on
and compile BASE. If you downloaded a source distribution, unpack the downloaded file tar
zxpf base-...src.tar.gz, or you may have performed a subversion checkout. Change to the 'root'
base2 directory, and issue ant package.bin. This will create a binary package in the base2 'root'
directory. Unpack this new package (outside of the source file hierarchy), and from now on the
instructions are the same irrespective where you got the binary package.

This section is intended for advanced users and programmers only. In cases when you
want to change the BASE code and try out personalised features it may be advantageous
to run the tweaked BASE server against the development tree. Instructions on how to

accomplish this is available in the building BASE document9. When you return back
after compiling in the subversion tree you can follow the instruction here (with obvious
changes to paths).

BASE (file storage setup)
An area for file storage must be setup. Create an empty directory in a proper location in your file
system. Set the owner of the created directory to the user the Tomcat server will be running as.
Tomcat server set up instructions will follow below. Remember this location for later use. The
default location is /usr/local/base2/files.

BASE (plug-in setup)
An area for plug-in and extensions installation must be setup. Create an empty directory in a
proper location in your file system, and make sure that the user that the Tomcat server will be
running as has read permission in this directory. Tomcat server set up instructions will follow
below. Remember this location for later use. The default location is /usr/local/base2/plug-
ins.

BASE (configuration)
Basic BASE configuration is done in <base-dir>/www/WEB-INF/classes/base.config:

• Uncomment the database engine section that match your setup.

• Modify the db.url, db.dynamic.catalog, db.username, and db.password settings to match
your choice above. (database host and database name (e.g. base2), e.g. base2dynamic,
db_user, and db_password, respectively.)

• Modify the userfiles setting to match your choice in file storage setup above.

• Modify the plugins.dir setting to match your choice in plug-in setup above.
See the Appendix B, base.config reference (page 401) for more information about the settings
in the base.config file.

7 http://base.thep.lu.se/wiki/DownloadPage
8 http://base.thep.lu.se/wiki/DownloadPage

http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/wiki/BuildingBase
http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/wiki/DownloadPage

Installation and up-
grade instructions

153

Optional but recommended. You may want to modify extended properties to fit your
needs. Extended properties are defined in <base-dir>/www/WEB-INF/classes/extended-

properties.xml. There is an administrator document discussing extended properties10 avail-
able. If you plan to perform a migration of a BASE version 1.2 database you should probably
not remove any extended properties columns (this is not tested so the outcome is currently un-
defined). However, adding columns does not affect migration.

BASE (database initialisation)
Change directory to <base-dir>/bin and execute the following commands:

sudo ./initdb.sh [base_root_login] base_root_password
./updateindexes.sh

In the first command sudo is required because a file will be created in the directory defined by
userfiles above. If the directory is writable by you then sudo is not needed.

The second command is important for PostgreSQL users since the Hibernate database initiali-
sation utility is not able to create all required indexes. BASE will work without the indexes but
performance is impaired. Running the script as a MySQL user does not have a negative impact.

Important

The base_root_login and base_root_password you use here is given to the BASE web
application root user account. The base_root_login is optional. If not specified, root is
used for the login.

If the initialisation script fails, it is probably a problem related to the underlying database. Make
sure that the database accepts network connection and make sure that db_user has proper
credentials. You may also get a Permission denied on file extension-settings.xml if you do
not have write permission to the directory defined by variable userfiles in file base.config. If
the initialisation fails on extension-settings.xml you must drop the database and recreate
the database as described in BASE (database engine) (page 151).

Tomcat
Download and install Apache Tomcat 7.0.30 or any later 7.x release, available from http://
tomcat.apache.org.

Important

As of BASE 3.3 Tomcat 7 is required. BASE will no longer run on Tomcat 6 or lower.

There are a few configuration options that are needed to make Tomcat work properly with BASE.
The options are set in the CATALINA_OPTS environment variable.

• Increase the amount of memory that Tomcat is allowed to use. The default setting is usually
not enough. To give Tomcat 1 gigabyte, use -Xmx1G.

• Disable strict parsing of JSP files. -
Dorg.apache.jasper.compiler.Parser.STRICT_QUOTE_ESCAPING=false

• Unless you have manually downloaded and installed JAI (Java Advanced Imag-
ing) native acceleration libraries (see http:// java.sun.com/ javase/ technologies/ desk-
top/ media/ jai/) it is a good idea to disable the native acceleration of JAI. -
Dcom.sun.media.jai.disableMediaLib=true

• Enable headless mode if your are setting up a server which doesn't have a display device
connected to it. -Djava.awt.headless=true.

10 http://base.thep.lu.se/chrome/site/doc/historical/admin/extended-properties.html

http://base.thep.lu.se/chrome/site/doc/historical/admin/extended-properties.html
http://tomcat.apache.org
http://tomcat.apache.org
http://java.sun.com/javase/technologies/desktop/media/jai/
http://java.sun.com/javase/technologies/desktop/media/jai/
http://base.thep.lu.se/chrome/site/doc/historical/admin/extended-properties.html

Installation and up-
grade instructions

154

Depending on your system there are probably several ways to set the the CATALINA_OPTS
variable. One suggestion is to add the following line (as a single line) close to the top of the
catalina.sh script that comes with Tomcat (directory bin):

CATALINA_OPTS="-Xmx1G
-Dorg.apache.jasper.compiler.Parser.STRICT_QUOTE_ESCAPING=false
-Dcom.sun.media.jai.disableMediaLib=true
-Djava.awt.headless=true"

For more information about Tomcat options see http:// tomcat.apache.org/ tomcat-7.0-doc/
 index.html.

BASE and Tomcat
Do the following:

• Either move the <base-dir>/www directory to the Tomcat webapps directory or create a sym-
bolic link from the Tomcat webapps directory to the <base-dir>/www directory

cd /path/to/tomcat/webapps
ln -s /path_to_base/www base2

• Make sure that user Tomcat is running as can read all objects in the directory defined by
plugins.dir in file base.config.

• Make sure that user Tomcat is running as owns (i.e., can read, write, delete and create) all
objects in the directory, as well as the directory itself, defined by userfiles in file base.config.

• If you plan to install extensions you should make sure that the <base-dir>/www/extensions
directory is writable by the user account Tomcat is running as.

and finalise with start, or restart, Tomcat, and try http://hostname:8080/base2 (change host-
name to your hostname and base2 if you selected another name for the BASE Tomcat applica-
tion) in your favourite browser. The BASE log-in page should appear after a few seconds.

BASE, Apache, and Apache/Tomcat connector
This step is optional.

If you want run the Tomcat server through the Apache web server, you need to install the Apache
version 2 web server, available from http:// httpd.apache.org/, and a apache-tomcat connector,
available from http:// tomcat.apache.org/ connectors-doc/ index.html

Setup done!
Happy BASEing. Now you can log on to your BASE server as user root (use the
base_root_password from the database initialisation step above). You should begin with creat-
ing a couple user accounts, for more information on how to create user accounts please refer to
Chapter 22, Account administration (page 178).

20.3. Installing job agents
It is important to understand that the BASE application can be spread on to several computers.
The main BASE application is serving HTTP requests, the underlying database engine is providing
storage and persistence of data, and job agents can be installed on computers that will serve the
BASE installation with computing power and perform analysis and run plug-ins. In a straight for-
ward setup one computer provides all services needed for running BASE. From this starting point
it is easy to add computers to shares load from the BASE server by installing job agents on these
additional computers.

A job agent is a program running on a computer regularly checking the BASE job queue for jobs
awaiting execution. When the job agent finds a job that it is enabled to execute, it loads the plug-in
and executes it. Job agents will in this way free up resources on the BASE application server, and

http://tomcat.apache.org/tomcat-7.0-doc/index.html
http://tomcat.apache.org/tomcat-7.0-doc/index.html
http://httpd.apache.org/
http://tomcat.apache.org/connectors-doc/index.html

Installation and up-
grade instructions

155

thus allow the BASE server to concentrate on serving web pages. Job agents are optional and must
be installed and setup separately. However, BASE is prepared for job agent setup and to utilise the
agents, but the agent are not required.

A job agent supports many configuration options that are not supported by the internal job queue.
For example, you can

• Specify exactly which plug-ins each job agent should be able to execute.

• Give some plug-ins higher priority than other plug-ins.

• Specify which users/groups/projects should be able to use a specific job agent.

• Override memory settings and more for each plug-in.

• Execute plug-ins in separate processes. Thus, a misbehaving plug-in cannot bring the main ap-
plication server down.

• Add more computers with job agents as needed.

All these options make it possible to create a very flexible setup. For example one job agent can be
assigned for importing data only, another job agent can be assigned for running analysis plug-ins
for specific project only, and a third may be a catch-all job agent that performs all low-priority jobs.

20.3.1. BASE application server side setup
Make sure the internal job queue doesn't execute all plug-ins

The setting jobqueue.internal.runallplugins should be set to false for the BASE server. This
setting is found in the <base-dir>/www/WEB-INF/classes/base.config file. The changes will
not take effect until the application server is restarted.

Enable the job agent user account
During installation of BASE a user account is created for the job agent. This account is used
by the job agents to log on to BASE. The account is disabled by default and must be enabled.
Enable the account and set a password using the BASE web interface. The same password must
also be set in the jobagent.properties file, see item Edit the jobagent.properties file (page
156) below.

20.3.2. Database server setup
Create a user account on the database

This is the similar to granting database access for the BASE server user in the in the regular
BASE installation, cf. BASE (database engine) (page 151). You must create an account in the
database that is allowed to connect from the job agent server. MySQL example:

GRANT ALL ON base2.* TO db_user@job.agent.host IDENTIFIED BY 'db_password';
GRANT ALL ON base2dynamic.* TO db_user@job.agent.host;

Replace job.agent.host with the host name of the server that is going to run the job agent. You
should also set password. This password is used in item Edit the base.config file (page 156)
below in job agent server setup. You can use the same database user and password as in the
regular database setup.

20.3.3. Job agent client setup
Download and unpack a regular BASE distribution

You must use the same version on the web server and all job agents. You find the downloads
at http://base.thep.lu.se/wiki/DownloadPage

http://base.thep.lu.se/wiki/DownloadPage

Installation and up-
grade instructions

156

Edit the base.config file
The <base-dir>/www/WEB-INF/classes/base.config file must be configured as in regular
BASE installation, cf. BASE (configuration) (page 152), to use the same database as the web
server application. The most important settings are

• db.username: The database user you created in item Create a user account on the database
(page 155) above.

• db.password: The password for the user.

• db.url: The connection url to the database.

• userfiles: The path to the directory where user files are located. This directory must be ac-
cessible from all job agents, i.e., by nfs or other file system sharing method.

• plugins.dir: The path to the directory where plug-ins are located. This directory must be
accessible from all job agents, i.e., by nfs or other file system sharing method.

See the Appendix B, base.config reference (page 401) for more information about the settings
in the base.config file.

Edit the jobagent.properties file
The <base-dir>/www/WEB-INF/classes/jobagent.properties file contains settings for the
job agent. The most important ones to specify value for are

• agent.password: The password you set for the job agent user account in item Enable the job
agent user account (page 155) above.

• agent.id: An ID that must be unique for each job agent accessing the BASE application.

• agent.remotecontrol: The name or ip address of the web server if you want it to be able to
display info about running jobs. The job agent will only allow connections from computers
specified in this setting.

The jobagent.properties file contains many more configuration options. See the Appendix F,
jobagent.properties reference (page 419) for more information.

Register the job agent
From the bin directory, register the job agent with

./jobagent.sh register

Start the job agent
From the bin directory, start the job agent with

./jobagent.sh start &

See the Appendix G, jobagent.sh reference (page 423) for more information about what you
can do with the job agent command line interface.

20.3.4. Configuring the job agent
A job agent will not execute a plug-in unless the administrator has configured the job agent to do
so. There are two things that must be done:

• Share the job agent to the users, groups and project that should be able to use it. If the job agent
is not shared, only the owner of job agent is allowed to use it. Use the regular Share functionality
to specify which users/groups/projects should be able to use the job agent. You must give them
at least USE permission. To give all users permission to the job agent share it to the EVERYONE
group.

Installation and up-
grade instructions

157

• Selecting plug-ins that the job agent should handle. This can be done either from the plug-in
pages or from the job agent pages. To register a plug-in with one or more job agents from the
plug-in pages, go to the edit view of the plug-in and select the Job agents tab. To do the same
from the job agent pages, go to the edit view of the job agent and select the Plugins tab. The
registration dialogues are very similar but only the plug-in side of registration is described here.
The major difference is that it is not possible to enable/disable the internal job queue for plug-in
when using the jobagent side of the registration.

Figure 20.1. Select job agents for a plug-in

Use this tab to specify which job agents the plug-in is installed and allowed to be executed on.

Run this plugin on
You may select if the internal job queue should execute the plug-in or not.

Job agents
A list with the job agents where the plug-in is installed and allowed to be executed. Select a job
agent in this list to display more configuration options for the plug-in.

Add job agents
Use this button to open a pop-up window for selecting job agents.

Remove
Remove the selected plug-in from the list.

The following properties are only displayed when a job agent has been selected in the list. Each job
agent may have it's own settings of these properties. If you leave the values unspecified the job agent
will use the default values specified on the Plugin tab.

Installation and up-
grade instructions

158

Max memory
The maximum amount of memory the plug-in is allowed to use. Add around 40MB for the Java
run-time environment and BASE. If not specified Java will choose it's default value which is
64MB.

Trusted
If the plug-in should be executed in a protected or unprotected environment. Currently, BASE
only supports running plug-ins in an unprotected environment.

Priority boost
Used to give a plug-in higher priority in the job queue. Values between 0 and 10 are allowed. A
higher value will give the plug-in higher priority. The priority boost is useful if we, for example,
want to use one server mainly for importing data. By giving all import plugins a priority boost
they will be executed before all other jobs, which will have to wait until there are no more waiting
imports.

20.4. Server configurations
Some server configurations can be done when the installation process is finished and BASE is up
and running. Log into BASE with administration rights and then open the configuration dialog from
menu Administrate � Server settings. Each tab in the configuration dialog-window is described below.

Figure 20.2. Server configuration

File transfer

Max upload rate
This is a limit of how many bytes of data that should be transferred per second when up-
loading files to BASE. Prefixes like k, M or G can be used for larger values, just like described
in the tab. The limit is per ongoing upload and the default value is 100MB/s.

Max download rate
This is a limit of how many bytes of data that should be transferred per second when down-
loading files from BASE. Prefixes like k, M or G can be used for larger values. The limit is
per ongoing download and the default value is unlimited.

Installation and up-
grade instructions

159

Unlimited
Check one or both to not limit the upload/download transfer rate. In this case, the Internet
connection of the server is the limit.

About

Administrator name
Name of the responsible administrator. The name is displayed at the bottom of each page in
BASE and in the about-dialog.

Administrator email
An email which the administrator can be contacted on. The administrator name, visible at
the bottom of each page, will be linked to this email address.

About
Text written in this field is displayed in the About this server section on the login page and
in the about-dialog window. We recommend changing the default Latin text to something
meaningful, or remove it to hide the section completely.

Get account

A description what a user should do to get an account on the particular BASE server. This text
is linked to the Get an account! link on the login page. We recommend that the Latin text is
replaced with some useful information, or that it is removed to hide the link.

Forgotten password

A description what a user should do if the password is forgotten. This text is linked to the Forgot
your password? link on the login page. We recommend that the Latin text is replaced with some
useful information, or that it is removed to hide the link.

Links

External configurable link-types inside BASE.

Note

Only link-types that have been set will be visible in the web client.

Help
Links to where the help text is located. By default this is set to the documentation for the
latest released BASE version on the BASE web site, http://base.thep.lu.se/chrome/site/

doc/html/index.html11. If you want the documentation for a specific version you will have
to setup a site for that yourself and then change the link to that site. The documentation is
included in the downloaded package in the directory <basedir>/doc/html.

FAQ
Where frequently asked questions can be found. Empty by default.

Report a bug
Where the user could report bugs, feature request or perhaps other feedback that con-
cerns the program. As default this is set to the feedback section on BASE web site, http://
base.thep.lu.se/#Feedback. Note that users must login in order to submit information.

20.4.1. Sending a broadcast message to logged in
users
It is possible to send a message to all logged in user. Open the Administrate � Broadcast message
dialog box.

11 http://base.thep.lu.se/chrome/site/doc/html/index.html

http://base.thep.lu.se/chrome/site/doc/html/index.html
http://base.thep.lu.se/chrome/site/doc/html/index.html
http://base.thep.lu.se/#Feedback
http://base.thep.lu.se/#Feedback
http://base.thep.lu.se/chrome/site/doc/html/index.html

Installation and up-
grade instructions

160

Figure 20.3. Broadcast message

This dialog allows you to specify a message that is sent to all logged in users as well as on the login
form. It is also possible to "disable" login.

Title
The title of the message. It should be a short and concise to avoid confusion. The title will be
displayed on a lot of places and a user may have to click on it to read the more detailed message.

Disable login
Mark this check-box to try to prevent new users from logging in. To avoid problems that can be
caused by blocking the server admin out, the login is not completely disabled. Any user can still
login but only after by-passing several warnings.

Message
If needed, a longer message giving more information. Users may have to click on a link to be
able to see the complete message.

Note
The message will be enabled until it is manually removed by saving an empty form, or until
the Tomcat server is restarted. Since the message is only kept in memory, a restart will always
remove it.

20.5. Migrating from MySQL to PostgreSQL
It is possible to migrate a BASE installation on a MySQL database to a PostgreSQL database. In
a real-world scenario a migration is probably coupled with a hardware upgrade, i.e. the MySQL
installation is on one (the old) server and the PostgreSQL installation is on another (the new) server.
While this is not any problem per se, it requires a few extra steps to ensure that everything has been
moved to the new server. There are three main steps involved:

Export
The first step is to export all data in the existing database. Use the following procedure:

Installation and up-
grade instructions

161

1. Upgrade to the latest BASE release. This is recommended since it probably has fewer bugs.

2. Make sure that no other processes are writing to the database when the export is running.
Shut down Tomcat and all job agents. It may also be a good idea to ensure that no backup
scripts or other external programs are reading from the database at the same time. If the
database is large, this may affect performance due to increased disk I/O.

3. Create a temporary working directory in a suitable location. This directory will be used for
storing the exported data. Disk I/O performance may be better if this directory is on a different
disk than what the database is using. Ensure that the location has enough free space to hold
all data from the BASE database. The dump typically uses less than 10% of the disk space
used by the MySQL tables.

4. Make sure that you have configured migration-specific settings in the base.config file. In
most cases the default settings should be good, but if you are experiencing performance prob-
lems it may be necessary to change some settings. See the section called “Migration section”
(page 408) for more information.

5. Start the export by changing to the <base-dir>/bin/ directory and execute:

./migrate.sh export /path/to/migration/dir

where /path/to/migration/dir is replaced with the path to the working directory created
above. Depending on the size of the BASE installation the export may take a long time.

Note

Make sure that the migration working directory is empty to perform a full export. Existing
files in the directory causes the corresponding tables to be skipped. This can be useful
when debugging and after a server crash, since the export will resume where it stopped.
Just make sure that the database hasn't been modified in the meantime.

Warning

When exporting, make sure that no other process is updating the database since that may
create an inconsistent snapshot. The export process does not lock the database or take
any other means to protect it against concurrent modifications.

Moving data
This step is about moving the data from the old BASE server to the new BASE server. If the
migration is taking place on a single server, this step can probably be skipped.

1. Download and unpack the BASE software on the new server. Make sure that you are using
the same version as on the old server. It is also important that the database is identically con-
figured. Pay special attention to the extended-properties.xml and raw-data-types.xml
files and any files in the <base-dir>/WEB-INF/classes/extended-properties and <base-
dir>/WEB-INF/classes/raw-data-types directories. The import program protects against
some mistakes by comparing the column names from the export with the column names in
the new database, but it will, for example, not check that data types match.

Tip
The easiest way to do this is to simply copy the BASE installation from the old server
to the new server. Then, go through the configuration files and make sure that paths
are correct.

2. Move user files from the old server to the new server. Make sure that the userfiles setting in
base.config is correct.

3. Move plug-ins from the old server to the new server. Make sure that the plugins.dir setting
in base.config is correct.

Installation and up-
grade instructions

162

4. Check other settings in base.config and other configuration files for settings that may be
affected by the move.

Import
When everything has been moved and is properly configured it is time to start with the import.

1. Create a new empty database following the instructions in BASE (database engine) (page
151). Make the corresponding changes in base.config so that the BASE installation points
to the new database. Also, make sure that you have configured migration-specific settings in
the base.config file. In most cases the default settings should be good, but if you are expe-
riencing performance problems it may be necessary to change some settings. See the section
called “Migration section” (page 408) for more information.

2. Read the http://www.postgresql.org/docs/9.1/interactive/populate.html document from the
PostgreSQL documentation and consider implementing some of the tips. The migration script
makes sure that no indexes or foreign key constraints are active during the data import, but
the tips about memory, checkpoint intervals, WAL archiving, etc. (section 14.4.5 and on) can
be useful. It may also be a good idea to turn off the auto-vacuum daemon during the import.

3. Start the import by changing to the <base-dir>/bin/ directory and execute:

./migrate.sh import /path/to/migration/dir

where /path/to/migration/dir is replaced with the path to the directory where the export-
ed data is stored. Depending on the size of the BASE installation this may take a long time.

When the import has been completed, run this command to create the last missing indexes:

./updateindexes.sh

Installations with separate web and database servers

Both export and import may be executed against remote MySQL/PostgreSQL servers
without limitation. The migration working directory need only to be accessible by the
BASE migration program.

4. Restart Tomcat and verify that the migration was successful. Eg. check that you can log in to
BASE, that you can access files, that plug-ins are working, etc. Then, shut everything down
again.

5. Setup backup procedures for the new server. Verify that the backup is working before starting
up Tomcat again. Restart any job agents (make sure that the are configured to use the new
server). When everything is up and running again, the /path/to/migration/dir directory
and all files can be deleted.

http://www.postgresql.org/docs/9.1/interactive/populate.html

163

Chapter 21. Plug-ins and extensions
BASE can get extended functionality by the use of plug-ins and extensions. Much of the hard work,
such as data import/export and analysis is done with plug-ins. BASE ships with a number of
standard plug-ins, the core plug-ins, which gives basic import/export and analysis functionality.
Typically a plug-in interacts with a user by asking for parameters that it need to be able to do it's
work. For example, which file to import data from, and maybe some regular expressions that should
be used when parsing the file and then some information about how the data in the file should be
mapped to items and properties in BASE. When the plug-in has all parameters it needs a Job is
added to a job queue. A job agent or similar is then responsible for sceduling and executing (possibly
on a different machine) the plug-in code.

Extensions are historically more targeted at additions to the user interface, such as additional menu
items, toolbar buttons, etc. As a result, extensions have a lot more flexibility when it comes to the
visual appearance. On the other hand they are executed immediately as a result of user interaction
and are expected to perform quickly and without delay.

Starting with BASE 3 the extension mechanism has been somewhat extended to cover other things
that are not directly related to the web interface. For example, extensions can be used to add support
for other protocols than HTTP when using external files. The main difference between a plug-in and
extension is that an extension must execute immediately it's service is requested, but a plug-in can
be scheduled for later execution.

21.1. Managing plug-ins and extensions
Changes since BASE 2

The plug-in and extensions installation has changed since BASE 2. The major changes are:

• The main JAR file must be installed in the directory specified by the plugins.dir setting in
base.config. Subdirectories are not allowed. This applies to both plug-ins and extensions.
The WEB-INF/extensions is not used for extensions anymore.

• A package must be installed as a whole. It is no longer possible to only select some of the
plug-ins to install. If neccessary, the administrator can always disable plug-ins that is not
wanted.

The first step is to install the actual code on the web server. The recommendation to developers
is to ship the entire package as a single JAR file. If everything is JAVA based this should not be
a problem. A common exception is that configuration files should be installed (and configured)
separately. Always read the installation instructions for the package you are installing. The rest of
the instructions in this section assume that the plug-in/extensions comes as a single JAR file.

Make sure the extensions folder is writable by Tomcat

The package you are installing may include resources such as HTML files, JSP scripts, images,
etc. that needs to be extracted to the web application path before they can be used. This
extraction is automatically done by the installation wizard, but you have to make sure that
the user account Tomcat is running as has permission to create (and delete) new files in the
<base-dir>/www/extensions directory.

So, the first step should be simple. Just put the JAR file in the dedicated plug-ins directory. This is
the directory that is specified in the plugins.dir setting in base.config.

Content security policy

Since BASE 3.3 the default configuration specify a setting that tell web browsers to not execute
code (including JavaScript) that is considered unsafe. Older extensions may not adhere to the
restrictions implied by this and may thus not work unless the configured Content security
policy is relaxed a bit. The extension installation wizard will try to detect if a plug-in violates

Plug-ins and extensions

164

the policy and display a warning message. If you see the warning please read Section E.1,
“Content security policy” (page 418) for more information.

21.1.1. Automatic installation wizard
When the plug-in/extensions package is installed on the server you must register it with BASE. Go
to Administrate � Plug-ins & extensions � Overview.

Figure 21.1. Installed extensions & plug-ins

The left-hand side of the screen shows a tree with all installed plug-ins and extensions, sorted by
extension point and by file. Use the + and - icons to expand and collapse parts of the tree. Click
on an item in the tree to display detailed information about it on the right-hand side of the screen.
Click on the Install/uninstall button to start the installation wizard (which can also be used for
uninstallation).

Plug-ins and extensions

165

Figure 21.2. Extensions and plug-ins installation wizard

This wizard can be used for both installing, re-installing and un-installing plug-in and extension
packages. The first dialog shows a list with all currently installed packages as well as any new
packages that has been found on the server. The list includes the name of the JAR file, the current
status and some information provided by the author of the package. There are also two columns
Install and Uninstall which may or may not have a checkbox in them. For new packages there
should be a checkbox in the install column that is already checked. Already installed packages can
either be re-installed or uninstalled by checking the appropriate checkbox. If there is a problem with
a package an error message is displayed and neither installation or uninstallation is possible.

Click on Next to perform the selected actions. The next dialog should display a summary with the
installation results. Hopefully everything was succeessful. Close the dialog and refresh the overview
tree to see the changes.

Note

Uninstalling a package doesn't remove the plug-in definitions from BASE nor does it remove
the JAR file from the server. This is because there may be jobs and other items referencing
the plug-ins. The plug-ins are only marked as disabled and it is up to the administrator to
actually delete them if it is possible.

Plug-ins and extensions

166

Figure 21.3. Extensions and plug-ins installation results

21.1.2. Manual plug-in registration
Manual installation of a plug-in should almost never be neccessary. One exception is that developers
may want to do this as a first step before everything has been properly packaged. Another exception
is plug-ins developed for BASE 2 that doesn't support the automatic installation procedure. If the
old plug-in still works API-wise in BASE 3, manual installation can be used to install it. Repackaging
such a plug-in is however not difficult so we recommend that the plug-in author is asked to provide
an updated version.

To perform a manual installation the plug-in's JAR file must be located in the the directory specified
by the plugins.dir setting in base.config. Subdirectories are not allowed. This is a change since
BASE 2 were plug-ins could be installed almost anywhere. When the JAR file is in place, go to
Administrate � Plug-ins & extensions � Plug-in definitions and click on the New button.

Plug-ins and extensions

167

Figure 21.4. Manually installing a plug-in

Name
The name of the plug-in. This name is set automatically by the plug-in and cannot be changed.

Class
The full Java class name of the plug-in.

JAR file
The name of the JAR file on the web server. The JAR file must be installed in the directory
specified by the plugins.dir setting in base.config If left empty the plug-in must be on the
web server's class path (not recommended).

Max memory
The maximum amount of memory the plug-in may use. This setting only applies when the
plug-in is executed with a job agent. If the internal job queue is used this setting has no effect
and the plug-in may use as much memory as it likes. See Section 20.3.4, “Configuring the job
agent” (page 156) for more information.

Trusted
If the plug-in is trusted enough to be executed in an unprotected environment. This setting
has currently no effect since BASE cannot run in a protected environment. When this becomes
implemented in the future a no value will apply security restrictions to plug-ins similar to those
a web browser put on applets. For example, the plug-in is not allowed to access the file system,
open ports, shut down the server, and a lot of other nasty things.

Allow immediate execution
If the plug-in is allowed to bypass the job queue and be executed immediately.

• No: The plug-in must always use the job queue.

• Yes: The plug-in is allowed to bypass the job queue. This also means that the plug-in always
executes on the web server, job agents are not used. This setting is mainly useful for export

Plug-ins and extensions

168

plug-ins that needs to support immediate download of the exported data. See the section called
“Immediate download of the exported data” (page 145).

Note
If a plug-in should be executed immediately or not is always decided by the plug-in.
BASE will never give the users a choice.

• Auto: BASE will allow export plug-ins to execute immediately, and deny all other types of
plug-ins. This alternative is only available when registering a new plug-in.

Click on Save to finish the registration or on Cancel to abort.

21.1.3. BASE version 1 plug-ins
BASE version 1 plug-ins are supported through the use of the Base1PluginExecuter plug-in. This
is itself a plug-in and BASE version 1 plug-ins are added as configurations to this plug-in (cf. Sec-
tion 21.2, “Plug-in configurations” (page 171)). To install a BASE version 1 plug-in follow these
instructions:

1. Install the BASE version 1 plug-in executable and any other files needed by it on the BASE server.
Check the documentation for the plug-in for information about what is needed.

2. Upload the *.base file for the BASE version 1 plug-in. If you cannot find the file, you can let your
BASE version 1 server create one for you. In your BASE version 1 installation go to Analyze data �
Plug-ins and use the Export function. This will create a configuration file for your BASE version
1 plug-in that you can upload to your new BASE server.

3. Create a new plug-in configuration using, for example, the New configuration button in single-
item view for the Base1PluginExecuter plug-in.

4. Start the configuration wizard and select parameters:

• File: The *.base file describing the BASE version 1 plug-in. This can be left empty for manual
configuration, but in reality it is only usable for tweaking an existing configuration that has
been created from a file in the first place.

• Plugin executables path: The path to the executable program that was installed in the first
step.

• Source intensities: Select if the plug-in can work with regular or logged data (or both).

• Resulting intensities: Select if the plug-in generates regular or logged data.

Click Next to finish the wizard.

5. To check that the new plug-in works correctly, you need to have an experiment with some da-
ta. Go to the single-item view for a bioassay set and click on the Run analysis button. Select
the Base1PluginExecuter plug-in. The list of configurations should include the newly installed
plug-in. Select it and click on Next.

6. This will enter regular plug-in execution wizard and you will have to enter parameters needed
by the plug-in.

21.1.4. Installing the X-JSP compiler
Some extensions may want to use custom JSP files that also uses classes that are stored in the
extension's JAR file. The problem with this is that Tomcat usually doesn't know to look for classes
in the plugins.dir directory. To solve this problem BASE ships with a X-JSP compiler that can
do this. This compiler has been mapped to files with a .xjsp extension, which are just regular JSP
files with a different extension.

Plug-ins and extensions

169

The X-JSP compiler must be installed into Tomcat's internal library folder ($CATALINA_HOME/lib)
since this is the only place where Tomcat look for compilers. The installation is easy. Simply copy
<base-dir>/bin/jar/base-xjsp-compiler-3.x.jar to $CATALINA_HOME/lib and restart Tom-
cat.

X-JSP is experimental

This is an experimental feature that depends on internal functionality in Tomcat. It may or
may not work with future versions of Tomcat. The compiler will most likely not work with other
servlet containers.

21.1.5. Disable/enable plug-ins and extensions
It is possible to disable specific extensions, extension point and or a plug-in without uninstalling
the XML or JAR file. When you click on an item in the tree on the left-hand side of the screen a lot of
detailed information about it will show up on the right-hand side. The right-hand side usually has
a Disable or Disable all button in the toolbar. Click on that button to disable the plug-in, extension
or all extensions for an extension point. The button will change to Enable or Enable all which lets
you enable the extensions and plug-ins again.

21.1.6. Plug-in permissions
When a plug-in is executed the default is to give it the same permissions as the user that started it.
This can be seen as a security risk if the plug-in is not trusted, or if someone manages to replace the
plug-in code with their own code. A malicious plug-in can, for example, delete the entire database
if invoked by the root user.

To limit this problem it is possible to tune the permissions for a plug-in so that it only has permission
to do things that it is supposed to do. For example, a plug-in that import reporters may only need
permission to update and create new reporters and nothing else.

To enable the permission system for a plug-in go the edit view of the plug-in and select the Permis-
sions tab.

Plug-ins and extensions

170

Figure 21.5. Setting permissions on a plug-in

Use permissions
Select if the plug-in should use the permission system or not. If no is selected, the rest of the
form is disabled.

Item types
The list contains all item types found in BASE that can have permissions set on them. The list
is more or less the same as the permission list for roles. See the section called “Permissions”
(page 188).

Always grant
The selected permissions will always be granted to the plug-in no matter if the logged in user
had the permission to begin with or not. This makes it possible to develop a plug-in that allows
users to do things that they are normally not allowed to do. The reporter importer is for example
allowed to create and use reporter types.

Always deny
The selected permissions will always be denied to the plug-in no matter if the logged in user had
the permission to begin with or not. The default is to always deny all permissions. Permissions
that are not always denied and not always granted uses permissions from the logged in user.

Requested by plug-in
To make it easier for the server administrator to assign permissions, the plug-in developer can
let the plug-in include a list of permissions that are needed. Plug-in developers are advised to

Plug-ins and extensions

171

only include the minimal set of permissions that are required for the plug-in to function. Click
on the Use requested permissions button to give the plug-in the requested permissions.

21.2. Plug-in configurations
While some plug-ins work right out of the box, some may require configuration before they can
be used. For example, most of the core import plug-ins need configurations in the form of regular
expressions to be able to find headers and data in the data files and the Base1PluginExecuter uses
configurations to store information about the BASE version 1 plug-ins.

Configurations are managed from a plug-in's single-item view page or from the Administrate � Plug-
ins & extensions � Plug-in configurations page or from the single-item view page of each plug-in.

Click on the New… button to create a new configuration.

Figure 21.6. Create plug-in configuration

Plugin
The plug-in this configuration belongs to. This cannot be changed for existing configurations.
Use the Select… button to open a pop-up window where you can select a plug-in.

Name
The name of the configuration.

Description
A description of the configuration (optional).

Note
You cannot create configurations for plug-ins that does not support being configured.

Use the Save button to save the configuration or the Save and configure button to save and then
start the configuration wizard.

Plug-ins and extensions

172

21.2.1. Configuring plug-in configurations
Configuring a plug-in is done with a wizard-like interface. Since the configuration parameters may
vary from plug-in to plug-in BASE uses a generic interface to enter parameter values. In short, it
works like this:

1. BASE asks the plug-in for information about the parameters the plug-in needs. For example, if
the value is a string or number or should be selected among a list of predefined values.

2. BASE uses this information to create a generic form for entering the values. The form consists
of three parts:

Figure 21.7. The plug-in configuration wizard

• The top part: Displays the name of the selected plug-in and configuration.

• The left part: Displays a list of all parameters supported by the plug-in. Parameters with an
X in front of their names already have a value. Parameters marked with a blue rectangle are
required and must be given a value before it is possible to proceed.

• The right part: Click on a parameter in the list to display a form for entering values for that
parameter. The form may be a simple free text field, a list of checkboxes or radiobuttons, or
something else depending on the kind of values supported by that parameter.

Plug-ins and extensions

173

3. When the user clicks Next the entered values are sent to the plug-in which validate the correct-
ness. The plug-in may return three different replies:

• ERROR: There is an error in the input. BASE will redisplay the same form with any additional
error information that the plug-in sends back.

• DONE: All parameter values are okay and no more values are needed. BASE will save the values
to the database and finish the configuration wizard.

• CONTINUE: All parameter values are okay, but the plug-in wants more parameters. The proce-
dure is repeated from the first step.

Do not go back

It is not possible to go backwards in the wizard. If you try it will most likely result in an
unexpected error and the configuration must be restarted from the beginning.

21.2.2. Importing and exporting plug-in configura-
tions
BASE ships with one importer and one exporter that allows you to import and export plug-in con-
figurations. This makes it easy to copy configurations between servers.

Both the import and the export is started from the plug-in configuration list view: Administrate �
Plug-ins & extensions � Plug-in configurations

The importer supports auto detection. Simply upload and select the XML file with the configurations.
No more parameters are needed.

If you don't want to import all configurations that exist in the XML-file, there is an option that lets
you select each configuration individually. When the option to import all configurations is set to
FALSE in the first step of job-configuration, the following step after pressing Next will be to select
those configurations that should be imported, otherwise this step is skipped.

To use the exporter you must first select the configurations that should be exported in the list. Then,
enter a path and file name if you wish to leave the XML file on the BASE server or leave it empty
to download it immediately.

Note
The import and export only supports simple values, such as strings, numbers, etc. It does not
support configuration values that reference other items. If the plug-in has such values they
must be fixed manually after the import.

21.2.3. The Test with file function
The Test with file function is a very useful function for specifying import file formats. It is supported
by many of the import plug-ins that read data from a simple text file. This includes the raw data
importer, the reporter importer, plate reporter, etc.

Note
The Test with file function can only be used with simple (tab- or comma-separated) text files.
It does not work with XML files or binary files. The text file may have headers in the beginning.

As you can see in figure Figure 21.7, “The plug-in configuration wizard” (page 172) there is a Test
with file button. This will appear in the file format setup step for all plug-ins that support the test
with file function. For detailed technical information about this see Section 25.3, “Import plug-ins”
(page 220) in Chapter 25, Plug-in developer (page 202). Clicking on the Test with file button
opens the following dialog:

Plug-ins and extensions

174

Figure 21.8. The test with file function

The window consists of two parts, the upper part where the file to parse and the parameters used
to parse it are entered, and the lower part that displays information about the parsing.

File to test
The path and file name of the file to use for testing. Use the Browse button to select a file from
the BASE file system or upload a new file. Click on the Parse the file button to start parsing.
The lower part will update itself with information about the parsed file. The file must follow a
few simple rules:

• Data must be organised into columns, with one record per line.

• Each data column must be separated by some special character or character sequence not
occurring in the data, for example a tab or a comma. Data in fixed-size columns cannot be
parsed.

• Data may optionally be preceded by a data header, for example, the names of the columns.

• The data header may optionally be preceded by file headers. A file header is something that
can be split into a name-value pair.

• The file may contain comments, which are ignored by the parser.

Lines to parse
The number of lines to parse. The default is 100 and rarely needs to be changed. One reason to
increase the number is when the data header line is beyond the default value.

Plug-ins and extensions

175

Character set
The character set used in the file. The default is ISO-8859-1 (same as Latin-1). This list contains
all character sets supported by the underlying Java run-time and can be quite long.

Header regexp
A regular expression matching a header line. A header is a key-value pair with information about
the data in the file. The regular expression must contain two capturing groups, the first should
capture the name and the second the value of the header. For example, the file contains headers
like:

"Type=GenePix Results 3"
"DateTime=2006/05/16 13:17:59"

To match this we can use the following regular expression: "(.*)=(.*)".

Use the Predefined button to select from a list of common regular expressions.

Data splitter regexp
A regular expression used to split a data line into columns. For example, \t to split on tabs. Use
Predefined button to select from a list of common regular expressions.

Ignore regexp
A regular expression that matches all lines that should be ignored. For example, \#.* to ignore
all lines starting with a #. Use Predefined button to select from a list of common regular ex-
pressions.

Data header regexp
A regular expression that matches the line containing the data header. Usually the data header
contains the column names separated with the same separator as the data. For example, the
file contains a header like:

"Block"{tab}"Column"{tab}"Row"{tab}"Name"{tab}"ID" ...and so on

To match this we can use the following regular expression:
"Block"\t"Column"\t"Row"\t"Name"\t"ID".*.

The easiest way to set this regular is expression is to leave it empty to start with, click on the
Parse the file button. Then, in the File data tab, use the drop-down lists in the Use as column to
select the line containing the data header. BASE will automatically generate a regular expression
matching the line.

Date footer regexp
A regular expression that matches the first line of non-data after all data lines. In most cases
you can leave this empty.

Min and max data columns
If you specify values a data line is ignored if the number of columns does not fall within the range.
If your data file does not have a data header with column names you can use these settings to
find the start of data.

Remove quotes
If enabled, the parser will remove quotes around data entries.

File data
Press the Parse the file button to start parsing the file. This tab will be updated with the data
from the file, organised as a table. For each line the following information is displayed:

• Line: The line number in the file

Plug-ins and extensions

176

• Columns: The number of columns the line could be split into with the data splitter regular
expression.

• Type: The type of line as detected by the parser. It should be one of the following: Unknown,
Header, Data header, Data or Data footer.

• Use as: Use the drop-down lists to use a line as either the data header or data footer. BASE
will automatically generate a regular expression.

• File data: The contents of the file after splitting and, optionally, removal of quotes.

Column mappings
After defining the data header you may need to press the Parse the file button to make this
tab visible because this tab is only displayed when data has been found in the file and a data
header was recognized. It allows you to easily select the mapping between columns in the file
and the properties in the database.

Figure 21.9. Mapping columns from a file

• Mapping style: The type of mapping to use when you pick a column from the File columns
list boxes.

• Property: The database property.

• Mapping expression: An expression that maps the data in the file columns to the property in
the database. There are two types of mappings, simple and expressions. A simple mapping is a
string template with placeholders for data from the file. An expression mapping starts with an
equal sign and is evaluated dynamically for each line of data. The simple mapping has better
performance and we recommend that you use it unless you have to recalculate any of the

Plug-ins and extensions

177

numerical values. In both cases, if no column matching the placeholder exactly is found the
placeholder is interpreted as a regular expression that is matched against each column. The
first one found is used. A few mapping examples are listed in Table 21.1, “Mapping expression
examples” (page 177).

Table 21.1. Mapping expression examples

Expression Explanation

\Name\ Exact match is required.

\1\ Column with index 1 (the second column).

[\row\, \column\] Combining row and column to a single coor-
dinate.

=2 * col('radius') Calculate the diameter dynamically.

\F63(3|5) Median\ Use regular expression to match either F633
or F635.

constant_string Use constant_string as value for this col-
umn for each line.

Note
Column numbers are 0-based. We recommend that you use column names at all times
if they are present in the file.

• Auto generate: Click on this button to let BASE try to automatically generate mappings based
on fuzzy string matching between the property names and file column headers. Each match
get a score between 0 and 1 where 1 indicates a better match. Use the similarity score to
limit the automatically generated mappings to matches with at least the given score. A value
between 0.7 and 0.9 is usually a good choice.

• File columns: Lists of column found in the file. Select a value from this list to let BASE
automatically generate a mapping that picks the selected column.

178

Chapter 22. Account administration
Read Chapter 6, Projects and the permission system (page 44)

This chapter contains important information about the permission system BASE uses. It is
essential that an administrator knows how this works to be able to set up user, groups and
roles smoothly.

22.1. Users administration
The user list is accessed with Administrate � Users and from here are the users' account and contact
information managed.

22.1.1. Edit user
The pop-up window where information and settings for a user can be edited has three tabs, one
for the account related, one with information about the user and one that shows the user's mem-
berships.

Properties

Figure 22.1. User properties

These are the properties for a user account.

Name
The full name of the user that is associated with the account.

Account administration

179

Login
A login name to use when logging in to the account. The login must be unique among all users.

External ID
An id that is used to identify the user outside BASE (optional). If a value is given it must be
unique among all users.

New password
This is used together with the login name to log in to the account. This is a required field for
a new user or if the password should be changed. If the field is left empty the password will
be unchanged

Retype password
Retype the password that is written in New password.

Quota
Set disk quota for the account.

Quota group
Set this if the account should belong to a group with specified quota (optional). With this set
the user's possibilities to save items to disk will also depend on how much the rest of the group
has saved.

Home directory
Set the account's home directory (optional). A new directory, either empty or from a template,
can be created if editing a new user. Select - none - if there should not be any home directory
associated with the account.

Expiration date
Define a date in this field if the account should expire on a certain day (optional). The account
will be disabled after this date. Leave this empty if the account never should expire.

Tip

Use the Calendar… button to pick a date from a calendar in a pop-up window.

Multi-user account
This checkbox should be checked if the account should be used by more one user. This will
prevent the users from changing the password, contact information and other settings. It will
also reset all list filters, column configurations, etc. when the user logs out. Normally, these
settings are remembered between log ins.

Disabled
Disable the account.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

Account administration

180

Contact information
Figure 22.2. Contact information

Information about how to get in contact with the user that is associated with the account. All fields
on this tab are optional and do not necessarily need to have a value but some can be good to set,
like email or phone number.

Email
User's email address. There is some verification of the value but there is no check if the email
really exists.

Organization
The company or organization that the user works for.

Address
User's mail address. Use the magnifying glass down to the right, to edit this property in a larger
window.

Phone
User's phone number(s)

Note

There is no special field for mobile phone, but it works fine to put more then one number
in this field.

Fax
User's fax number.

Url
A URL that is associated with the user.

Account administration

181

Description
Other useful contact information or description about the user can be written in this field. Use
the magnifying glass to edit the information in a pop-up window with a larger text-area.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

Additional information

Figure 22.3. Additional user information

This tab contains fields that hold various information about the user. There are by default two fields
in BASE but this could easily be changed by the server administrator. How this configuration is
done can be read in Appendix C, extended-properties.xml reference (page 409).

Note

The Additional info tab is only visible if there is one or more property defined for UserData
in the configuration file for extended properties.

These are the fields that are installed with BASE

Mobile
The user's mobile number could be put in this field. This field could be left empty.

Skype
Skype contact information, if the user has a registered Skype account. This field could be left
empty.

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

Account administration

182

Group and role membership

Figure 22.4. Group and role membership

On this tab, the group and role membership of a user can be specified. The membership can also
be changed by editing the group and/or role.

Note

When adding a new user, the user is automatically added as a member to all groups and roles
that has been marked as default. In the standard BASE distribution the User role is marked
as a default role.

Member in
Lists the groups and roles the user already is a member of.

Add groups…
Opens a pop-up window that allows you to select groups. In the pop-up window, mark one or
more groups and click on the Ok button. The pop-up window will not list groups that the user
already is a member of.

Add roles…
Opens a pop-up window that allows you to select roles. In the pop-up window, mark one or more
roles and click on the Ok button. The pop-up window will not list roles that the user already
is a member of.

Remove
Use this button to remove the user from the selected groups and/or roles. The selected items
will then disappear from the list of memberships.

Account administration

183

Go to the other tabs if there are any changes to do otherwise press Save to save the values or Cancel
to abort.

22.1.2. Default group and role membership
Figure 22.5. Default group and role membership

It is possible to automatically let BASE add new users as a member of a pre-defined list of groups
and/or roles. This is done by marking those groups and roles as default groups and roles. There
are two ways to do this.

1. Change the flag in the edit-dialog for each of the groups/roles that you want to assign as default.

2. Use the Default membership button on the Administrate � Users page and select groups and roles
in a pop-up dialog. The dialog lists all groups and roles that are currently assigned as default.
Use the Add groups and Add roles buttons to select more groups and roles. Use the Remove
button to remove the selected groups/roles.

Note

Changing which groups and roles that are the default does not affect existing user accounts.
They are only used to assign membership to new users.

22.2. Groups administration
Groups in BASE are meant to represent the organizational structure of a company or institution.
For example, there can be one group for each department and subgroups for the teams in the
departments. The group-membership is normally set when the user is added to BASE and should
not have to be changed later, except when the company is re-organizing.

There is one pre-installed group in BASE, a system group, called Everyone. It is, like the name says,
a group in which everyone (all users) are members. The users that are allowed to share to everyone
can easily share items to all users by sharing the item to this group.

22.2.1. Edit group
The pop-up window where a group can be edited has two tabs, Group and Members.

Account administration

184

Properties

Figure 22.6. Group properties

Name
The name of the group.

Default
Mark this checkbox to let BASE automatically add new users as members to this group.

Hidden members
Mark this checkbox to create a group with hidden members. This means that a user will not
be able to see information about other members in the group, but it is still possible to share
items to the group as a whole.

Description
Description about the group. The magnifying glass, down to the right, can be used to open and
edit the text in a larger text area.

Quota
With this property it's possible to limit the quota of total disk space for the group members.
Select -none- from the drop-down list if the group should not have any quota. There are some
presets of quotas that comes with the BASE installation, besides a couple with different size
of total disk space there are one called No quota and one with Unlimited quota. Their names
speak for them self.

Note

A user can only take quota from one group, which has to be specified as the Quota group
of the user.

Go to the other tab, Members, if there are any changes to do otherwise use Save to save the settings
or Cancel to abort.

Account administration

185

Group members

Figure 22.7. Group members

A group can have both single users and other groups as members. Group members have access to
those items that are shared to the group. Each user in the group has the possibility to share their
own items to one or more of the other members or to the whole group.

Members
Lists the user and groups that are already members of this group.

Add users…
Opens a pop-up window that allows you to add users to the group. In the pop-up window, mark
one or more users and click on the Ok button. The pop-up window will not list users that are
already members of the group.

Add groups…
Opens a pop-up window that allows you to add other groups to the group. In the pop-up window,
mark one or more groups and click on the Ok button. The pop-up window will not list groups
that are already members of the group.

Remove
Use this button to remove the selected users and/or groups from this group. The selected items
will disappear from the list of memberships.

Go to the other tab if there are any changes to do, otherwise use Save to save the values or Cancel
to abort.

22.3. Roles administration
Roles are meant to represent different kinds of working positions that users can have, like server
administrator or regular user just to mention two. Users are normally assigned a role, perhaps more
than one, when they are created and registered in BASE.

Account administration

186

22.3.1. Pre-defined system roles
BASE comes with some pre-defined roles. These are configured to cover the normal user roles that
can appear. A more detailed description of the different roles and when to use them follows here.

Administrator
This role gives the user full permission to do everything in BASE and also possibility to share
items with the system-group 'Everyone'. Users that are supposed to administrate the server,
user accounts, groups etc. should have this role.

Supervisor
Users that are members of this role has permission to read everything in BASE. This role does
not let the members to actually do anything in BASE except read and supervise.

Power user
This role allows it's members to do some things that an ordinary user not is allowed to. Most
things are related to global resources like reporters, the array lims and plug-ins. This role can
be proper for those users that are in some kind of leading position over work groups or projects.

User
A role that is suitable for all ordinary users. This allows the members to do common things in
BASE such as creating biomaterials and experiments, uploading raw data and analyse it.

Guest
This is a role with limited access to create new things. It is useful for those who wants to have
peek at the program. It can also be used for someone that is helping out with the analysis of
an experiment.

Job agent
This role is given to the job agents and allows them to read and execute jobs. Job agents always
runs the jobs as the user who created the job and therefore it have to be able to act as another
user.

22.3.2. Edit role
Creating a new role or editing the system-roles are something that do not needs to be done very
often. The existing roles will normally be enough but there can be some cases when they need to be
complemented, either with a new role or with different permissions.

Account administration

187

Properties

Figure 22.8. Role properties

Name
The name of the role.

Share to Everyone
Allows the user to share items to the system-group 'Everyone'.

Act as another user
Allows the user to login as another user without knowing the password. This is used by job
agents to make it possible for them to execute a plug-in as the user that created the job. This
permission will also make it possible to switch user in the web interface. It can be useful for an
administrator who needs to check out a problem, but use this permission with care.

Select job agent for jobs
Allows the user to select a specific job agent when running jobs. Users without this permission
will always have a randomly selected job agent.

Default
Mark this checkbox to let BASE automatically add new users as members to the role.

Description
Description and information about the role.

Set the properties and proceed then to either one of the other tabs or by clicking on one of the
buttons: Save to save the changes or Cancel to abort.

Account administration

188

Permissions

Figure 22.9. Role permissions

A role's permissions are defined for each item type within BASE. Set the role's permission on an
item type by first selecting the item(s) in the list and then tick those permissions that should be
applied. Not all permissions can be applied to every item type, that's why permission check-boxes
becomes disabled when selecting some of the item types

After each item type in the list is a string inside square brackets that shows what kind of permissions
the current role has on that particular item type. The permissions that do not have been set are
represented with '-' inside the square brackets and those which have been set are represented with
characters that are listed below.

• DENIED = Deny access to the selected item type. This exclude all the other permissions by
unchecking the other check boxes.

• C = Create

• R = Read

• U = Use

• W = Write

• D = Delete

• O = Set owner

• P = Set permission

Set the role's permission on each one of the item types and proceed then to one of the other tabs
or click on Save to save the changes or Cancel to abort.

Account administration

189

Members
Figure 22.10. Role members

Members
Users that are members of a role are listed in the list-box located on this tab.

Add users
Select the users that should be added from the list in the pop-up window. Click on the Ok button
to close the pop-up window and add the selected users.

Remove
Removes the selected users from the role.

Press Save to save the role or go to one of the other tabs if there are more that needs to be set. Use
Close to abort and close the window without saving the changes.

22.4. Disk space/quota
The administrator can control the maximum size of disk space for users and groups. A user must
be assigned a quota of their own and may optionally have a group quota as well. If so, the most
restrictive quota is checked whenever the user tries to do something that counts as disk-consuming,
for example uploading a file.

Note

The quota is checked before an operation, which is allowed to continue if there is space left. For
example, even if you have only one byte left of disk space you are allowed to upload a 10MB file.

Read Section 22.1.1, “Edit user” (page 178) and Section 22.2.1, “Edit group” (page 183) for
information about how to set a quota for a user and group.

The list of quotas in BASE can be found by using the menu Administrate � Quota.

Account administration

190

22.4.1. Edit quota

Properties

Figure 22.11. Quota properties

Name
Name of the quota.

Total quota
Limit of total quota. The sum of the other three quotas does not have to be the same as this, it
is always the most restricted value that is used.

Files
Limit of disk space to save files in.

Raw data
Limit of disk space to save raw data in.

Experiments
Limit of disk space that can be used by experiments.

Description
Description of the quota. It could be a good idea to describe the quota's details here. Use the
magnifying glass to edit the text in a larger text area.

Account administration

191

Tip
Use the check box to the right of the input fields to set unlimited quota. You can use the
abbreviations kb, Mb and Gb to specify the quota values.

When everything have been set the quota is saved by using Save. To discard changes use Cancel.

22.4.2. Disk usage
Go to Administrate � Disk usage if you want to get statistics about how the disk is used. There are
three tabs:

Overview
Gives an overview of the total disk usage. It is divided per location and quota type.

Per user
Gives an overview of the disk usage per user. For each user you can get a summary displaying
the total disk usage and divided per location and quota type. Use the View details link to list
all items that uses up disk space. The list displays the name and type of each item and the
amount of disk space it uses.

Per group
Gives an overview of the disk usage per group, with the same functionality as the per user
overview.

Part IV. Developer documentation

193

Chapter 23. Migrating code from
BASE 2 to BASE 3
This section gives a brief overview what has changed between BASE 2 and BASE 3 and how to
migrate plug-in or extension code to BASE 3. Do not expect that your code can be installed and
function as intended right out of the box.

23.1. Compiling the code against BASE 3
All deprecated methods and classes have been re-
moved
Before trying to compile your code against the BASE 3 API we recommend that you make sure
that you are not using any deprecated methods or classes from the BASE 2.17 API. So the first
step should always be to compile your code against the latest BASE 2.17 release. Fix any warnings
according to the instructions in the javadoc. In most cases, there is a simple replacment API that
can be used instead. Since the deprecated API has been removed in BASE 3 so has the instructions.
You'll need to check with the BASE 2.17 documentation which is located at:

• http://base.thep.lu.se/chrome/site/2.17/html/index.html: User manual.

• http://base.thep.lu.se/chrome/site/2.17/api/index.html: API documentation.

Do not proceed until you are sure that your code is not using any deprecated API.

BASE JAR files have new names
All JAR files with the BASE API has been renamed to better follow the scheme used by many other
projects.

Table 23.1. JAR filename changes

Old filename BASE 3 filename

BASE2Core.jar base-core-3.0.0.jar

BASE2CorePlugins.jar base-coreplugins-3.0.0.jar

BASE2Webclient.jar base-webclient-3.0.0.jar

BASE2WSClient.jar base-webservices-client-3.0.0.jar

Note
Also note that the version number is included in the file name, so the files will change when
new versions are released. You'll need to make sure that your build system can handle this.
The BASE JAR files can be downloaded from http://base2.thep.lu.se/base/jars/.

23.2. Core API changes
There are lot's of other changes to the API between BASE 2 and BASE 3. If your code is affected
by those changes, you will have to update your code. Since there are many changes, both big and
small, it is not possible to list everything here. One good way to find out more about the changes is
to use the BASE Trac or ask on the developers mailing list. Some of the major changes are:

• Removed the Plugin.getAbout() method from the Plugin interface. The information should
instead be placed in the META-INF/extensions.xml file inside the JAR file that the plug-in is
shipped in.

http://base.thep.lu.se/chrome/site/2.17/html/index.html
http://base.thep.lu.se/chrome/site/2.17/api/index.html
http://base2.thep.lu.se/base/jars/

Migrating code from
BASE 2 to BASE 3

194

• HardwareType, SoftwareType, ProtocolType and FileType has been replaced with ItemSub-
type. Additionally, several other items implement the new Subtypable interface. See ticket #1597

(Subtypes of items)1 for more information.

• Label has been replaced with Tag. LabeledExtract has been merged with Extract. Hybridiza-
tion has been replaced with PhysicalBioAssay. Scan and Image has been replaced with De-
rivedBioAssay. The API for linking parent/child biomaterial has been changed. The pooled prop-
erty of biomaterials has been removed. The changes are driven by the support for sequencing
experiments. The new items are using the new subtype feature. For example, a hybridization in
BASE 2 has been converted to a physical bioassay in BASE 3 with the subtype 'Hybridization'. The
server admin can define additional subtypes. See ticket #1153 (Handling short read transcript

sequence data)2 for more information.

• RawBioAssay has a direct link to Extract instead of the arrayIndex property which has been
removed.

• Removed validator and metadata reader properties from DataFileType. This feature is now im-
plemented as extensions. The API is slightly different and classes have been moved around a bit.
See Section 26.8.8, “Fileset validators” (page 257) and ticket #1598 (Use the extensions system

for data file validators and metadata readers)3 for more information.

• A FileSet may store more than one file for each DataFileType which was not possible before.
The API for adding files have changed. See ticket #1604 (Support for multiple files of the same

type in a FileSet)4 for more information.

• Changes to the FileUnpacker interface. The unpack() method signature has changed and any
plug-ins that implement this interface need to be updated. The changes make it possible to get
information about the main zip/tar file that is being unpacked. See ticket #978 (Unzipped files

never inherit file type specified during upload)5 for more information.

• Encrypting passwords before logging in is no longer supported. The SessionControl.login()
has been changed to reflect this. While this may seem like a reduction in security it is not. The
previously used scheme with MD5 hashes can be cracked by brute-force on a moderate computer
today. If additional security is needed we recommend that BASE is installed with HTTPS access

only. See ticket #1641 (Use bcrypt for storing passwords instead of MD5)6 for more information.

23.3. Packaging your plug-in so that it in-
stalls in BASE 3
The installation system for plug-ins and extensions has been reworked. We hope that it is easier to
install things now. Basically, the plug-in installation wizard has been merged with the extensions
installation wizard. If your package contain only extensions it will probably install without changes.
Packages with plug-ins need some changes to the XML files.

• The information that was in META-INF/base-plugins.xml, should be moved to META-INF/
extensions.xml. The XML syntax in the new file is different from the old file. You'll also need
to put the information was returned by the Plugin.getAbout() method in this file. See Sec-
tion 25.1.2, “Make the plug-in compatible with the auto-installation wizard” (page 204) for more
information.

• The information that was in META-INF/base-configurations.xml, should be moved to META-
INF/plugin-configurations.xml. The XML syntax in the new and old file is the same.

• All plug-ins and extensions are required to be installed in the directory specified by plugins.dir
setting in the base.config file. Sub-directories are not searched any longer. This is usually not
something that you need to worry about as a developer except that you should make sure the

http://base.thep.lu.se/ticket/1597
http://base.thep.lu.se/ticket/1597
http://base.thep.lu.se/ticket/1153
http://base.thep.lu.se/ticket/1153
http://base.thep.lu.se/ticket/1598
http://base.thep.lu.se/ticket/1598
http://base.thep.lu.se/ticket/1604
http://base.thep.lu.se/ticket/1604
http://base.thep.lu.se/ticket/978
http://base.thep.lu.se/ticket/978
http://base.thep.lu.se/ticket/1641

Migrating code from
BASE 2 to BASE 3

195

installation instruction are up to date. See Section 21.1, “Managing plug-ins and extensions” (page

163) and ticket #1592 (Unified installation procedure for plug-ins, extensions and more...)7 for
more information.

• Plug-ins/extensions that depend on 3-rd party JAR files are now recommended to include those
JAR file inside the META-INF/lib directory in the plug-in JAR file. The Class-Path attribute in
META-INF/MANIFEST.MF must still be set. See Section 25.1, “How to organize your plug-in project”

(page 202) and ticket #1594 (JarClassLoader support for JARs within JARs)8.

http://base.thep.lu.se/ticket/1592
http://base.thep.lu.se/ticket/1594

196

Chapter 24. Developer overview of
BASE
This section gives a brief overview of the architechture used in BASE. This is a good starting point
if you need to know how various parts of BASE are glued together. The figure below should display
most of the importants parts in BASE. The following sections will briefly describe some parts of the
figure and give you pointers for further reading if you are interested in the details.

Developer overview of BASE

197

Figure 24.1. Overview of the BASE application

24.1. Fixed vs. dynamic database
BASE stores most of it's data in a database. The database is divided into two parts, one fixed and
one dynamic part.

Developer overview of BASE

198

The fixed part contains tables that corresponds to the various items found in BASE. There is, for
example, one table for users, one table for groups and one table for reporters. Some items share
the same table. Biosources, samples and extracts are all biomaterials and share the BioMaterials
table. The access to the fixed part of the database goes through Hibernate in most cases or through
the the Batch API in some cases (for example, access to reporters).

The dynamic part of the database contains tables for storing analyzed data. Each experiment has
it's own set of tables and it is not possible to mix data from two experiments. The dynamic part of
the database can only be accessed by the Batch API and the Query API using SQL and JDBC.

Note
The actual location of the two parts depends on the database that is used. MySQL uses two
separate databases while PostgreSQL uses one database with two schemas.

More information
• Section 28.5, “The Dynamic API” (page 320)

24.2. Hibernate and the DbEngine
Hibernate (www.hibernate.org1) is an object/relational mapping software package. It takes plain
Java objects and stores them in a database. All we have to do is to set the properties on the
objects (for example: user.setName("A name")). Hibernate will take care of the SQL generation
and database communication for us. This is not a magic or automatic process. We have to pro-
vide mapping information about what objects goes into which tables and what properties goes into
which columns, and other stuff like caching and proxy settings, etc. This is done by annotating
the code with Javadoc comments. The classes that are mapped to the database are found in the
net.sf.basedb.core.data package, which is shown as the Data classes box in the image above.
The HibernateUtil class contains a lot of functionality for interacting with Hibernate.

Hibernate supports many different database systems. In theory, this means that BASE should work
with all those databases. However, in practice we have found that this is not the case. For example,
Oracle converts empty strings to null values, which breaks some parts of our code that expects
non-null values. Another difficulty is that our Batch API and some parts of the Query API:s generates
native SQL as well. We try to use database dialect information from Hibernate, but it is not always
possible. The DbEngine contains code for generating the SQL that Hibernate can't help us with.
We have implemented a generic DefaultDbEngine which follows ANSI specifications and special
drivers for MySQL (MySQLEngine) and PostgreSQL (PostgresDbEngine). We don't expect BASE to
work with other databases without modifications.

More information
• Section 30.3.4, “Data-layer rules” (page 357)

• www.hibernate.org2

24.3. The Batch API
Hibernate comes with a price. It affects performance and uses a lot of memory. This means that those
parts of BASE that often handles lots of items at the same time doesn't work well with Hibernate.
This is for example reporters, array design features and raw data. We have created the Batch API
to solve these problems.

The Batch API uses JDBC and SQL directly against the database. However, we still use metadata
and database dialect information available from Hibernate to generate most of the SQL we need. In

1 http://www.hibernate.org

http://www.hibernate.org
http://www.hibernate.org
http://www.hibernate.org

Developer overview of BASE

199

theory, this should make the Batch API just as database-independent as Hibernate is. In practice
there is some information that we can't extract from Hibernate so we have implemented a simple
DbEngine to account for missing pieces. The Batch API can be used for any BatchableData class
in the fixed part of the database and is the only way for adding data to the dynamic part.

Note
The main reason for the Batch API is to avoid the internal caching of Hibernate which eats
lots of memory when handling thousands of items. Hibernate 3.1 introduced a new stateless
API which among other things doesn't do any caching. This version was released after we had
created the Batch API. We made a few tests to check if it would be better for us to switch back
to Hibernate but found that it didn't perform as well as our own Batch API (it was about 2
times slower). In any case, we can never get Hibernate to work with the dynamic database,
so the Batch API is needed.

More information
• Section 28.3.6, “Batch operations” (page 312)

• Section 28.5, “The Dynamic API” (page 320)

• Section 30.3.6, “Batch-class rules” (page 389)

24.4. Data classes vs. item classes
The data classes are, with few exceptions, for internal use. These are the classes that are mapped to
the database with Hibernate mapping files. They are very simple and contains no logic at all. They
don't do any permission checks or any data validation.

Most of the data classes has a corresponding item class. For example: UserData and User, Group-
Data and Group. The item classes are what the client applications can see and use. They contain
logic for permission checking (for example if the logged in user has WRITE permission) and data
validation (for example setting a required property to null).

The exception to the above scheme are the batchable classes, which are all subclasses of the Batch-
ableData class. For example, there is a ReporterData class but no corresponding item class. In-
stead there is a batcher implementation, ReporterBatcher, which takes care of the more or less
the same things that an item class does, but it also takes care of it's own SQL generation and JDBC
calls that bypasses Hibernate and the caching system.

More information
• Section 30.3.4, “Data-layer rules” (page 357)

• Section 30.3.5, “Item-class rules” (page 371)

• Section 30.3.6, “Batch-class rules” (page 389)

• Section 28.3.2, “Access permissions” (page 312)

• Section 28.3.3, “Data validation” (page 312)

• Section 28.3.6, “Batch operations” (page 312)

24.5. The Query API
The Query API is used to build and execute queries against the data in the database. It builds a
query by using objects that represents certain operations. For example, there is an EqRestriction
object which tests if two expressions are equal and there is an AddExpression object which adds
two expressions. In this way it is possible to build very complex queries without using SQL or HQL.

Developer overview of BASE

200

The Query API knows how to work both via Hibernate and via SQL. In the first case it generates HQL
(Hibernate Query Language) statements which Hibernate then translates into SQL. In the second
case SQL is generated directly. In most cases HQL and SQL are identical, but not always. Some
situations are solved by having the Query API generate slightly different query strings (with the help
of information from Hibernate and the DbEngine). Some query elements can only be used with one
of the query types.

Note
The object-based approach makes it a bit difficult to store a query for later reuse. The
net.sf.basedb.util.jep package contains an expression parser that can be used to convert
a string to Restriction:s and Expression:s for the Query API. While it doesn't cover 100%
of the cases it should be useful for the WHERE part of a query.

More information
• Section 28.4, “The Query API” (page 320)

24.6. The Controller API
The Controller API is the very heart of the BASE system. This part of the core is used for boring
but essential details, such as user authentication, database connection management, transaction
management, data validation, and more. We don't write more about this part here, but recommends
reading the documents below.

More information
• Section 28.3, “The Core API” (page 312)

24.7. The Extensions API
An extensions mechanism makes it possible to add functionality to BASE by external parties without
having to modify the BASE code. This is not something that can be done at random, but BASE define
a number of extension points which can been as a contract that must be fulfilled by the external
code. Extension points are defined both by the BASE core (for example, file validators) and by the
BASE web client (for example, menu and toolbar entries). In many cases, the distinction between
an extension and a plug-in is fine. One major difference is that extensions are invoked and used
immediately and are never queued for later execution. The installation mechanism is the same for
both extensions and plug-ins and many packages use both types to provide a better user experience.

More information
• Chapter 26, Extensions developer (page 239)

• Section 28.6, “The Extensions API” (page 320)

24.8. Plug-ins
From the core code's point of view a plug-in is just another client application. A plug-in doesn't
have more powers and doesn't have access to some special API that allows it to do cool stuff that
other clients can't.

However, the core must be able to control when and where a plug-in is executed. Some plug-ins may
take a long time doing their calculations and may use a lot of memory. It would be bad if a several
users started to execute a resource-demanding plug-in at the same time. This problem is solved by
adding a job queue. Each plug-in that should be executed is registered as Job in the database. A

Developer overview of BASE

201

job controller is checking the job queue at regular intervals. The job controller can then choose if it
should execute the plug-in or wait depending on the current load on the server.

Note
BASE ships with two types of job controllers. One internal that runs inside the web application,
and one external that is designed to run on separate servers, so called job agents. The internal
job controller should work fine in most cases. The drawback with this controller is that a badly
written plug-in may crash the entire web server. For example, a call to System.exit() in the
plug-in code shuts down Tomcat as well.

More information
• Chapter 25, Plug-in developer (page 202)

• Section 28.3.8, “Plugin execution / job queue” (page 312)

24.9. Client applications
Client applications are application that use the BASE Core API. The current web application is built
with Java Server Pages (JSP). JSP is supported by several application servers but we have only
tested it with Tomcat. Another client application is the external job agents that executes plug-ins
on separate servers.

Although it is possible to develop a completely new client appliction from scratch we don't see this
as a likely thing to happen. Instead, there are some other possibilites to access data in BASE and
to extend the functionality in BASE.

The first possibility is to use the Web Service API. This allows you to access some of the data in the
BASE database and download it for further use. The Web Service API is currently very limited but
it is not hard to extend it to cover more use cases.

A second possibility is to use the Extension API. This allows a developer to add functionality that
appears directly in the web interface. For example, additional menu items and toolbar buttons. This
API is also easy to extend to cover more use cases.

More information
• Chapter 27, Web services (page 264)

• Chapter 26, Extensions developer (page 239)

• The BASE plug-ins site3 also has examples of extensions and web services implementations.

http://baseplugins.thep.lu.se

202

Chapter 25. Plug-in developer
25.1. How to organize your plug-in project

25.1.1. Using Ant
Here is a simple example of how you might organize your project using ant (http://ant.apache.org)
as the build tool. This is just a recommendation that we have found to be working well. You may
choose to do it another way.

Directory and file layout

Create a directory on your computer where you want to store your plug-in project. This directory is
the pluginname/ directory in the listing below. You should also create some subdirectories:

pluginname/
 - /bin/
 - /lib/
 - /src/ org/company/
 - /META-INF/
 - /META-INF/MANIFEST.MF
 - /META-INF/extensions.xml
 - /META-INF/lib/

The bin/ directory is empty to start with. It will contain the compiled code. In the lib/ directory
you should put base-core-3.x.x.jar and other library files that is needed when compiling the
source code, but doesn't have to be distributed with your plug-in (since they are already included
in the BASE distribution). In the META-INF/lib/ directory you should put other library files that
are needed both when compiling and when distributing your plug-in.

The src/ directory contains your source code. In this directory you should create subdirectories
corresponding to the package name of your plug-in class(es). See http://en.wikipedia.org/wiki/
Java_package for information about conventions for naming packages. The META-INF/ directory
contains metadata about the plug-in and are needed for easy installation. Typically you'll always
need MANIFEST.MF and extensions.xml but, depending on what you are developing, other files
are also needed.

The build file

In the root of your directory, create the build file: build.xml. Here is an example that will compile
your plug-in and put it in a JAR file.

http://ant.apache.org
http://en.wikipedia.org/wiki/Java_package
http://en.wikipedia.org/wiki/Java_package

Plug-in developer

203

Example 25.1. A simple build file

<?xml version="1.0" encoding="UTF-8"?>
<project
 name="MyPlugin"
 default="build.plugin"
 basedir="."
 >

 <!-- variables used -->
 <property name="plugin.name" value="MyPlugin" />
 <property name="src" value="src" />
 <property name="bin" value="bin" />

 <!-- set up classpath for compiling -->
 <path id="classpath">
 <fileset dir="lib">
 <include name="**/*.jar"/>
 </fileset>
 <fileset dir="META-INF/lib">
 <include name="**/*.jar"/>
 </fileset>
 </path>

 <!-- main target -->
 <target
 name="build.plugin"
 description="Compiles the plug-in and put in jar"
 >
 <javac
 encoding="UTF-8"
 srcdir="${src}"
 destdir="${bin}"
 classpathref="classpath">
 </javac>
 <jar
 jarfile="${plugin.name}.jar"
 manifest="META-INF/MANIFEST.MF"
 >

 <!-- compiled source code -->
 <fileset dir="${bin}" />

 <!-- metadata and extra JAR files -->
 <fileset dir="." includes="META-INF/**" />
 </jar>
 </target>
</project>

If your plug-in depends on JAR files not included with the standard BASE installation, you must
create the META-INF/MANIFEST.MF file. List the other JAR files as in the following example. If your
plug-in does not depend on other JAR files, you may remove the manifest attribute of the <jar> tag.

Manifest-Version: 1.0
Class-Path: lib/OtherJar.jar lib/ASecondJar.jar

See also Section 25.7, “How BASE load plug-in classes” (page 237) for more information regarding
class loading when a plug-in depends on a external JAR files.

To make installation of your plug-in easier it is a good idea to include the META-INF/
extensions.xml. This file should include information about your plug-in, such as the name, au-
thor, version, and the main Java class for the plug-in. See Section 25.1.2, “Make the plug-in com-
patible with the auto-installation wizard” (page 204) for get more information about this feature.

Plug-in developer

204

Building the plug-in

Compile the plug-in simply by typing ant in the console window. If all went well the MyPlugin.jar
will be created in the same directory.

To install the plug-in copy the JAR file to the server's plug-in directory. For more information about
the actual installation read Section 21.1, “Managing plug-ins and extensions” (page 163).

25.1.2. Make the plug-in compatible with the auto-
installation wizard
BASE has support for automatically detecting new plug-ins with the auto-installation wizard. The
wizard makes it very easy for a server administrator to install new plug-ins. See Section 21.1.1,
“Automatic installation wizard” (page 164).

The auto-install feature requires that a plug-in provides some information about itself. The wizard
looks in all JAR file for the file META-INF/extensions.xml. This file contains some information
about the plug-in(s). Here is an example:

<?xml version="1.0" encoding="UTF-8" ?>
<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
 <!-- information about the complete package (which may contain many plug-in definitions) -->
 <about>
 <name>My plug-in package</name>
 <description>
 This package contains some very useful plug-ins...
 </description>
 <version>1.3</version>
 <min-base-version>3.0</min-base-version>
 <copyright>You</copyright>
 <url>http://www.company.org/with/more/info/about/plugins</url>
 <email>some.email.address@company.org</email>
 </about>

 <!-- Defines a single plug-in (can be repeated multiple times) -->
 <plugin-definition id="PluginX">
 <about>
 <name>Plug-in X</name>
 <description>
 Calculates the X transform of....
 </description>
 </about>
 <plugin-class>org.company.PluginClassX</plugin-class>
 <settings>
 <property name="everyone-use">1</property>
 </settings>
 </plugin-definition>
</extensions>

The first two lines should be the same in all extensions.xml files. The rest of the tags are described
in following list.

<about>
The first <about> tag is information about the package as a whole. We recommend putting in
as much information as possible here. Supported sub-tags are: <name>, <description>, <ver-
sion>, <min-base-version>, <max-base-version>, <contact>, <email>, <url> and <copy-
right>

Each plug-in that is defined in this file may have it's <about> tag which override the global
information. Typically, you'll only overide the name and description tags and maybe also the
min/max BASE version tags.

Plug-in developer

205

<plugin-definition>
This is the main element for defining a plug-in. It can override the global <about> information.
We recommend that at least a <name> and <description> is provided.

<plugin-class>
The value is the fill class name of the plug-in's main class.

<min-base-version> <max-base-version>
Optional sub-tags in the <about> section. Values are two- or three-digits separated by a dot.
For example, 3.0.0 and 3.1. If values are given the plug-in will only be installed if the server's
BASE version is within the bounds.

<settings>
Optional sub-tag that can contain one or more <property> tags. The settings can be used to
configure some properties of the plug-in definition. So far, the following properties are recognized:

• everyone-use: If set, the plug-in is shared to the EVERYONE group with use permissions.

• immediate-execution: If set, the plug-in is given permissions to use the immediate execution
feature. This is typically used for export plug-in that need to support immediate download.

• max-memory: The maximum memory (in bytes) to give to the plug-in when it is executed on
a job agent. This setting is ignored when plug-ins are executed within the web client.

• deprecated: The plug-in has been deprecated. If it already exists on the BASE installation it
will be disabled. If it doesn't exists, it will not be installed.

Installing plug-in configurations
The installation wizard has support for installing plug-in configurations. If some of your plug-
ins has support for different configurations that you want to ship as part of the package, use
the "Plug-in configuration exporter" in BASE and include the generated file in META-INF/plugin-
configurations.xml inside your JAR file.

Note

The installation wizard can only install configurations that belong to plug-ins defined by the
same package. It is currently not possible to, for example, include configuration for core plug-
ins.

25.2. The Plug-in API

25.2.1. The main plug-in interfaces
The BASE API defines two interfaces and one abstract class that are vital for implementing plug-ins:

• net.sf.basedb.core.plugin.Plugin
• net.sf.basedb.core.plugin.InteractivePlugin
• net.sf.basedb.core.plugin.AbstractPlugin

A plug-in must always implement the Plugin interface. The InteractivePlugin interface is op-
tional, and is only needed if you want user interaction. The AbstractPlugin is a useful base class
that your plug-in can use as a superclass. It provides default implementations for some of the in-
terface methods and also has utility methods for validating and storing job and configuration pa-
rameter values. Another reason to use this class as a superclass is that it will shield your plug-in
from future changes to the Plug-in API. For example, if we decide that a new method is needed in
the Plugin interface we will also try to add a default implementation in the AbstractPlugin class.

Important

A plug-in must also have public no-argument contructor. Otherwise, BASE will not be able to
create new instances of the plug-in class.

Plug-in developer

206

The net.sf.basedb.core.plugin.Plugin interface
This interface defines the following methods and must be implemented by all plug-ins.

 public Plugin.MainType getMainType();

Return information about the main type of plug-in. The Plugin.MainType is an enumeration
with five possible values:

• ANALYZE: An analysis plug-in

• EXPORT: A plug-in that exports data

• IMPORT: A plug-in that imports data

• INTENSITY: A plug-in that calculates the original spot intensities from raw data

• OTHER: Any other type of plug-in
The returned value is stored in the database but is otherwise not used by the core. Client
applications (such as the web client) will probably use this information to group the plug-ins,
i.e., a button labeled Export will let you select among the export plug-ins.

Example 25.2. A typical implementation just return one of the values

public Plugin.MainType getMainType()
{
 return Plugin.MainType.OTHER;
}

 public boolean supportsConfigurations();

If this method returns true, the plug-in can have different configurations, (i.e. PluginConfigu-
ration). Note that this method may return true even if the InteractivePlugin interface is not
implemented. The AbstractPlugin returns true for this method, which is the old way before
the introduction of this method.

 public boolean requiresConfiguration();

If this method returns true, the plug-in must have a configuration to be able to run. For example,
some of the core import plug-ins must have information about the file format, to be able to
import any data. The AbstractPlugin returns false for this method, which is the old way before
the introduction of this method.

 public Collection<Permissions> getPermissions();

Return a collection of permissions that the plug-in needs to be able to function as expected. This
method may return null or an empty collection. In this case the plug-in permission system is
not used and the plug-in always gets the same permissions as the logged in user. If permissions
are specified the plug-in should list all permissions it requires. Permissions that are not listed
are denied.

Note

The final assignment of permissions to a plug-in is always at the hands of a server admin-
istrator. He/she may decide to disable the plug-in permission system or revoke some of
the requested permissions. The permissions returned by this method is only a recommen-
dation that the server administrator may or may not accept. See Section 21.1.6, “Plug-in
permissions” (page 169) for more information about plug-in permissions.

Plug-in developer

207

 public void init(SessionControl sc,

 ParameterValues configuration,

 ParameterValues job)

 throws BaseException;

Prepare the plug-in for execution or configuration. If the plug-in needs to do some initialization
this is the place to do it. A typical implementation however only stores the passed parameters
in instance variables for later use. Since it is not possible to know what the user is going to do
at this stage, we recommend lazy initialisation of all other resources.

The parameters passed to this method has vital information that is needed to execute the plug-in.
The SessionControl is a central core object holding information about the logged in user and
is used to create DbControl objects which allows a plug-in to connect to the database to read,
add or update information. The two ParameterValues objects contain information about the
configuration and job parameters to the plug-in. The configuration object holds all parameters
stored together with a PluginConfiguration object in the database. If the plug-in is started
without a configuration this object is null. The job object holds all parameters that are stored
together with a Job object in the database. This object is null if the plug-in is started without
a job.

The difference between a configuration parameter and a job parameter is that a configuration is
usually something an administrator sets up, while a job is an actual execution of a plug-in. For
example, a configuration for an import plug-in holds the regular expressions needed to parse a
text file and find the headers, sections and data lines, while the job holds the file to parse.

The AbstractPlugin contains an implementation of this method that saves the passed objects
in protected instance variables. If you override this method we recommend that you also call
super.init().

Example 25.3. The AbstractPlugin implementation of Plugin.init()

protected SessionControl sc = null;
protected ParameterValues configuration = null;
protected ParameterValues job = null;
/**
 Store copies of the session control, plug-in and job configuration. These
 are available to subclasses in the {@link #sc}, {@link #configuration}
 and {@link #job} variables. If a subclass overrides this method it is
 recommended that it also calls super.init(sc, configuration, job).
*/
public void init(SessionControl sc,
 ParameterValues configuration, ParameterValues job)
 throws BaseException
{
 this.sc = sc;
 this.configuration = configuration;
 this.job = job;
}

 public void run(Request request,

 Response response,

 ProgressReporter progress);

Run the plug-in.

The request parameter is of historical interest only. It has no useful information and can be
ignored.

The progress parameter should be used by a plug-in to report its progress back to the core.
The core will usually send the progress information to the database, which allows users to see
exactly how the plug-in is progressing from the web interface. This parameter is allowed to be
null, but BASE will always use a progress reporter. The plug-in should try to not over-use the

Plug-in developer

208

progress reporter. The default implementation used by BASE has a time threshold so that calls
that occur too often with too little change in the progress are ignored. A good starting point is
to divide the work into 100 pieces each representing 1% of the work, i.e., if the plug-in should
export 100 000 items it should report progress after every 1000 items.

The response parameter is used to tell the core if the plug-in was successful or failed. Not setting
a response is considered a failure by the core. From the run method it is only allowed to use on
of the Response.setDone(), Response.setError() or Response.setContinue() methods.

Important
It is also considered bad practice to let exceptions escape out from this method. Always
use try...catch to catch exceptions and use Response.setError() to report the error
back to the core.

Example 25.4. Here is a skeleton for the run() method

public void run(Request request, Response response, ProgressReporter progress)
{
 // Open a connection to the database
 // sc is set by init() method
 DbControl dc = sc.newDbControl();
 try
 {
 // Insert code for plug-in here

 // Commit the work
 dc.commit();
 response.setDone("Plug-in ended successfully");
 }
 catch (Throwable t)
 {
 // All exceptions must be catched and sent back
 // using the response object
 response.setError(t.getMessage(), Arrays.asList(t));
 }
 finally
 {
 // IMPORTANT!!! Make sure opened connections are closed
 if (dc != null) dc.close();
 }
}

 public void done();

Clean up all resources after executing the plug-in. This method must not throw any exceptions.

Example 25.5. The AbstractPlugin contains an implementation of the done() method simply sets
the parameters passed to the init() method to null

/**
 Clears the variables set by the init method. If a subclass
 overrides this method it is recommended that it also calls super.done().
*/
public void done()
{
 configuration = null;
 job = null;
 sc = null;
}

The net.sf.basedb.core.plugin.InteractivePlugin interface

If you want the plug-in to be able to interact with the user you must also implement this interface.
This is probably the case for most plug-ins. Among the core plug-ins shipped with BASE the Spo-

Plug-in developer

209

tImageCreator is one plug-in that does not interact with the user. Instead, the web client has
special JSP pages that handles all the interaction, creates a job for it and sets the parameters. This
approach can also be used for other plug-ins if, for example, an extension is used to provide the gui.

The InteractivePlugin has three main tasks:

1. Tell a client application where the plug-in should be plugged in.

2. Ask the users for configuration and job parameters.

3. Validate parameter values entered by the user and store those in the database.

This requires that the following methods are implemented.

 public Set<GuiContext> getGuiContexts();

Return information about where the plug-in should be plugged in. Each place is identified by a
GuiContext object, which is an Item and a Type. The item is one of the objects defined by the
Item enumeration and the type is either Type.LIST or Type.ITEM, which corresponde to the
list view and the single-item view in the web client.

For example, the GuiContext = (Item.REPORTER, Type.LIST) tells a client application that
this plug-in can be plugged in whenever a list of reporters is displayed. The GuiContext =
(Item.REPORTER, Type.ITEM) tells a client application that this plug-in can be plugged in when-
ever a single reporter is displayed. The first case may be appropriate for a plug-in that imports
or exports reporters. The second case may be used by a plug-in that updates the reporter infor-
mation from an external source (well, it may make sense to use this in the list case as well).

The returned information is copied by the core at installation time to make it easy to ask for all
plug-ins for a certain GuiContext.

A typical implementation creates a static unmodifiable Set which is returned by this method. It
is important that the returned set cannot be modified. It may be a security issue if a misbehaving
client application does that.

Example 25.6. A typical implementation of getGuiContexts

// From the net.sf.basedb.plugins.RawDataFlatFileImporter plug-in
private static final Set<GuiContext> guiContexts =
 Collections.singleton(new GuiContext(Item.RAWBIOASSAY, GuiContext.Type.ITEM));

public Set<GuiContext> getGuiContexts()
{
 return guiContexts;
}

 public String isInContext(GuiContext context,

 Object item);

This method is called to check if a particular item is usable for the plug-in. This method is
invoked to check if a plug-in can be used in a given context. If invoked from a list context the
item parameter is null. The plug-in should return null if it finds that it can be used. If the
plug-in can't be used it must decide if the reason should be a warning or an error condition.

A warning is issued by returning a string with the warning message. It should be used when
the plug-in can't be used because it is unrelated to the current task. For example, a plug-in
for importing Genepix data should return a warning when somebody wants to import data to
an Agilent raw bioassay.

Plug-in developer

210

An error message is issued by throwing an exception. This should be used when the plug-in is
related to the current task but still can't do what it is supposed to do. For example, trying to
import raw data if the logged in user doesn't have write permission to the raw bioassay.

As a rule of thumb, if there is a chance that another plug-in might be able to perform the same
task a warning should be used. If it is guaranteed that no other plug-in can do it an error
message should be used.

Here is a real example from the RawDataFlatFileImporter plug-in which imports raw data to a
RawBioAssay. Thus, GuiContext = (Item.RAWBIOASSAY, Type.ITEM), but the plug-in can only
import data if the logged in user has write permission, there is no data already, and if the raw
bioassay has the same raw data type as the plug-in has been configured for.

Example 25.7. A realistic implementation of the isInContext() method

/**
 Returns null if the item is a {@link RawBioAssay} of the correct
 {@link RawDataType} and doesn't already have spots.
 @throws PermissionDeniedException If the raw bioasssay already has raw data
 or if the logged in user doesn't have write permission
*/
public String isInContext(GuiContext context, Object item)
{
 String message = null;
 if (item == null)
 {
 message = "The object is null";
 }
 else if (!(item instanceof RawBioAssay))
 {
 message = "The object is not a RawBioAssay: " + item;
 }
 else
 {
 RawBioAssay rba = (RawBioAssay)item;
 String rawDataType = (String)configuration.getValue("rawDataType");
 RawDataType rdt = rba.getRawDataType();
 if (!rdt.getId().equals(rawDataType))
 {
 // Warning
 message = "Unsupported raw data type: " + rba.getRawDataType().getName();
 }
 else if (!rdt.isStoredInDb())
 {
 // Warning
 message = "Raw data for raw data type '" + rdt + "' is not stored in the database";
 }
 else if (rba.hasData())
 {
 // Error
 throw new PermissionDeniedException("The raw bioassay already has data.");
 }
 else
 {
 // Error
 rba.checkPermission(Permission.WRITE);
 }
 }
 return message;
}

 public RequestInformation getRequestInformation(GuiContext context,

 String command)

 throws BaseException;

Ask the plug-in for parameters that need to be entered by the user. The GuiContext parameter
is one of the contexts returned by the getGuiContexts method. The command is a string telling

Plug-in developer

211

the plug-in what command was executed. There are two predefined commands but as you will
see the plug-in may define its own commands. The two predefined commands are defined in the
net.sf.basedb.core.plugin.Request class.

Request.COMMAND_CONFIGURE_PLUGIN
Used when an administrator is initiating a configuration of the plug-in.

Request.COMMAND_CONFIGURE_JOB
Used when a user has selected the plug-in for running a job.

Given this information the plug-in must return a RequestInformation object. This is simply
a title, a description, and a list of parameters. Usually the title will end up as the input form
title and the description as a help text for the entire form. Do not put information about the
individual parameters in this description, since each parameter has a description of its own.

Plug-in developer

212

Example 25.8. When running an import plug-in it needs to ask for the file to import from and if
existing items should be updated or not

// The complete request information
private RequestInformation configure Job;

// The parameter that asks for a file to import from
private PluginParameter<File> file Parameter;

// The parameter that asks if existing items should be updated or not
private PluginParameter<Boolean> updateExistingParameter;

public RequestInformation getRequestInformation(GuiContext context, String command)
 throws BaseException
{
 RequestInformation requestInformation = null;
 if (command.equals(Request.COMMAND_CONFIGURE_PLUGIN))
 {
 requestInformation = getConfigurePlugin();
 }
 else if (command.equals(Request.COMMAND_CONFIGURE_JOB))
 {
 requestInformation = getConfigureJob();
 }
 return requestInformation;
}

/**
 Get (and build) the request information for starting a job.
*/
private RequestInformation getConfigureJob()
{
 if (configureJob == null)
 {
 // A file is required
 fileParameter = new PluginParameter<File>(
 "file",
 "File",
 "The file to import the data from",
 new FileParameterType(null, true, 1)
);

 // The default value is 'false'
 updateExistingParameter = new PluginParameter<Boolean>(
 "updateExisting",
 "Update existing items",
 "If this option is selected, already existing items will be updated " +
 " with the information in the file. If this option is not selected " +
 " existing items are left untouched.",
 new BooleanParameterType(false, true)
);

 List<PluginParameter<?>> parameters =
 new ArrayList<PluginParameter<?>>(2);
 parameters.add(fileParameter);
 parameters.add(updateExistingParameter);

 configureJob = new RequestInformation
 (
 Request.COMMAND_CONFIGURE_JOB,
 "Select a file to import items from",
 "Description",
 parameters
);
 }
 return configureJob;
}

Plug-in developer

213

As you can see it takes a lot of code to put together a RequestInformation object. For each
parameter you need one PluginParameter object and one ParameterType object. To make life
a little easier, a ParameterType can be reused for more than one PluginParameter.

StringParameterType stringPT = new StringParameterType(255, null, true);
PluginParameter one = new PluginParameter("one", "One", "First string", stringPT);
PluginParameter two = new PluginParameter("two", "Two", "Second string", stringPT);
// ... and so on

The ParameterType is an abstract base class for several subclasses each implementing a specific
type of parameter. The list of subclasses may grow in the future, but here are the most important
ones currently implemented.

Note

Most parameter types include support for supplying a predefined list of options to select
from. In that case the list will be displayed as a drop-down list for the user, otherwise a
free input field is used.

StringParameterType
Asks for a string value. Includes an option for specifying the maximum length of the string.

FloatParameterType, DoubleParameterType, IntegerParameterType, LongParameter-
Type

Asks for numerical values. Includes options for specifying a range (min/max) of allowed
values.

BooleanParameterType
Asks for a boolean value.

DateParameterType
Asks for a date.

FileParameterType
Asks for a file item.

ItemParameterType
Asks for any other item. This parameter type requires that a list of options is supplied, except
when the item type asked for matches the current GuiContext, in which case the currently
selected item is used as the parameter value.

PathParameterType
Ask for a path to a file or directory. The path may be non-existing and should be used when
a plug-in needs an output destination, i.e., the file to export to, or a directory where the
output files should be placed.

You can also create a PluginParameter with a null name and ParameterType. In this case, the
web client will not ask for input from the user, instead it is used as a section header, allowing you
to group parameters into different sections which increase the readability of the input parameters
page.

PluginParameter firstSection = new PluginParameter(null, "First section", null, null);
PluginParameter secondSection = new PluginParameter(null, "Second section", null, null);
// ...

parameters.add(firstSection);
parameters.add(firstParameterInFirstSection);
parameters.add(secondParameteInFirstSection);

parameters.add(secondSection);
parameters.add(firstParameterInSecondSection);
parameters.add(secondParameteInSecondSection);

Plug-in developer

214

 public void configure(GuiContext context,

 Request request,

 Response response);

Sends parameter values entered by the user for processing by the plug-in. The plug-in must
validate that the parameter values are correct and then store them in database.

Important

No validation is done by the core, except converting the input to the correct object type,
i.e. if the plug-in asked for a Float the input string is parsed and converted to a Float.
If you have extended the AbstractPlugin class it is very easy to validate the parameters
with the AbstractPlugin.validateRequestParameters() method. This method takes
the same list of PluginParameter:s as used in the RequestInformation object and uses
that information for validation. It returns null or a list of Throwable:s that can be given
directly to the response.setError() methods.

When the parameters have been validated, they need to be stored in the database.
Once again, it is very easy, if you use one of the AbstractPlugin.storeValue() or
AbstractPlugin.storeValues() methods.

The configure method works much like the Plugin.run() method. It must return the result in
the Response object, and should not throw any exceptions.

Example 25.9. Configuration implementation building on the examples above

public void configure(GuiContext context, Request request, Response response)
{
 String command = request.getCommand();
 try
 {
 if (command.equals(Request.COMMAND_CONFIGURE_PLUGIN))
 {
 // TODO
 }
 else if (command.equals(Request.COMMAND_CONFIGURE_JOB))
 {
 // Validate user input
 List<Throwable> errors =
 validateRequestParameters(getConfigureJob().getParameters(), request);
 if (errors != null)
 {
 response.setError(errors.size() +
 " invalid parameter(s) were found in the request", errors);
 return;
 }

 // Store user input
 storeValue(job, request, fileParameter);
 storeValue(job, request, updateExistingParameter);

 // We are happy and done
 File file = (File)job.getValue("file");
 response.setSuggestedJobName("Import data from file " + file.getName());
 response.setDone("Job configuration complete", Job.ExecutionTime.SHORT);
 }
 }
 catch (Throwable ex)
 {
 response.setError(ex.getMessage(), Arrays.asList(ex));
 }
}

Note that the call to response.setDone() has a second parameter Job.ExecutionTime.SHORT.
It is an indication about how long time it will take to execute the plug-in. This is of interest
for job queue managers which probably does not want to start too many long-running jobs at

Plug-in developer

215

the same time blocking the entire system. Please try to use this parameter wisely and not use
Job.ExecutionTime.SHORT out of old habit all the time.

The Response class also has a setContinue() method which tells the core that the plug-in
needs more parameters, i.e. the core will then call getRequestInformation() again with the
new command, let the user enter values, and then call configure() with the new values. This
process is repeated until the plug-in reports that it is done or an error occurs.

Tip

You do not have to store all values the plug-in asked for in the first place. You may even
choose to store different values than those that were entered. For example, you might ask
for the mass and height of a person and then only store the body mass index, which is
calculated from those values.

An important note is that during this iteration it is the same instance of the plug-in that
is used. However, no parameter values are stored in the database until the plugin sends a
response.setDone(). After that, the plug-in instance is usually discarded, and a job is placed
in the job queue. The execution of the plug-in happens in a new instance and maybe on a dif-
ferent server. This means that a plug-in can't store state from the configuration phase internally
and expect it to be there in the execution phase. Everything the plug-in needs to do it's job must
be stored as parameters in the database.

The only exception to the above rule is if the plug-in answers with
Response.setExecuteImmediately() or Response.setDownloadImmediately(). Doing so
bypasses the entire job queue system and requests that the job is started immediately. This is a
permission that has to be granted to each plug-in by the server administrator. If the plug-in has
this permission, the same object instance that was used in the configuration phase is also used
in the execution phase. This is the only case where a plug-in can retain internal state between
the two phases.

25.2.2. How the BASE core interacts with the plug-in
when...
This section describes how the BASE core interacts with the plug-in in a number of use cases. We
will outline the order the methods are invoked on the plug-in.

Installing a plug-in

When a plug-in is installed the core is eager to find out information about the plug-in. To do this
it calls the following methods in this order:

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2. Calls are made to Plugin.getMainType(), Plugin.supportsConfigurations() and
Plugin.requiresConfiguration() to find out information about the plug-in. This is the only
time these methods are called. The information that is returned by them are copied and stored
in the database for easy access.

Note

The Plugin.init() method is never called during plug-in installation.

3. If the plug-in implements the InteractivePlugin interface the
InteractivePlugin.getGuiContexts() method is called. This is the only time this method is
called and the information it returns are copied and stored in the database.

4. If the server admin decided to use the plug-in permission system, the Plugin.getPermissions()
method is called. The returned information is copied and stored in the database.

Plug-in developer

216

Configuring a plug-in

The plug-in must implement the InteractivePlugin interface and the
Plugin.supportsConfigurations() method must return TRUE. The configuration is done with a
wizard-like interface (see Section 21.2.1, “Configuring plug-in configurations” (page 172)). The same
plug-in instance is used throughout the entire configuration sequence.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2. The Plugin.init() method is called. The job parameter is null.

3. The InteractivePlugin.getRequestInformation() method is called. The context
parameter is null and the command is the value of the string constant
Request.COMMAND_CONFIGURE_PLUGIN (_config_plugin).

4. The web client process the returned information and displays a form for user input. The plug-in
will have to wait some time while the user enters data.

5. The InteractivePlugin.configure() method is called. The context parameter is still null
and the request parameter contains the parameter values entered by the user.

6. The plug-in must validate the values and decide whether they should be stored in the database
or not. We recommend that you use the methods in the AbstractPlugin class for this.

7. The plug-in can choose between three different respones:

• Response.setDone(): The configuration is complete. The core will write any configuation
changes to the database, call the Plugin.done() method and then discard the plug-in in-
stance.

• Response.setError(): There was one or more errors. The web client will display the error
messages for the user and allow the user to enter new values. The process continues with step
4 (page 216).

• Response.setContinue(): The parameters are correct but the plug-in wants more parameters.
The process continues with step 3 (page 216) but the command has the value that was passed
to the setContinue() method.

Checking if a plug-in can be used in a given context

If the plug-in is an InteractivePlugin it has specified in which contexts it can be used by the
information returned from InteractivePlugin.getGuiContexts() method. The web client uses
this information to decide whether, for example, a Run plugin button should be displayed on a page
or not. However, this is not always enough to know whether the plug-in can be used or not. For
example, a raw data importer plug-in cannot be used to import raw data if the raw bioassay already
has data. So, when the user clicks the button, the web client will load all plug-ins that possibly can
be used in the given context and let each one of them check whether they can be used or not.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2. The Plugin.init() method is called. The job parameter is null. The configuration parameter
is null if the plug-in does not have any configuration parameters.

3. The InteractivePlugin.isInContext() is called. If the context is a list context, the item pa-
rameter is null, otherwise the current item is passed. The plug-in should return null if it can be
used under the current circumstances, or a message explaining why not.

4. After this, Plugin.done() is called and the plug-in instance is discarded. If there are several
configurations for a plug-in, this procedure is repeated for each configuration.

Plug-in developer

217

Creating a new job

If the web client found that the plug-in could be used in a given context and the user selected the
plug-in, the job configuration sequence is started. It is a wizard-like interface identical to the con-
figuration wizard. In fact, the same JSP pages, and calling sequence is used. See the section called
“Configuring a plug-in” (page 216). We do not repeat everything here. There are a few differences:

• The job parameter is not null, but it does not contain any parameter values to start with. The
plug-in should use this object to store job-related parameter values. The configuration param-
eter is null if the plug-in is started without configuration. In any case, the configuration values
are write-protected and cannot be modified.

• The first call to InteractivePlugin.getRequestInformation() is done with
Request.COMMAND_CONFIGURE_JOB (_configjob) as the command. The context parameter re-
flects the current context.

• When calling Response.setDone() the plug-in should use the variant that takes an es-
timated execution time. If the plug-in has support for immediate execution or download
(export plug-ins only), it can also respond with Response.setExecuteImmediately() or
Response.setDownloadImmediately().

If the plug-in requested and was granted immediate execution or download the same plug-in in-
stance is used to execute the plug-in. This may be done with the same or a new thread. Otherwise,
a new job is added to the job queue, the parameter value are saved and the plug-in instance is
discarded after calling the Plugin.done() method.

Executing a job

Normally, the creation of a job and the execution of it are two different events. The execution may as
well be done on a different server. See Section 20.3, “Installing job agents” (page 154). This means
that the execution takes place in a different instance of the plug-in class than what was used for
creating the job. The exception is if a plug-in supports immediate execution or download. In this
case the same instance is used, and it is, of course, always executed on the web server.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2. The Plugin.init() method is called. The job parameter contains the job configuration param-
eters. The configuration parameter is null if the plug-in does not have any configuration pa-
rameters.

3. The Plugin.run() method is called. It is finally time for the plug-in to do the work it has
been designed for. This method should not throw any exceptions. Use the Response.setDone()
method to report success, the Response.setError() method to report errors or the
Response.setContinue() method to respond to a shutdown signal and tell the core to resume
the job once the system is up and running again. The Response.setContinue() can also be
used when the system is not shutting down. The job will then be put back into the job queue
and executed again later.

4. In all cases the Plugin.done() method is called and the plug-in instance is discarded.

25.2.3. Abort a running a plug-in
BASE includes a simple signalling system that can be used to send signals to plug-ins. The system
was primarly developed to allow a user to kill a plug-in when it is executing. Therfore, the focus of
this chapter will be how to implement a plug-in to make it possible to kill it during it's execution.

Since we don't want to do this by brute force such as destroying the process or stopping thread
the plug-in executes in, cooperation is needed by the plug-in. First, the plug-in must implement

Plug-in developer

218

the SignalTarget interface. From this, a SignalHandler can be created. A plug-in may choose to
implement it's own signal handler or use an existing implementation. BASE, for example, provides
the ThreadSignalHandler implementation that supports the ABORT signal. This is a simple imple-
mentation that just calls Thread.interrupt() on the plug-in worker thread. This may cause two
different effects:

• The Thread.interrupted() flag is set. The plug-in must check this at regular intervals and if
the flag is set it must cleanup, rollback open transactions and exit as soon as possible.

• If the plug-in is waiting in a blocking call that is interruptable, for example Thread.sleep(), an
InterruptedException is thrown. This should cause the same actions as if the flag was set to
happen.

Not all blocking calls are interruptable

For example calling InputStream.read() may leave the plug-in waiting in a non-interrupt-
able state. In this case there is nothing BASE can do to wake it up again.

Example 25.10. A plug-in that uses the ThreadSignalHandler

private ThreadSignalHandler signalHandler;
public SignalHandler getSignalHandler()
{
 signalHandler = new ThreadSignalHandler();
 return signalHandler;
}

public void run(Request request, Response response, ProgressReporter progress)
{
 if (signalHandler != null) signalHandler.setWorkerThread(null);
 beginTransaction();
 boolean done = false;
 boolean interrupted = false;
 while (!done && !interrupted)
 {
 try
 {
 done = doSomeWork(); // NOTE! This must not take forever!
 interrupted = Thread.interrupted();
 }
 catch (InterruptedException ex)
 {
 // NOTE! Try-catch is only needed if thread calls
 // a blocking method that is interruptable
 interrupted = true;
 }
 }
 if (interrupted)
 {
 rollbackTransaction();
 response.setError("Aborted by user", null);
 }
 else
 {
 commitTransaction();
 response.setDone("Done");
 }
}

Other signal handler implementations are ProgressReporterSignalHandler and En-
hancedThreadSignalHandler. The latter handler also has support for the SHUTDOWN signal which
is sent to plug-in when the system is shutting down. Clever plug-ins may use this to enable them
to be restarted when the system is up and running again. See that javadoc for information about
how to use it. For more information about the signalling system as a whole, see Section 28.3.10,
“Sending signals (to plug-ins)” (page 318).

Plug-in developer

219

25.2.4. Using custom JSP pages for parameter input
This is an advanced option for plug-ins that require a different interface for specifying plug-in pa-
rameters than the default list showing one parameter at a time. This feature is used by setting the
RequestInformation.getJspPage() property when constructing the request information object.
If this property has a non-null value, the web client will send the browser to the specified JSP page
instead of to the generic parameter input page.

When setting the JSP page you can either specify an absolute path or only the filename of the JSP file.
If only the filename is specified, the JSP file is expected to be located in a special location, generated
from the package name of your plug-in. If the plug-in is located in the package org.company the
JSP file must be located in <base-dir>/www/plugins/org/company/.

An absolute path starts with '/' and may or may not include the root directory of the BASE instal-
lation. If, for example, BASE is intalled to http://your.base.server.com/base, the following ab-
solute paths are equivalent /base/path/to/file.jsp, /path/to/file.jsp.

In both cases, please note that the browser still thinks that it is showing the regular parameter
input page at the usual location: <base-dir>/www/common/plugin/index.jsp. All links in your
JSP page should be relative to that directory.

Even if you use your own JSP page we recommend that you use the built-in facility for passing the
parameters back to the plug-in. For this to work you must:

• Generate the list of PluginParameter objects as usual.
• Name all your input fields in the JSP like: parameter:name-of-parameter

// Plug-in generate PluginParameter
StringParameterType stringPT = new StringParameterType(255, null, true);
PluginParameter one = new PluginParameter("one", "One", "First string", stringPT);
PluginParameter two = new PluginParameter("two", "Two", "Second string", stringPT);

// JSP should name fields as:
First string: <input type="text" name="parameter:one">

Second string: <input type="text" name="parameter:two">

• Send the form to index.jsp with the ID, cmd and requestId parameters as shown below.

<form action="index.jsp" method="post">
<input type="hidden" name="ID" value="<%=ID%>">
<input type="hidden" name="requestId" value="<%=request.getParameter("requestId")%>">
<input type="hidden" name="cmd" value="SetParameters">
...
</form>

The ID is the session ID for the logged in user and is required. The requestId is the ID for this
particular plug-in/job configuration sequence. It is optional, but we recommend that you use it
since it protects your plug-in from getting mixed up with other plug-in configuration wizards. The
cmd=SetParameters tells BASE to send the parameters to the plug-in for validation and saving.

Values are sent as strings to BASE that converts them to the proper value type before they are
passed on to your plug-in. However, there is one case that can't be accurately represented with
custom JSP pages, namely 'null' values. A null value is sent by not sending any value at all. This
is not possible with a fixed form. It is of course possible to add some custom JavaScript that adds
and removes form elements as needed, but it is also possible to let the empty string represent
null. Just include a hidden parameter like this if you want an empty value for the 'one' parameter
converted to null:

Plug-in developer

220

<input type="hidden" name="parameter:one:emptyIsNull" value="1">

If you want a Cancel button to abort the configuration this should be linked to a page reload with
with the url: index.jsp?ID=<%=ID%>&cmd=CancelWizard. This allows BASE to clean up resources
that has been put in global session variables.

In your JSP page you will probably need to access some information like the SessionControl, Job
and possible even the RequestInformation object created by your plug-in.

// Get session control and its ID (required to post to index.jsp)
final SessionControl sc = Base.getExistingSessionControl(pageContext, true);
final String ID = sc.getId();

// Get information about the current request to the plug-in
PluginConfigurationRequest pcRequest =
 (PluginConfigurationRequest)sc.getSessionSetting("plugin.configure.request");
PluginDefinition plugin =
 (PluginDefinition)sc.getSessionSetting("plugin.configure.plugin");
PluginConfiguration pluginConfig =
 (PluginConfiguration)sc.getSessionSetting("plugin.configure.config");
PluginDefinition job =
 (PluginDefinition)sc.getSessionSetting("plugin.configure.job");
RequestInformation ri = pcRequest.getRequestInformation();

25.3. Import plug-ins
A plug-in becomes an import plugin simply by returning Plugin.MainType.IMPORT from the
Plugin.getMainType() method.

25.3.1. Autodetect file formats
BASE has built-in functionality for autodetecting file formats. Your plug-in can be part of that feature
if it reads it data from a single file. It must also implement the AutoDetectingImporter interface.

The net.sf.basedb.core.plugin.AutoDetectingImporter interface

 public boolean isImportable(InputStream in)

 throws BaseException;

Check the input stream if it seems to contain data that can be imported by the plugin. Usually it
means scanning a few lines for some header matching a predefined string or regular expression.

The AbstractFlatFileImporter can be used for text-based files and implements this method
by reading the headers from the input stream and checking if it stopped at an unknown type
of line or not:

public final boolean isImportable(InputStream in)
 throws BaseException
{
 FlatFileParser ffp = getInitializedFlatFileParser();
 ffp.setInputStream(in);
 try
 {
 ffp.nextSection();
 FlatFileParser.LineType result = ffp.parseHeaders();
 if (result == FlatFileParser.LineType.UNKNOWN)
 {
 return false;
 }
 else
 {

Plug-in developer

221

 return isImportable(ffp);
 }
 }
 catch (IOException ex)
 {
 throw new BaseException(ex);
 }
}

The AbstractFlatFileImporter also has functions for setting the character set and automatic
unwrapping of compressed files. See the javadoc for more information.

Note that the input stream doesn't have to be a text file (but you can't use the AbstractFlat-
FileImporter then). It can be any type of file, for example a binary or an XML file. In the case
of an XML file you would need to validate the entire input stream in order to be a 100% sure that
it is a valid xml file, but we recommend that you only check the first few XML tags, for example,
the <!DOCTYPE > declaration and/or the root element tag.

Try casting to ImportInputStream

In many cases (but not all) the auto-detect functionality uses a ImportInputStream as
the in parameter. This class contains some metadata about the file the input stream is
originating from. The most useful feature is the possibility to get information about the
character set used in the file. This makes it possible to open text files using the correct
character set.

String charset = Config.getCharset(); // Default value
if (in instanceof ImportInputStream)
{
 ImportInputStream iim = (ImportInputStream)in;
 if (iim.getCharacterSet() != null) charset = iim.getCharacterSet();
}
Reader reader = new InputStreamReader(in, Charset.forName(charset)));

 public void doImport(InputStream in,

 ProgressReporter progress)

 throws BaseException;

Parse the input stream and import all data that is found. This method is of course only called
if the isImportable() has returned true. Note however that the input stream is reopened at
the start of the file. It may even be the case that the isImportable() method is called on one
instance of the plugin and the doImport() method is called on another. Thus, the doImport()
can't rely on any state set by the isImportable() method.

Call sequence during autodetection

The call sequence for autodetection resembles the call sequence for checking if the plug-in can be
used in a given context.

1. A new instance of the plug-in class is created. The plug-in must have a public no-argument
constructor.

2. The Plugin.init() method is called. The job parameter is null. The configuration parameter
is null if the plug-in does not have any configuration parameters.

3. If the plug-in is interactive the the InteractivePlugin.isInContext() is called. If the context
is a list context, the item parameter is null, otherwise the current item is passed. The plug-in
should return null if it can be used under the current circumstances, or a message explaining
why not.

4. If the plug-in can be used the AutoDetectingImporter.isImportable() method is called to
check if the selected file is importable or not.

Plug-in developer

222

5. After this, Plugin.done() is called and the plug-in instance is discarded. If there are several
configurations for a plug-in, this procedure is repeated for each configuration. If the plug-in can
be used without a configuration the procedure is also repeated without configuration parameters.

6. If a single plug-in was found the user is taken to the regular job configuration wizard. A new
plug-in instance is created for this. If more than one plug-in was found the user is presented
with a list of the plug-ins. After selecting one of them the regular job configuration wizard is used
with a new plug-in instance.

25.3.2. The AbstractFlatFileImporter superclass
The AbstractFlatFileImporter is a very useful abstract class to use as a superclass for your
own import plug-ins. It can be used if your plug-in uses regular text files that can be parsed by an
instance of the net.sf.basedb.util.FlatFileParser class. This class parses a file by checking
each line against a few regular expressions. Depending on which regular expression matches the
line, it is classified as a header line, a section line, a comment, a data line, a footer line or unknown.
Header lines are inspected as a group, but data lines individually, meaning that it consumes very
little memory since only a few lines at a time needs to be loaded.

The AbstractFlatFileImporter defines PluginParameter objects for each of the regular expres-
sions and other parameters used by the parser. It also implements the Plugin.run() method and
does most of the ground work for instantiating a FlatFileParser and parsing the file. What you
have to do in your plugin is to put together the RequestInformation objects for configuring the
plugin and creating a job and implement the InteractivePlugin.configure() method for vali-
dating and storing the parameters. You should also implement or override some methods defined
by AbstractFlatFileImporter.

Here is what you need to do:

• Implement the InteractivePlugin methods. See the section called “The
net.sf.basedb.core.plugin.InteractivePlugin interface” (page 208) for more information. Note that
the AbstractFlatFileImporter has defined many parameters for regular expressions used by
the parser already. You should just pick them and put in your RequestInformation object.

// Parameter that maps the items name from a column
private PluginParameter<String> nameColumnMapping;

// Parameter that maps the items description from a column
private PluginParameter<String> descriptionColumnMapping;

private RequestInformation getConfigurePluginParameters(GuiContext context)
{
 if (configurePlugin == null)
 {
 // To store parameters for CONFIGURE_PLUGIN
 List<PluginParameter<?>> parameters =
 new ArrayList<PluginParameter<?>>();

 // Parser regular expressions - from AbstractFlatFileParser
 parameters.add(parserSection);
 parameters.add(headerRegexpParameter);
 parameters.add(dataHeaderRegexpParameter);
 parameters.add(dataSplitterRegexpParameter);
 parameters.add(ignoreRegexpParameter);
 parameters.add(dataFooterRegexpParameter);
 parameters.add(minDataColumnsParameter);
 parameters.add(maxDataColumnsParameter);

 // Column mappings
 nameColumnMapping = new PluginParameter<String>(
 "nameColumnMapping",
 "Name",
 "Mapping that picks the items name from the data columns",

Plug-in developer

223

 new StringParameterType(255, null, true)
);

 descriptionColumnMapping = new PluginParameter<String>(
 "descriptionColumnMapping",
 "Description",
 "Mapping that picks the items description from the data columns",
 new StringParameterType(255, null, false)
);

 parameters.add(mappingSection);
 parameters.add(nameColumnMapping);
 parameters.add(descriptionColumnMapping);

 configurePlugin = new RequestInformation
 (
 Request.COMMAND_CONFIGURE_PLUGIN,
 "File parser settings",
 "",
 parameters
);

 }
 return configurePlugin;
}

• Implement/override some of the methods defined by AbstractFlatFileParser. The most im-
portant methods are listed below.

 protected FlatFileParser getInitializedFlatFileParser()

 throws BaseException;

The method is called to create a FlatFileParser and set the regular expressions that should
be used for parsing the file. The default implementation assumes that your plug-in has used
the built-in PluginParameter objects and has stored the values at the configuration level. You
should override this method if you need to initialise the parser in a different way. See for example
the code for the PrintMapFlatFileImporter plug-in which has a fixed format and doesn't use
configurations.

@Override
protected FlatFileParser getInitializedFlatFileParser()
 throws BaseException
{
 FlatFileParser ffp = new FlatFileParser();
 ffp.setSectionRegexp(Pattern.compile("\\[(.+)\\]"));
 ffp.setHeaderRegexp(Pattern.compile("(.+)=,(.*)"));
 ffp.setDataSplitterRegexp(Pattern.compile(","));
 ffp.setDataFooterRegexp(Pattern.compile(""));
 ffp.setMinDataColumns(12);
 return ffp;
}

 protected boolean isImportable(FlatFileParser ffp)

 throws IOException;

This method is called from the isImportable(InputStream) method, AFTER
FlatFileParser.nextSection() and FlatFileParser.parseHeaders() has been called a
single time and if the parseHeaders method didn't stop on an unknown line. The default im-
plementation of this method always returns TRUE, since obviously some data has been found.
A subclass may override this method if it wants to do more checks, for example, make that a
certain header is present with a certain value. It may also continue parsing the file. Here is a
code example from the PrintMapFlatFileImporter which checks if a FormatName header is
present and contains either TAM or MwBr.

Plug-in developer

224

/**
 Check that the file is a TAM or MwBr file.
 @return TRUE if a FormatName header is present and contains "TAM" or "MwBr", FALSE
 otherwise
*/
@Override
protected boolean isImportable(FlatFileParser ffp)
{
 String formatName = ffp.getHeader("FormatName");
 return formatName != null &&
 (formatName.contains("TAM") || formatName.contains("MwBr"));
}

 protected void begin(FlatFileParser ffp)

 throws BaseException;

This method is called just before the parsing of the file begins. Override this method if you need
to initialise some internal state. This is, for example, a good place to open a DbControl object,
read parameters from the job and configuration and put them into more useful variables. The
default implementation does nothing, but we recommend that super.begin() is always called.

// Snippets from the RawDataFlatFileImporter class
private DbControl dc;
private RawDataBatcher batcher;
private RawBioAssay rawBioAssay;
private Map<String, String> columnMappings;
private int numInserted;

@Override
protected void begin()
 throws BaseException
{
 super.begin();

 // Get DbControl
 dc = sc.newDbControl();
 rawBioAssay = (RawBioAssay)job.getValue(rawBioAssayParameter.getName());

 // Reload raw bioassay using current DbControl
 rawBioAssay = RawBioAssay.getById(dc, rawBioAssay.getId());

 // Create a batcher for inserting spots
 batcher = rawBioAssay.getRawDataBatcher();

 // For progress reporting
 numInserted = 0;
}

 protected void handleHeader(FlatFileParser.Line line)

 throws BaseException;

This method is called once for every header line that is found in the file. The line parameter
contains information about the header. The default implementation of this method does nothing.

@Override
protected void handleHeader(Line line)
 throws BaseException
{
 super.handleHeader(line);
 if (line.name() != null && line.value() != null)
 {
 rawBioAssay.setHeader(line.name(), line.value());
 }

Plug-in developer

225

}

 protected void handleSection(FlatFileParser.Line line)

 throws BaseException;

This method is called once for each section that is found in the file. The line parameter contains
information about the section. The default implementation of this method does nothing.

 protected abstract void beginData()

 throws BaseException;

This method is called after the headers has been parsed, but before the first line of data. This is
a good place to add code that depends on information in the headers, for example, put together
column mappings.

private Mapper reporterMapper;
private Mapper blockMapper;
private Mapper columnMapper;
private Mapper rowMapper;
// ... more mappers

@Override
protected void beginData()
{
 boolean cropStrings = ("crop".equals(job.getValue("stringTooLongError")));

 // Mapper that always return null; used if no mapping expression has been entered
 Mapper nullMapper = new ConstantMapper((String)null);

 // Column mappers
 reporterMapper = getMapper(ffp, (String)configuration.getValue("reporterIdColumnMapping"),
 cropStrings ? ReporterData.MAX_EXTERNAL_ID_LENGTH : null, nullMapper);
 blockMapper = getMapper(ffp, (String)configuration.getValue("blockColumnMapping"),
 null, nullMapper);
 columnMapper = getMapper(ffp, (String)configuration.getValue("columnColumnMapping"),
 null, nullMapper);
 rowMapper = getMapper(ffp, (String)configuration.getValue("rowColumnMapping"),
 null, nullMapper);
 // ... more mappers: metaGrid coordinate, X-Y coordinate, extended properties
 // ...
}

 protected abstract void handleData(FlatFileParser.Data data)

 throws BaseException;

This method is abstract and must be implemented by all subclasses. It is called once for every
data line in the the file.

// Snippets from the RawDataFlatFileImporter class
@Override
protected void handleData(Data data)
 throws BaseException
{
 // Create new RawData object
 RawData raw = batcher.newRawData();

 // External ID for the reporter
 String externalId = reporterMapper.getValue(data);

 // Block, row and column numbers
 raw.setBlock(blockMapper.getInt(data));
 raw.setColumn(columnMapper.getInt(data));
 raw.setRow(rowMapper.getInt(data));

Plug-in developer

226

 // ... more: metaGrid coordinate, X-Y coordinate, extended properties

 // Insert raw data to the database
 batcher.insert(raw, externalId);
 numInserted++;
}

 protected void end(boolean success);

Called when the parsing has ended, either because the end of file was reached or because an
error has occurred. The subclass should close any open resources, ie. the DbControl object.
The success parameter is true if the parsing was successful, false otherwise. The default
implementation does nothing.

@Override
protected void end(boolean success)
 throws BaseException
{
 try
 {
 // Commit if the parsing was successful
 if (success)
 {
 batcher.close();
 dc.commit();
 }
 }
 catch (BaseException ex)
 {
 // Well, now we got an exception
 success = false;
 throw ex;
 }
 finally
 {
 // Always close... and call super.end()
 if (dc != null) dc.close();
 super.end(success);
 }
}

 protected String getSuccessMessage();

This is the last method that is called, and it is only called if everything went suceessfully. This
method allows a subclass to generate a short message that is sent back to the database as a
final progress report. The default implementation returns null, which means that no message
will be generated.

@Override
protected String getSuccessMessage()
{
 return numInserted + " spots inserted";
}

The AbstractFlatFileImporter has a lot of other methods that you may use and/or override in
your own plug-in. Check the javadoc for more information.

Configure by example

The ConfigureByExample is a tagging interface that can be used by plug-ins using the Flat-
FileParser class for parsing. The web client detects if a plug-in implements this interface and if
the list of parameters includes a section parameter with the name parserSection a Test with file

Plug-in developer

227

buttons is activated. This button will take the user to a form which allows the user to enter values for
the parameters defined in the AbstractFlatFileImporter class. Parameters for column mappings
must have the string "Mapping" in their names.

25.4. Export plug-ins
Export plug-ins are plug-ins that takes data from BASE, and prepares it for use with some
external entity. Usually this means that data is taken from the database and put into a file
with some well-defined file format. An export plug-in should return MainType.EXPORT from the
Plugin.getMainType() method.

25.4.1. Immediate download of exported data
An export plug-in may want to give the user a choice between saving the exported data in the BASE
file system or to download it immediately to the client computer. With the basic plug-in API the
second option is not possible. The ImmediateDownloadExporter is an interface that extends the
Plugin interface to provide this functionality. If your export plug-in wants to provide immediate
download functionality it must implement the ImmediateDownloadExporter interface.

The ImmediateDownloadExporter interface

 public void doExport(ExportOutputStream out,

 ProgressReporter progress);

Perform the export. The plug-in should write the exported data to the out stream. If the
progress parameter is not null, the progress should be reported at regular interval in the same
manner as in the Plugin.run() method.

The ExportOutputStream class

The ExportOutputStream is an extension to the java.io.OutputStream. Use the regular write()
methods to write data to it. It also has some additional methods, which are used for setting metadata
about the generated file. These methods are useful, for example, when generating HTTP response
headers.

Note

These methods must be called before starting to write data to the out stream.

 public void setContentLength(long contentLength);

Set the total size of the exported data. Don't call this method if the total size is not known.

 public void setMimeType(String mimeType);

Set the MIME type of the file that is being generated.

 public void setCharacterSet(String charset);

Sets the character set used in text files. For example, UTF-8 or ISO-8859-1.

 public void setFilename(String filename);

Set a suggested name of the file that is being generated.

Plug-in developer

228

Call sequence during immediate download
Supporting immediate download also means that the method call sequence is a bit altered from the
standard sequence described in the section called “Executing a job” (page 217).

• The plug-in must call Response.setDownloadImmediately() instead of Response.setDone()
in Plugin.configure() to end the job configuration wizard. This requests that the core starts
an immediate download.

Note

Even if an immediate download is requested by the plug-in this feature may have been
disabled by the server administrator. If so, the plug-in can choose if the job should be added
to job queue or if this is an error condition.

• If immediate download is granted the web client will keep the same plug-in instance and call
ImmediateDownloadExporter.doExport(). In this case, the Plugin.run() is never called. After
the export, Plugin.done() is called as usual.

• If immediate download is not granted and the job is added to the job queue the regular job exe-
cution sequence is used.

25.4.2. The AbstractExporterPlugin class
This is an abstract superclass that will make it easier to implement export plug-ins that support
immediate download. It defines PluginParameter objects for asking a user about a path where
the exported data should be saved and if existing files should be overwritten or not. If the user
leaves the path empty the immediate download functionality should be used. It also contains imple-
mentations of both the Plugin.run() method and the ImmediateDownloadExporter.doExport()
method. Here is what you need to do in your own plug-in code (code examples are taken from the
HelpExporter):

• Your plug-in should extend the AbstractExporterPlugin class:

public class HelpExporter
 extends AbstractExporterPlugin
 implements InteractivePlugin

• You need to implement the InteractivePlugin.getRequestInformation() method. Use the
getSaveAsParameter() and getOverwriteParameter() methods defined in the superclass to
create plug-in parameters that asks for the file name to save to and if existing files can be over-
written or not. You should also check if the administrator has enabled the immediate execution
functionality for your plug-in. If not, the only option is to export to a file in the BASE file system
and the filename is a required parameter.

// Selected parts of the getRequestConfiguration() method
...
List<PluginParameter<?>> parameters =
 new ArrayList<PluginParameter<?>>();
...
PluginDefinition pd = job.getPluginDefinition();
boolean requireFile = pd == null ?
 false : !pd.getAllowImmediateExecution();

parameters.add(getSaveAsParameter(null, null, defaultPath, requireFile));
parameters.add(getOverwriteParameter(null, null));

configureJob = new RequestInformation
(
 Request.COMMAND_CONFIGURE_JOB,
 "Help exporter options",
 "Set Client that owns the helptexts, " +

Plug-in developer

229

 "the file path where the export file should be saved",
 parameters
);
....
return configureJob;

• You must also implement the configure() method and check the parameters. If no filename
has been given, you should check if immediate exection is allowed and set an error if it is not.
If a filename is present, use the pathCanBeUsed() method to check if it is possible to save the
data to a file with that name. If the file already exists it can be overwritten if the OVERWRITE is
TRUE or if the file has been flagged for removal. Do not forget to store the parameters with the
storeValue() method.

// Selected parts from the configure() method
if (request.getParameterValue(SAVE_AS) == null)
{
 if (!request.isAllowedImmediateExecution())
 {
 response.setError("Immediate download is not allowed. " +
 "Please specify a filename.", null);
 return;
 }
 Client client = (Client)request.getParameterValue("client");
 response.setDownloadImmediately("Export help texts for client application " +
 client.getName(), ExecutionTime.SHORTEST, true);
}
else
{
 if (!pathCanBeUsed((String)request.getParameterValue(SAVE_AS),
 (Boolean)request.getParameterValue(OVERWRITE)))
 {
 response.setError("File exists: " +
 (String)request.getParameterValue(SAVE_AS), null);
 return;
 }
 storeValue(job, request, ri.getParameter(SAVE_AS));
 storeValue(job, request, ri.getParameter(OVERWRITE));
 response.setDone("The job configuration is complete", ExecutionTime.SHORTEST);
}

• Implement the performExport() method. This is defined as abstract in the AbstractExporter-
Plugin class. It has the same parameters as the ImmediateDownloadExporter.doExport()
method and they have the same meaning. The only difference is that the out stream can be linked
to a file in the BASE filesystem and not just to the HTTP response stream.

• Optionally, implement the begin(), end() and getSuccessMessage() methods. Theese methods
do nothing by default.

The call sequence for plug-ins extending AbstractExporterPlugin is:

1. Call begin().

2. Call performExport().

3. Call end().

4. Call getSuccessMessage() if running as a regular job. This method is never called when doing
an immediate download since there is no place to show the message.

25.5. Analysis plug-ins
A plug-in becomes an analysis plug-in simply by returning Plugin.MainType.ANALYZE
from the Plugin.getMainType() method. The information returned from
InteractivePlugin.getGuiContexts() should include: [Item.BIOASSAYSET, Type.ITEM] or

Plug-in developer

230

[Item.DERIVEDBIOASSAYSET, Type.ITEM] since web client doesn't look for analysis plug-ins in
most other places. If the plug-in can work on a subset of the bioassays it may also include
[Item.BIOASSAY, Type.LIST] among the contexts. This will make it possible for a user to select
bioassays from the list and then invoke the plug-in. The following code examples are taken from an
analysis plug-in that is used in an experiment context.

private static final Set<GuiContext> guiContexts =
 Collections.singleton(new GuiContext(Item.BIOASSAYSET, GuiContext.Type.ITEM));

public Set<GuiContext> getGuiContexts()
{
 return guiContexts;
}

If the plug-in depends on a specific raw data type or on the number of channels, it should check that
the current bioassayset is of the correct type in the InteractivePlugin.isInContext() method.
It is also a good idea to check if the current user has permission to use the current experiment.
This permission is needed to create new bioassaysets or other data belonging to the experiment.

public boolean isInContext(GuiContext context, Object item)
{
 if (item == null)
 {
 message = "The object is null";
 }
 else if (!(item instanceof BioAssaySet))
 {
 message = "The object is not a BioAssaySet: " + item;
 }
 else
 {
 BioAssaySet bas = (BioAssaySet)item;
 int channels = bas.getRawDataType().getChannels();
 if (channels != 2)
 {
 message = "This plug-in requires 2-channel data, not " + channels + "-channel.";
 }
 else
 {
 Experiment e = bas.getExperiment();
 e.checkPermission(Permission.USE);
 }
 }
}

The plug-in should always include a parameter asking for the current bioassay set
when the InteractivePlugin.getRequestInformation() is called with command =
Request.COMMAND_CONFIGURE_JOB.

private static final RequestInformation configurePlugin;
private RequestInformation configureJob;
private PluginParameter<BioAssaySet> bioAssaySetParameter;

public RequestInformation getRequestInformation(GuiContext context, String command)
 throws BaseException
{
 RequestInformation requestInformation = null;
 if (command.equals(Request.COMMAND_CONFIGURE_PLUGIN))
 {
 requestInformation = getConfigurePlugin(context);
 }
 else if (command.equals(Request.COMMAND_CONFIGURE_JOB))
 {
 requestInformation = getConfigureJob(context);
 }

Plug-in developer

231

 return requestInformation;
}

private RequestInformation getConfigureJob(GuiContext context)
{
 if (configureJob == null)
 {
 bioAssaySetParameter; = new PluginParameter<BioAssaySet>(
 "bioAssaySet",
 "Bioassay set",
 "The bioassay set used as the source for this analysis plugin",
 new ItemParameterType<BioAssaySet>(BioAssaySet.class, null, true, 1, null)
);

 List<PluginParameter<?>> parameters = new ArrayList<PluginParameter<?>>();
 parameters.add(bioAssaySetParameter);
 // Add more plug-in-specific parameters here...

 configureJob = new RequestInformation(
 Request.COMMAND_CONFIGURE_JOB,
 "Configure job",
 "Set parameter for plug-in execution",
 parameters
);
 }
 return configureJob;
}

Of course, the InteractivePlugin.configure() method needs to validate and store the bioassay
set parameter as well:

public void configure(GuiContext context, Request request, Response response)
{
 String command = request.getCommand();
 try
 {
 if (command.equals(Request.COMMAND_CONFIGURE_PLUGIN))
 {
 // Validate and store configuration parameters
 response.setDone("Plugin configuration complete");
 }
 else if (command.equals(Request.COMMAND_CONFIGURE_JOB))
 {
 List<Throwable> errors =
 validateRequestParameters(configureJob.getParameters(), request);
 if (errors != null)
 {
 response.setError(errors.size() +
 " invalid parameter(s) were found in the request", errors);
 return;
 }
 storeValue(job, request, bioAssaySetParameter);
 // Store other plugin-specific parameters

 response.setDone("Job configuration complete", Job.ExecutionTime.SHORT);
 }
 }
 catch (Throwable ex)
 {
 // Never throw exception, always set response!
 response.setError(ex.getMessage(), Arrays.asList(ex));
 }
}

Now, the typical Plugin.run() method loads the specfied bioassay set and its spot data. It may do
some filtering and recalculation of the spot intensity value(s). In most cases it will store the result
as a child bioassay set with one bioassay for each bioassay in the parent bioassay set. Here is an
example, which just copies the intensity values, while removing those with a negative value in either
channel.

Plug-in developer

232

public void run(Request request, Response response, ProgressReporter progress)
{
 DbControl dc = sc.newDbControl();
 try
 {
 BioAssaySet source = (BioAssaySet)job.getParameter("bioAssaySet");
 // Reload with current DbControl
 source = BioAssaySet.getById(dc, source.getId());
 int channels = source.getRawDataType().getChannels();

 // Create transformation and new bioassay set
 Job j = Job.getById(dc, job.getId());
 Transformation t = source.newTransformation(j);
 t.setName("Copy spot intensities >= 0");
 dc.saveItem(t);

 BioAssaySet result = t.newProduct(null, "new", true);
 result.setName("After: Copying spot intensities");
 dc.saveItem(result);

 // Get query for source data
 DynamicSpotQuery query = source.getSpotData();

 // Do not return spots with intensities < 0
 for (int ch = 1; ch <= channels; ++ch)
 {
 query.restrict(
 Restrictions.gteq(
 Dynamic.column(VirtualColumn.channel(ch)),
 Expressions.integer(0)
)
);
 }

 // Create batcher and copy data
 SpotBatcher batcher = result.getSpotBatcher();
 int spotsCopied = batcher.insert(query);
 batcher.close();

 // Commit and return
 dc.commit();
 response.setDone("Copied " + spotsCopied + " spots.");
 }
 catch (Throwable t)
 {
 response.setError(t.getMessage(), Arrays.asList(t));
 }
 finally
 {
 if (dc != null) dc.close();
 }
}

See Section 28.5, “The Dynamic API” (page 320) for more examples of using the analysis API.

25.5.1. The AbstractAnalysisPlugin class
This class is an abstract base class. It is a useful class for most analysis plug-ins used in an ex-
periment context to inherit from. Its main purpose is to define PluginParameter objects that are
commonly used in analysis plug-ins. This includes:

• The source bioassay set: getSourceBioAssaySetParameter(), getCurrentBioAssaySet(),
getSourceBioAssaySet()

• The optional restriction of which bioassays to use. All bioassays in a bioassay set will be used if
this parameter is empty. This is useful when the plugin only should run on a subset of bioassays
in a bioassay set: getSourceBioAssaysParameter(), getSourceBioAssays()

Plug-in developer

233

• The name and description of the child bioassay set that is going to be created by the plug-in:
getChildNameParameter(), getChildDescriptionParameter()

• The name and description of the transformation that represents the execution of the plug-in:
getTransformationNameParameter(), getTransformationName()

25.5.2. The AnalysisFilterPlugin interface
The net.sf.basedb.core.plugin.AnalysisFilterPlugin is a tagging interface, with no meth-
ods, that all analysis plug-ins that only filters data should implement. The benefit is that they will
be linked from the Filter bioassay set button and not just the Run analysis button. They will also
get a different icon in the experiment outline to make filtering transformations appear different from
other transformations.

The interface exists purely for making the user interaction better. There is no harm in not imple-
menting it since the plug-in will always appear in from the Run analysis button. On the other hand,
it doesn't cost anything to implement the interface since it doesn't have any methods.

25.6. Other plug-ins
25.6.1. Authentication plug-ins
This style of plug-ins have been deprecated in BASE 3.3 and replaced by an extension point. See
Section 26.8.14, “Login manager” (page 261) for more information. Backwards compatibility is
supported via a wrapper class that is automatically enabled if the auth.driver property is set.

25.6.2. Secondary file storage plugins

Primary vs. secondary storage

BASE has support for storing files in two locations, the primary storage and the secondary storage.
The primary storage is always disk-based and must be accessible by the BASE server as a path
on the file system. The path to the primary storage is configured by the userfiles setting in the
base.config file. The primary storage is internal to the core. Client applications don't get access
to read or manipulate the files directly from the file system.

The secondary storage can be anything that can store files. It could, for example, be another direc-
tory, a remote FTP server, or a tape based archiving system. A file located in the secondary storage
is not accessible by the core, client applications or plug-ins. The secondary storage can only be
accessed by the secondary storage controller. The core (and client) applications uses flags on the
file items to handle the interaction with the secondary storage.

Each file has an action attribute which default's to File.Action.NOTHING. It can take two other
values:

1. File.Action.MOVE_TO_SECONDARY

2. File.Action.MOVE_TO_PRIMARY

All files with the action attribute set to MOVE_TO_SECONDARY should be moved to the secondary
storage by the controller, and all files with the action attribute set to MOVE_TO_PRIMARY should be
brought back to primary storage.

The moving of files between primary and secondary storage doesn't happen immediately. It is
up to the server administrator to configure how often and at what times the controller should
check for files that should be moved. This is configured by the secondary.storage.interval and
secondary.storage.time settings in the base.config file.

Plug-in developer

234

The SecondaryStorageController interface

All you have to do to create a secondary storage controller is to create a class that implements
the net.sf.basedb.core.SecondaryStorageController interface. In your base.config file you
then specify the class name in the secondary.storage.driver setting and its initialisation pa-
rameters in the secondary.storage.init setting.

Your class must have a public no-argument constructor. The BASE application will create only one
instance of the class for lifetime of the BASE server. Here are the methods that you must implement:

 public void init(String settings);

This method is called just after the object has been created with its argument taken from the
secondary.storage.init setting in your base.config file. This method is only called once
for an object.

 public void run();

This method is called whenever the core thinks it is time to do some management
of the secondary storage. How often the run() method is called is controlled by the
secondary.storage.interval and secondary.storage.time settings in the base.config
file. When this method is called the controller should:

• Move all files which has action=MOVE_TO_SECONDARY to the secondary storage. When the file
has been moved call File.setLocation(Location.SECONDARY) to tell the core that the file is
now in the secondary storage. You should also call File.setAction(File.Action.NOTHING)
to reset the action attribute.

• Restore all files which has action=MOVE_TO_PRIMARY. The core will set the location attribute
automatically, but you should call File.setAction(File.Action.NOTHING) to reset the ac-
tion attribute.

• Delete all files from the secondary storage that are not present in the database with
location=Location.SECONDARY. This includes files which has been deleted and files that
have been moved offline or re-uploaded.

As a final act the method should send a message to each user owning files that has been moved
from one location to the other. The message should include a list of files that has been moved
to the secondary storage and a list of files moved from the secondary storage and a list of files
that has been deleted due to some of the reasons above.

 public void close()();

This method is called when the server is closing down. After this the object is never used again.

Configuration settings

The configuration settings for the secondary storage controller is located in the base.config file.
Here is an overview of the settings. For more information read Appendix B, base.config reference
(page 401).

secondary.storage.driver
The class name of the secondary storage plug-in.

secondary.storage.init
Initialisation parameters sent to the plug-in by calling the init() method.

Plug-in developer

235

secondary.storage.interval
Interval in seconds between each execution of the secondary storage controller plug-in.

secondary.storage.time
Time points during the day when the secondary storage controller plugin should be executed.

25.6.3. File unpacker plug-ins
The BASE web client has integrated support for unpacking of compressed files. See Section 7.2.1,
“Upload a new file” (page 54). Behind the scenes, this support is provided by plug-ins. The standard
BASE distribution comes with support for ZIP files (net.sf.basedb.plugins.ZipFileUnpacker)
and TAR files (net.sf.basedb.plugins.TarFileUnpacker).

To add support for additional compressed formats you have to create a plug-in that implements
the net.sf.basedb.util.zip.FileUnpacker interface. The best way to do this is to extend the
net.sf.basedb.util.zip.AbstractFileUnpacker which implements all methods in the Plugin
and InteractivePlugin interfaces. This leaves you with the actual unpacking of the files as the
only thing to implement.

No support for configurations
The integrated upload in the web interface only works with plug-ins that does not require a
configuration to run.

Methods in the FileUnpacker interface

 public String getFormatName();

Return a short string naming the file format. For example: ZIP files or TAR files.

 public Set<String> getExtensions();

Return a set of strings with the file extensions that are most commonly used with the compressed
file format. For example: [zip, jar]. Do not include the dot in the extensions. The web client
and the AbstractFlatFileUnpacker.isInContext() method will use this information to au-
tomatically guess which plug-in to use for unpacking the files.

 public Set<String> getMimeTypes();

Return a set of string with the MIME types that commonly used with the compressed file format.
For example: [application/zip, application/java-archive]. This information is used by
the AbstractFlatFileUnpacker.isInContext() method to automatically guess which plug-in
to use for unpacking the files.

 public int unpack(DbControl dc,

 Directory dir,

 InputStream in,

 File sourceFile,

 boolean overwrite,

 AbsoluteProgressReporter progress)

 throws IOException, BaseException;

Unpack the files and store them in the BASE file system.

• Do not close() or commit() the DbControl passed to this method. This is done automatically
by the AbstractFileUnpacker or by the web client.

• The dir parameter is the root directory where the unpacked files should be placed. If the
compressed file contains subdirectories the plug-in must create those subdirectories unless
they already exists.

Plug-in developer

236

• If the overwrite parameter is FALSE no existing file should be overwritten unless the file is
OFFLINE or marked as removed (do not forget to clear the removed attribute).

• The in parameter is the stream containing the compressed data. The stream may come directly
from the web upload or from an existing file in the BASE file system.

• The sourceFile parameter is the file item representing the compressed file. This item may
already be in the database, or a new item that may or may not be saved in the database at the
end of the transaction. The information in this parameter can be used to discover the options
for file type, character set, MIME type, etc. that was selected by the user in the upload dialog.
The PackUtil has a useful method that can be used for copying information.

• The progress parameter, if not null, should be used to report the progress back to the calling
code. The plug-in should count the number of bytes read from the in stream. If it is not possible
by other means the stream can be wrapped by a net.sf.basedb.util.InputStreamTracker
object which has a getNumRead() method.

When the compressed file is uncompressed during the file upload from the web interface, the call
sequence to the plug-in is slightly altered from the standard call sequence described in the section
called “Executing a job” (page 217).

• After the plug-in instance has been created, the Plugin.init() method is called with null values
for both the configuration and job parameters.

• Then, the unpack() method is called. The Plugin.run() method is never called in this case.

25.6.4. File packer plug-ins
BASE has support for compressing and downloading a set of selected files and/or direc-
tories. This functionality is provided by a plug-in, the PackedFileExporter. This plug-
in doesn't do the actual packing itself. This is delegated to classes implementing the
net.sf.basedb.util.zip.FilePacker interface.

BASE ships with a number of packing methods, including ZIP and TAR. To add support for other
methods you have to provide an implementation of the FilePacker interface. Then, create a new
configuration for the PackedFileExporter and enter the name of your class in the configuration
wizard.

The FilePacker interface is not a regular plug-in interface (ie. it is not a subinterface to Plugin).
This means that you don't have to mess with configuration or job parameters. Another difference
is that your class must be installed in Tomcat's classpath (ie. in one of the WEB-INF/classes or
WEB-INF/lib folders).

This may be converted to an extension point in the future

There are certain plans to convert the packing mechanism to an extension point in the future.
The main reason is easier installation since code doesn't have to be installed in the WEB-INF/
lib or WEB-INF/classes directory. See ticket #1600: Convert file packing plug-in system to an

extension point1 for more information.

Methods in the FilePacker interface

 public String getDescription();

Return a short description the file format that is suitable for use in dropdown lists in client
applications. For example: Zip-archive (.zip) or TAR-archive (.tar).

1 http://base.thep.lu.se/ticket/1600

http://base.thep.lu.se/ticket/1600
http://base.thep.lu.se/ticket/1600
http://base.thep.lu.se/ticket/1600

Plug-in developer

237

 public String getFileExtension();

Return the default file extension of the packed format. The returned value should not include
the dot. For example: zip or tar.

 public String getMimeType();

Return the standard MIME type of the packed file format. For example: application/zip or
application/x-tar.

 public void setOutputStream(OutputStream out)

 throws IOException;

Sets the outputstream that the packer should write the packed files to.

 public void pack(String entryName,

 InputStream in,

 long size,

 long lastModified)

 throws IOException;

Add another file or directory to the packed file. The entryName is the name of the new entry,
including path information. The in is the stream to read the file data from. If in is null then the
entry denotes a directory. The size parameter gives the size in bytes of the file (zero for empty
files or directories). The lastModified is that time the file was last modified or 0 if not known.

 public void close()

 throws IOException;

Finish the packing. The packer should release any resources, flush all data and close all output
streams, including the out stream set in the setOutputStream method.

25.7. How BASE load plug-in classes
All plug-ins should be installed in the location specified by the plugins.dir setting in base.config.
While it is possible to also install them in a location that is on the classpath, for example <base-
dir>/www/WEB-INF/lib, it is nothing that we recommend. The rest of the information in this sec-
tion only applies to plug-ins that have been installed in the plugins.dir location.

If the above recommendation has been followed BASE will use it's own classloader to load the plug-in
classes. This have several benefits:

• New plug-ins can be installed and existing plug-ins can be updated without restarting the web
server. If the plugins.autounload setting in base.config has been enabled all you have to do to
update a plug-in is to replace the JAR file with a new version. BASE will automatically load the
new classes the next time the plug-in is used. If the option isn't enabled, the server admin has to
manually update the plug-in from the web interface first.

• Plug-ins may use it's own 3-rd party libraries without interfering with other plug-ins. This may be
important because a plug-in may depend on a certain version of a library while another plug-in
may depend on a different version. Since BASE is using different class-loaders for different plug-ins
this is not a problem.

The classloading scheme used by BASE also means plug-in developers must pay attention to a few
things:

Plug-in developer

238

• A plug-in can only access/use classes from it's own JAR file, BASE core classes, Java system
classes and from JAR files listed in the plug-in's MANIFEST.MF file. See Section 25.1, “How to
organize your plug-in project” (page 202).

• A plug-in can also access other plug-ins, but only via the methods and interfaces defined
in BASE. In the following example we assume that there are two plug-ins, ex.MyPlugin and
ex.MyOtherPlugin, located in two different JAR files. The code below is executing in the
ex.MyPlugin:

// Prepare to load MyOtherPlugin
SessionControl sc = ...
DbControl dc = ...
PluginDefinition def = PluginDefinition.getByClassName(dc, "ex.MyOtherPlugin");

// Ok
Plugin other = def.newInstance();

// Not ok; fails with ClassCastException
MyOtherPlugin other = (MyOtherPlugin)def.newInstance();

// Ok; since now we are using the correct class loader
MyOtherPlugin other = def.newInstance(MyOtherPlugin.class);

The first call succeeds because it uses the Plugin interface which is defined by BASE. This class
is loaded by the web servers class loader and is the same for all plug-ins.

The second call fails because BASE uses a different classloader to load the ex.MyOtherPlugin
class. This class is not (in Java terms) the same as the ex.MyOtherPlugin class loaded by the
classloader that loaded the ex.MyPlugin class. If, on the other hand, both plug-ins are located
in the same JAR file BASE uses the same classloader and the second call will succeed.

The third call succeeds because now that we specify the class as an argument, BASE uses that
classloader instead.

Another option is that the ex.MyPlugin lists the JAR file where ex.MyOtherPlugin is located
in it's MANIFEST.MF file. Then, the following code can be used: MyOtherPlugin other = new
MyOtherPlugin();

Tomcat includes a good document describing how classloading is implemented in Tomcat: http://
 tomcat.apache.org/ tomcat-7.0-doc/ class-loader-howto.html. BASE's classloading scheme isn't as
complex as Tomcat's, but it very similar to how Tomcat loads different web applications. The figure
on the linked document could be extended with another level with separate classloaders for each
plug-in as child classloaders to the web application classloaders.

As of BASE 2.13 the default search order for classes has been changed. The default is now to first
look in the plug-ins class path (eg. in the same JAR file and in files listed in the MANIFEST.MF file).
Only if the class is not found the search is delegated to the parent class loader. This behaviour can
be changed by setting X-Delegate-First: true in the MANIFEST.MF file. If this property is set the
parent class loader is search first. This is the same as in BASE 2.12 and earlier.

Note
The benefit with the new search order is that plug-ins may use a specific version of any external
package even if the same package is part of the BASE distribution. This was not possible before
since the package in the BASE distribution was loaded first.

25.8. Example plug-ins (with download)
We have created some example plug-ins which demonstrates how to use the plug-in system and
how to create an interactive plug-in that can ask a user for one or more parameters. You can down-
load a tar file with the source and compiled plug-in code from the BASE plug-ins website: http://
baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode

http://tomcat.apache.org/tomcat-7.0-doc/class-loader-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/class-loader-howto.html
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode

239

Chapter 26. Extensions developer
26.1. Overview
The BASE application includes an extensions mechanism that makes it possible to dynamically add
functions to the GUI without having to edit the JSP code. It is, for example, possible to add menu
items in the menu and toolbar buttons in selected toolbars.

Go to the Administrate � Plug-ins & extensions � Overview menu to display a list of possible extension
points and all installed extensions. From this page, if you are logged in with enough permissions,
it is also possible to configure the extensions system, enable/disable extensions, etc. Read more
about this in Chapter 21, Plug-ins and extensions (page 163).

Extensions can come in two forms, either as an XML file in the BASE Extensions XML format or
as a JAR file. A JAR file is required when the extension needs to execute custom-made code or use
custom resources such as icons, css stylesheets, or JSP files.

More reading

• Chapter 21, Plug-ins and extensions (page 163).

• Section 28.6, “The Extensions API” (page 320).

26.1.1. Download code examples
The code examples in this chapter can be downloaded from the BASE plug-ins site: http://
baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode

26.1.2. Terminology
Extension point

An extensions point is a place in the BASE core or web client interface where it is possible to
extend the functionality with custom extensions. An extension point has an ID which must be
unique among all existing extension points. Extension points registered by the BASE web client
all starts with net.sf.basedb.clients.web prefix. The extension point also defines an Action
subclass that all extensions must implement.

Extension
An extensions is a custom addition to the BASE web client interface or core API. This can mean
a new menu item in the menu or a new button in a toolbar. An extension must provide an
ActionFactory that knows how to create actions that fits the requirements from the extension
point the extension is extending.

Action
An Action is an interface definition which provides an extension point enough information
to make it possible to render the action as HTML. An action typically has methods such as,
getTitle(), getIcon() and getOnClick().

Action factory
An ActionFactory is an object that knows how to create actions of some specific type, for ex-
ample menu item actions. Action factories are part of an extension definition and can usually
be configured with parameters from the XML file. BASE ships with several implementations of
action factories for all defined extension points. Still, if your extension needs a different imple-
mentation you can easily create your own factory.

Renderer
A Renderer is an object that knows how to convert the information in an action to HTML. The
use of renderers are optional. Some extension points use a "hard-coded" approach that renders

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode

Extensions developer

240

the actions directly on the JSP file. Some extension points uses a locked renderer, while other
extension points provides a default renderer, but allows extensions to supply their own if they
want to. Renderers are mostly used by the web client extensions, not so much by the core
extensions.

Renderer factory
A RendererFactory is an object that knows how to create renderers. Renderer factories can be
part of both extension points and extensions. In most other aspects renderer factories are very
similar to action factories.

Error handler factory
An ErrorHandlerFactory is an object that knows how to handle error that occur when execut-
ing extensions. An error handler factory is defined as part of an extension point and handles
all errors related to the extensions of that extension point. In most other aspects error handler
factories are similar to renderer and action factories. If the extension point doesn't define an
error handler factory, the system will select a default that only writes a message to the log file
LoggingErrorHandlerFactory

Client context
A ClientContext is an object which contains information about the current user session. It is
for example, possible to get information about the logged in user, the currently active item, etc.

In the BASE web client the context is always a JspContext. Wherever a ClientContext object
is provided as a parameter it is always safe to cast it to a JspContext object. Extension points
in the core usually use a ClientContext.

The context can also be used by an extension to request that a specific javascript or stylesheet
file should be included in the HTML code.

26.2. Hello world as an extension
We will use the classical Hello world as the first simple example of an extension. This extension
will add a new menu item in the menu which displays a popup with the text "Hello world!" when
selected. Copy the XML code below and save it to a file in the plugins.dir directory. The filename
must end with .xml. Install the extension by going through the installation wizard at Administrate
� Plug-ins & extensions � Overview.

When the extension has been installed you should have a new menu item: Extensions � Hello world!
which pops up a message in a Javascript window.

Note

You may have to logout and login again to see the new menu item.

<?xml version="1.0" encoding="UTF-8" ?>
<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
 <extension
 id="net.sf.basedb.clients.web.menu.extensions.helloworld"
 extends="net.sf.basedb.clients.web.menu.extensions"
 >
 <index>1</index>
 <about>
 <name>Hello world</name>
 <description>
 The very first extensions example. Adds a "Hello world"
 menu item that displays "Hello world" in a javascript
 popup when selected.
 </description>
 </about>
 <action-factory>
 <factory-class>

Extensions developer

241

 net.sf.basedb.clients.web.extensions.menu.FixedMenuItemFactory
 </factory-class>
 <parameters>
 <title>Hello world!</title>
 <tooltip>This is to test the extensions system</tooltip>
 <onClick>alert('Hello world!')</onClick>
 <icon>/images/info.png</icon>
 </parameters>
 </action-factory>
 </extension>
</extensions>

The <extensions> tag is the root tag and is needed to set up the namespace and schema validation.

The <extension> defines a new extension. It must have an id attribute that is unique among all
installed extensions and an extends attribute which id the ID of the extension point. For the id
attribute we recommend using the same naming conventions as for java packages. See Java naming

conventions from Oracle1.

The <about> tag is optional and can be used to provide meta information about the extension. We
recommend that all extensions are given at least a <name>. Other supported subtags are:

• <description>

• <version>

• <copyright>

• <contact>

• <email>

• <url>

Global about tag

<about> tag can also be specified as a first-level tag (eq. as a child to <extensions>). This
can be useful when an XML file defines more than one extension and you don't want to repeat
the same information for every extension. You can still override the information for specific
extensions by including new values in the extension's <about> tag.

The <action-factory> tag is required and so is the <factory-class> subtag. It tells the extension
system which factory to use for creating actions. The FixedMenuItemFactory is a very simple factory
that is shipped with BASE. This factory always creates the same menu item, no matter what. Another
factory for menu items is the PermissionMenuItemFactory which can create menu items that
depends on the logged in user's permissions. It is for example, possible to hide or disable the menu
item if the user doesn't have enough permissions. If none of the supplied factories suits you it is
possible to supply your own implementation. More about this later.

The <parameters> subtag is used to provide initialisation parameters to the factory. Different fac-
tories supports different parameters and you will have to check the javadoc documentation for each
factory to get information about which parameters that are supported.

Tip

In case the factory is poorly documented you can always assume that public methods the
start with set and take a single String as an argument can be used as a parameter. The
parameter tag to use should be the same as the method name, minus the set prefix and with
the first letter in lowercase. For example, the method setIcon(String icon) corresponds
to the <icon> parameter.

1 http://www.oracle.com/technetwork/java/codeconventions-135099.html

http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html

Extensions developer

242

Content security policy and inline javascript

In the above example <onClick> is a parameter that contains a javascript statement. In gener-
al, we recommend that inline javascript is avoided due to security vulernabilities. If you install
the above extension, your BASE server probably display a warning message about violating
the Content security policy. If so, you need to change the configuration to be less restricted.
See Section E.1, “Content security policy” (page 418) for more information.

The real code examples uses a different design with pure HTML that is generated dynamically
and a fixed javascript file that attaches event handlers when the page has been loaded and
should be compatible with the stricter security policy.

26.2.1. Extending multiple extension points with a
single extension
A single extension can extend multiple extension points as long as their action classes are compat-
ible. This is for, for example, the case when you want to add a button to more than one toolbar.
To do this use the <extends> tag with multiple <ref> tags. You can skip the extends attribute
in the main tag.

<extension
 id="net.sf.basedb.clients.web.menu.extensions.history-edit"
 >
 <extends>
 <ref index="2">net.sf.basedb.clients.web.tabcontrol.edit.sample</ref>
 <ref index="2">net.sf.basedb.clients.web.tabcontrol.edit.extract</ref>
 </extends>
 ...
</extension>

This is a feature of the XML format only. Behind the scenes two extensions will be created (one for
each extension point). The extensions will share the same action and renderer factory instances.
Since the id for an extension must be unique a new id will be generated by combining the original
id with the parts of the id's from the extension points.

26.3. Custom action factories
Some times the factories shipped with BASE are not enough, and you may want to provide your
own factory implementation. In this case you will have to create a class that implements the Ac-
tionFactory interface. Here is a very simple example that does the same as the previous "Hello
world" example.

package net.sf.basedb.examples.extensions;

import net.sf.basedb.clients.web.extensions.JspContext;
import net.sf.basedb.clients.web.extensions.menu.MenuItemAction;
import net.sf.basedb.clients.web.extensions.menu.MenuItemBean;
import net.sf.basedb.util.extensions.ActionFactory;
import net.sf.basedb.util.extensions.InvokationContext;

/**
 First example of an action factory where eveything is hardcoded.
 @author nicklas
*/
public class HelloWorldFactory
 implements ActionFactory<MenuItemAction>
{

 private MenuItemAction[] helloWorld;

Extensions developer

243

 // A public, no-argument constructor is required
 public HelloWorldFactory()
 {
 helloWorld = new MenuItemAction[1];
 }

 // Return true enable the extension, false to disable it
 public boolean prepareContext(
 InvokationContext<? super MenuItemAction> context)
 {
 return true;
 }

 // An extension may create one or more actions
 public MenuItemAction[] getActions(
 InvokationContext<? super MenuItemAction> context)
 {
 // This cast is always safe with the web client
 JspContext jspContext = (JspContext)context.getClientContext();
 if (helloWorld[0] == null)
 {
 MenuItemBean bean = new MenuItemBean();
 bean.setTitle("Hello factory world!");
 bean.setIcon(jspContext.getRoot() + "/images/info.gif");
 // NOTE! onclick is deprected! A real implementation
 // should bind events using to the menu using javascript
 bean.setOnClick("alert('Hello factory world!')");
 helloWorld[0] = bean;
 }
 return helloWorld;
 }
}

And here is the XML configuration file that goes with it.

<?xml version="1.0" encoding="UTF-8" ?>
<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
 <extension
 id="net.sf.basedb.clients.web.menu.extensions.helloworldfactory"
 extends="net.sf.basedb.clients.web.menu.extensions"
 >
 <index>2</index>
 <about>
 <name>Hello factory world</name>
 <description>
 A "Hello world" variant with a custom action factory.
 Everything is hard-coded into the factory.
 </description>
 </about>
 <action-factory>
 <factory-class>
 net.sf.basedb.examples.extensions.HelloWorldFactory
 </factory-class>
 </action-factory>
 </extension>
</extensions>

To install this extension you need to put the compiled HelloWorldFactory.class and the XML file
inside a JAR file. The XML file must be located at META-INF/extensions.xml and the class file at
net/sf/basedb/examples/extensions/HelloWorldFactory.class.

The above example is a bit artificial and we have not gained anything. Instead, we have lost the
ability to easily change the menu since everything is now hardcoded into the factory. To change,
for example the title, requires that we recompile the java code. It would be more useful if we could
make the factory configurable with parameters. The next example will make the icon and message
configurable, and also include the name of the currently logged in user. For example: "Greetings

Extensions developer

244

<name of logged in user>!". We'll also get rid of the onclick event handler and use proper event
binding using javascript.

package net.sf.basedb.examples.extensions;

import net.sf.basedb.clients.web.extensions.AbstractJspActionFactory;
import net.sf.basedb.clients.web.extensions.menu.MenuItemAction;
import net.sf.basedb.clients.web.extensions.menu.MenuItemBean;
import net.sf.basedb.core.DbControl;
import net.sf.basedb.core.SessionControl;
import net.sf.basedb.core.User;
import net.sf.basedb.util.extensions.ClientContext;
import net.sf.basedb.util.extensions.InvokationContext;
import net.sf.basedb.util.extensions.xml.PathSetter;
import net.sf.basedb.util.extensions.xml.VariableSetter;

/**
 Example menu item factory that creates a "Hello world" menu item
 where the "Hello" part can be changed by the "prefix" setting in the
 XML file, and the "world" part is dynamically replaced with the name
 of the logged in user.

 @author nicklas
*/
public class HelloUserFactory
 extends AbstractJspActionFactory<MenuItemAction>
{
 // The ID attribute of the <div> tag in the final HTML
 private String id;

 // To store the URL to the icon
 private String icon;

 // The default prefix is Hello
 private String prefix = "Hello";

 // A public, no-argument constructor is required
 public HelloUserFactory()
 {}

 /**
 Creates a menu item that displays: {prefix} {name of user}!
 */
 public MenuItemAction[] getActions(
 InvokationContext<? super MenuItemAction> context)
 {
 String userName = getUserName(context.getClientContext());
 MenuItemBean helloUser = new MenuItemBean();
 helloUser.setId(id);
 helloUser.setTitle(prefix + " " + userName + "!");
 helloUser.setIcon(icon);
 // Use 'dynamic' attributes for extra info that needs to be included
 // in the HTML
 setParameter("data-user-name", userName);
 setParameter("data-prefix", prefix);
 helloUser.setDynamicActionAttributesSource(this);
 return new MenuItemAction[] { helloUser };
 }

 /**
 Get the name of the logged in user.
 */
 private String getUserName(ClientContext context)
 {
 SessionControl sc = context.getSessionControl();
 DbControl dc = context.getDbControl();
 User current = User.getById(dc, sc.getLoggedInUserId());
 return current.getName();
 }

Extensions developer

245

 /**
 Set the ID to use for the <div> tag. This is needed
 so that we can attach a 'click' handler to the menu item
 with JavaScript.
 */
 public void setId(String id)
 {
 this.id = id;
 }

 /**
 Sets the icon to use. Path conversion is enabled.
 */
 @VariableSetter
 @PathSetter
 public void setIcon(String icon)
 {
 this.icon = icon;
 }

 /**
 Sets the prefix to use. If not set, the
 default value is "Hello".
 */
 public void setPrefix(String prefix)
 {
 this.prefix = prefix == null ? "Hello" : prefix;
 }
}

The are several new parts in this factory. The first is the getUserName() method which is called
from getActions(). Note that the getActions() method always create a new MenuItemBean. It
can no longer be cached since the title and javascript code depends on which user is logged in.

The second new part is the setId(), setIcon() and setPrefix() methods. The extensions system
uses java reflection to find the existance of the methods if <id>, <icon> and/or <prefix> tags are
present in the <parameters> tag for a factory, the methods are automatically called with the value
inside the tag as it's argument.

The VariableSetter and PathSetter annotations on the setIcon() are used to enable "smart"
convertions of the value. Note that in the XML file you only have to specify /images/info.png
as the URL to the icon, but in the hardcoded factory you have to do: jspContext.getRoot() +
"/images/info.png". In this case, it is the PathSetter which automatically adds the the JSP root
directory to all URL:s starting with /. The VariableSetter can do the same thing but you would
have to use $ROOT$ instead. Eg. $ROOT$/images/info.png. The PathSetter only looks at the first
characteer, while the VariableSetter looks in the entire string.

The third new part is that the call to MenuItemBean.setOnClick() has been removed. To replace the
inline scripting functionality we need the MenuItemBean.setId() call, the setParameter() calls
and the MenuItemBean.setDynamicActionAttributesSource() call. The dynamic attributes are
a simple way to output data to the HTML that is later needed by scripts. In this case, the generated
HTML may look something like this:

<div id="greetings-user" data-user-name="..." data-prefix="Greetings" ... >
...
</div>

Here is an example of an extension configuration that can be used with the new factory. Notice that
the <about> tag now include safe-scripts="1" attribute. This is a way for the devloper to tell the
extensions installation wizard that the extensions doesn't use any unsafe code and no warning will
be displayed when installing the extensions.

Extensions developer

246

<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
 <extension
 id="net.sf.basedb.clients.web.menu.extensions.hellouser"
 extends="net.sf.basedb.clients.web.menu.extensions"
 >
 <index>3</index>
 <about safe-scripts="1">
 <name>Greetings user</name>
 <description>
 A "Hello world" variant with a custom action factory
 that displays "Greetings {name of user}" instead. We also
 make the icon configurable.
 </description>
 </about>
 <action-factory>
 <factory-class>
 net.sf.basedb.examples.extensions.HelloUserFactory
 </factory-class>
 <parameters>
 <id>greetings-user</id>
 <prefix>Greetings</prefix>
 <icon>/images/take_ownership.png</icon>
 <script>~/scripts/menu-items.js</script>
 </parameters>
 </action-factory>
 </extension>
</extensions>

And the menu-items.js JavaScript file:

var HelloWorldMenu = function()
{
 var menu = {};

 /**
 Executed once when the page is loaded. Typically
 used to bind events to fixed control elements.
 */
 menu.initMenuItems = function()
 {
 // Bind event handlers the menu items.
 // First parameter is the ID of the menu item
 // Second parameter is the event to react to (=click)
 // Last parameter is the function to execute
 Events.addEventHandler('greetings-user', 'click', menu.greetingsUser);
 }

 // Get the dynamic attributes defined in extensions.xml
 // and generate an alert message
 menu.greetingsUser = function(event)
 {
 var userName = Data.get(event.currentTarget, 'user-name');
 var prefix = Data.get(event.currentTarget, 'prefix');
 alert(prefix + ' ' + userName + '!');
 }

 return menu;
}();

//Register the page initializer method with the BASE core
Doc.onLoad(HelloWorldMenu.initMenuItems);

Extensions developer

247

Be aware of multi-threading issues

When you are creating custom action and renderer factories be aware that multiple threads
may use a single factory instance at the same time. Action and renderer objects only needs to
be thread-safe if the factories re-use the same objects.

26.4. Custom images, JSP files, and other
resources
Some times your extension may need other resources. It can for for example be an icon, a javascript
file, a JSP file or something else. Fortunately this is very easy. You need to put the extension in
a JAR file. As usual the extension definition XML file should be at META-INF/extensions.xml.
Everything you put in the JAR file inside the resources/ directory will automatically be extracted
by the extension system to a directory on the web server. Here is another "Hello world" example
which uses a custom JSP file to display the message. There is also a custom icon.

<extensions xmlns="http://base.thep.lu.se/extensions.xsd">
 <extension
 id="net.sf.basedb.clients.web.menu.extensions.hellojspworld"
 extends="net.sf.basedb.clients.web.menu.extensions"
 >
 <index>4</index>
 <about safe-scripts="1" safe-resources="1">
 <name>Hello JSP world</name>
 <description>
 This example uses a custom JSP file to display the
 "Hello world" message instead of a javascript popup.
 </description>
 </about>
 <action-factory>
 <factory-class>
 net.sf.basedb.clients.web.extensions.menu.FixedMenuItemFactory
 </factory-class>
 <parameters>
 <title>Hello JSP world!</title>
 <tooltip>Opens a JSP file with the message</tooltip>
 <data-url>$HOME$/hello_world.jsp?ID=$SESSION-ID$</data-url>
 <data-popup>HelloJspWorld, 400, 300</data-popup>
 <icon>~/images/world.png</icon>
 </parameters>
 </action-factory>
 </extension>
</extensions>

The JAR file should have have the following contents:

META-INF/extensions.XML
resources/hello_world.jsp
resources/images/world.png

When this extension is installed the hello_world.jsp and world.png files are automatically ex-
tracted to the web servers file system. Each extension is given a unique HOME directory to make sure
that extensions doesn't interfere with each other. The URL to the home directory is made available
in the $HOME$ variable. All factory settings that have been annotated with the VariableSetter will
have their values scanned for $HOME$ which is replaced with the real URL. It is also possible to use
the $ROOT$ variable to get the root URL for the BASE web application. Never use /base/... since
users may install BASE into another path.

The tilde (~) in the <icon> tag value is also replaced with the HOME path. Note that this kind of
replacement is only done on factory settings that have been annotated with the PathSetter anno-
tation and is only done on the first character.

Extensions developer

248

The safe-resources="1" attribute in the <about> tag is used to tell BASE that all resource files
doesn't use inline scripts or event handlers. This is the default setting and don't have to be included.
On the other hand, if safe-resources="0" is specified BASE uses a less restrictive content security
policy for that extension that allows the use of inline scripts. This setting is not recommended but
can be useful during a transition phase while the extensions code is being updated.

Note

Unfortunately, the custom JSP file can't use classes that are located in the extension's JAR
file. The reason is that the JAR file is not known to Tomcat and Tomcat will not look in the
plugins.dir folder to try to find classes. There are currently two possible workarounds:

• Place classes needed by JSP files in a separate JAR file that is installed into the WEB-INF/lib
folder. The drawback is that this requires a restart of Tomcat.

• Use an X-JSP file instead. This is an experimental feature. See Section 26.4.2, “X-JSP files”
(page 249) for more information.

26.4.1. Javascript and stylesheets
It is possible for an extension to use a custom javascript or stylesheet. However, this doesn't
happen automatically and may not be enabled for all extension points. If an extension needs
this functionality the action factory or renderer factory must call JspContext.addScript() or
JspContext.addStylesheet() from the prepareContext() method.

The AbstractJspActionFactory and AbstractJspRendererFactory factory can do this. All fac-
tories shipped with BASE extends one of those classes and we recommend that custom-made fac-
tories also does this.

Factories that are extending one of those two classes can use <script> and <stylesheet> tags in
the <parameters> section for an extensions. Each tag may be used more than one time. The values
are subject to path and variable substitution.

<action-factory>
 <factory-class>
 ... some factory class ...
 </factory-class>
 <parameters>
 <script>~/scripts/custom.js</script>
 <stylesheet>~/css/custom.css</stylesheet>
 ... other parameters ...
 </parameters>
</action-factory>

If scripts and stylesheets has been added to the JSP context the extension system will, in most
cases, include the proper HTML to link in the requested scripts and/or stylesheet.

Use UTF-8 character encoding

The script and stylesheet files should use use UTF-8 character encoding. Otherwise they may
not work as expected in BASE.

All extension points doesn't support custom scripts/stylesheets

In some cases the rendering of the HTML page has gone to far to make is possible to include
custom scripts and stylesheets. This is for example the case with the extensions menu. Always
check the documentation for the extension point if scripts and stylesheets are supported or
not.

Extensions developer

249

26.4.2. X-JSP files
The drawback with a custom JSP file is that it is not possible to use classes from the extension's
JAR file in the JSP code. The reason is that the JAR file is not known to Tomcat and Tomcat will not
look in the plugins.dir folder to try to find classes.

One workaround is to place classes that are needed by the JSP files in a separate JAR file that is
placed in WEB-INF/lib. The drawback with this is that it requires a restart of Tomcat. It is also a
second step that has to be performed manually by the person installing the extension and is maybe
forgotten when doing an update.

Another workaround is to use an X-JSP file. This is simply a regular JSP file that has a .xjsp
extension instead of .jsp. The .xjsp extension will trigger the use of a different compiler that knows
how to include the extension's JAR file in the class path.

X-JSP is experimental

The X-JSP compiler depends on functionality that is internal to Tomcat. The JSP compiler is
not part of any open specification and the implementation details may change at any time.
This means that the X-JSP compiler may or may not work with future versions of Tomcat.
We have currently tested it with Tomcat 7.0.30 only. It will most likely not work with other
servlet containers.

Adding support for X-JSP requires that a JAR file with the X-JSP compiler is installed into
Tomcat's internal /lib directory. It is an optional step and not all BASE installations may have
the compiler installed. See Section 21.1.4, “Installing the X-JSP compiler” (page 168).

26.5. Custom renderers and renderer facto-
ries
It is always the responsibility of the extension point to render an action. The need for custom ren-
derers is typically very small, at least if you want your extensions to blend into the look and feel of
the BASE web client. Most customizations can be probably be handled by stylesheets and images.
That said, you may still have a reason for using a custom renderer.

Renderer factories are not very different from action factories. They are specified in the same way in
the XML file and uses the same method for initialisation, including support for path conversion, etc.
The difference is that you use a <renderer-factory> tag instead of an <action-factory> tag.

<renderer-factory>
 <factory-class>
 ... some factory class ...
 </factory-class>
 <parameters>
 ... some parameters ...
 </parameters>
</renderer-factory>

A RendererFactory also has a prepareContext() method that can be used to tell the web client
about any scripts or stylesheets the extension needs. If your renderer factory extends the Abstrac-
tJspRendererFactory class you will not have to worry about this since you can configure scripts
and stylesheets in the XML file.

A render factory must also implement the getRenderer() which should return a Renderer in-
stance. The extension system will then call the Renderer.render() method to render an action.
This method may be called multiple times if the extension created more than one action.

Extensions developer

250

The renderers responsibility is to generate the HTML that is going to be sent to the web client. To
do this it needs access to the JspContext object that was passed to the renderer factory. Here is a
simple outline of both a renderer factory and renderer.

// File: MyRendererFactory.java
public class MyRendererFactory
 extends AbstractJspRendererFactory<MyAction>
{

 public MyRendererFactory()
 {}

 @Override
 public MyRenderer getRenderer(InvokationContext context)
 {
 return new MyRenderer((JspContext)context.getClientContext());
 }
}

// File: MyRenderer.java
public class MyRenderer
 implements Renderer<MyAction>
{

 private final JspContext context;
 public MyRenderer(JspContext context)
 {
 this.context = context;
 }

 /**
 Generates HTML (unless invisible):
 [title]
 */
 public void render(MyAction action)
 {
 if (!action.isVisible()) return;
 Writer out = context.getOut();
 try
 {
 out.write("<a");
 if (action.getClazz() != null)
 {
 out.write(" class=\"" + action.getClazz() + "\"");
 }
 if (action.getStyle() != null)
 {
 out.write(" style=\"" + action.getStyle() + "\"");
 }
 if (action.getHref() != null)
 {
 out.write(" href=\"" + action.getHref() + "\"");
 }
 out.write(">");
 out.write(HTML.encodeTags(action.getTitle()));
 out.write("\n");
 }
 catch (IOException ex)
 {
 throw new RuntimeException(ex);
 }
 }
}

Extensions developer

251

26.6. Extension points
The BASE web client ships with a number of predefined extension points. Adding more extension
points to the existing web client requires some minor modifications to the regular JSP files. But this
is not what this chapter is about. This chapter is about defining new extension points as part of an
extension. It is nothing magical about this and the process is the same as for the regular extension
points in the web client.

The first thing you need to do is to start writing the XML definition of the extension point. Here is
an example from the web client:

<extensions
 xmlns="http://base.thep.lu.se/extensions.xsd"
 >
 <extension-point
 id="net.sf.basedb.clients.web.menu.extensions"
 >
 <action-class>net.sf.basedb.clients.web.extensions.menu.MenuItemAction</action-class>
 <name>Menu: extensions</name>
 <description>
 Extension point for adding extensions to the 'Extensions' menu.
 Extensions should provide MenuItemAction instances. The rendering
 is internal and extensions can't use their own rendering factories.
 The context will only include information about the currently logged
 in user, not information about the current page that is displayed.
 The reason for this is that the rendered menu is cached as a string
 in the user session. The menu is not updated on every page request.
 As of BASE 3.3, this extension point also support custom scripts and
 stylesheets.
 </description>
 </extension-point>
</extensions>

The <extensions> tag is the root tag and is needed to set up the namespace and schema validation.

The <extension-point> defines a new extension point. It must have an id attribute that is unique
among all installed extension points. We recommend using the same naming conventions as for java

packages. See Java naming conventions from Oracle2.

Document the extension point!

The <name> and <description> tags are optional, but we strongly recommend that values
are provided. The description tag should be used to document the extension point. Pay special
attention to the support (or lack of support) for custom scripts, stylesheets and renderers.

The <action-class> defines the interface or class that extensions must provide to the extension
point. This must be a class or interface that is a subclass of the Action interface. We generally
recommend that interfaces are used since this gives more implementation flexibility for action fac-
tories, but a regular class may work just as well.

The action class is used to carry information about the action, such as a title, which icon to use, a
tooltip text, etc. The action class may be as simple or complex as you like.

Web client extension points

This is a note for the core developers. Extension points that are part of the web client should
always define the action as an interface. We recommend that getId(), getClazz() and get-
Style() attributes are always included if this makes sense. It is usually also a good idea to
include isVisible() and isEnabled() attributes.

2 http://www.oracle.com/technetwork/java/codeconventions-135099.html

http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html

Extensions developer

252

Now, if you are a good citizen you should also provide at least one implementation of an action
factory that can create the objects of the desired type of action. The factory should of course be
configurable from the XML file.

If you are lazy or if you want to immediately start testing the JSP code for the extension point, it may
be possible to use one of the debugger action factories in the net.sf.basedb.util.extensions.debug
pacakge.

• ProxyActionFactory: This action factory can only be used if your action class is an interface
and all important methods starts with get or is. The proxy action factory uses Java reflection to
create a dynamic proxy class in runtime. It will map all getX() and isY() methods to retreive the
values from the corresponding parameter in the XML file. For example, getIcon() will retrieve
the value of the <icon> tag and isVisible() from the <visible>. The factory is smart enough
to convert the string to the correct return value for int, long, float, double and boolean data types
and their corresponding object wrapper types, if this is needed.

• BeanActionFactory: This action factory can be used if you have created a bean-like class that
implements the desired action class. The factory will create an instance of the class specified by
the <beanClass> parameter. The factory will then use Java reflection to find set method for the
other parameters. If there is a parameter <icon> the factory first looks for a setIcon(String)
method. If it can't find that it will see if there is a getIcon() method which has a return type,
T. If so, a second attempt is made to find a setIcon(T) method. The factory is smart enough to
convert the string value from the XML file to the correct return value for int, long, float, double
and boolean data types and their corresponding object wrapper types, if this is needed.

It is finally time to write the JSP code that actually uses the extension point. It is usually not very
complicated. Here is an exemple which lists snippets from a JSP file:

// 1. We recommend using the extensions taglib (and the BASE core taglib)
<%@ taglib prefix="ext" uri="/WEB-INF/extensions.tld" %>
<%@ taglib prefix="base" uri="/WEB-INF/base.tld" %>

// 2. Prepare the extension point
SessionControl sc = Base.getExistingSessionControl(pageContext, true);
JspContext jspContext = ExtensionsControl.createContext(sc, pageContext);
ExtensionsInvoker invoker = ExtensionsControl.useExtensions(jspContext,
 "my.domain.name.extensionspoint");

// 3. Output scripts and stylesheets
<base:page title="My new extension point">
 <base:head>
 <ext:scripts context="<%=jspContext%>" />
 <ext:stylesheets context="<%=jspContext%>" />
 </base:head>
 <base:body>

// 4a. Using a taglib for rendering with the default renderer
<ext:render extensions="<%=invoker%>" context="<%=jspContext%>" />

// 4b. Or, use the iterator and a more hard-coded approach
<%
Iterator it = invoker.iterate();
while (it.hasNext())
{
 MyAction action = (MyAction)it.next();
 String html = action.getTitle() +

 out.write(html);
}
%>

Extensions developer

253

26.6.1. Error handlers
An extension points may define a custom error handler. If not, the default error handler is used
which simply writes a message to the log file. If you want to use a different error handler, create a
<error-handler-factory> tag inside the extension point definition. The <factory-class> is a
required subtag and must specify a class with a public no-argument constructor that implements
the ErrorHandlerFactory interface. The <parameters> subtag is optional and can be used to
specify initialization parameters for the factory just as for action and renderer factories.

<extensions
 xmlns="http://base.thep.lu.se/extensions.xsd"
 >
 <extension-point
 id="net.sf.basedb.clients.web.menu.extensions"
 >
 <action-class>net.sf.basedb.clients.web.extensions.menu.MenuItemAction</action-class>
 <name>Menu: extensions</name>
 <error-handler-factory>
 <factory-class>
 ... some factory class ...
 </factory-class>
 <parameters>
 ... initialization parameters ...
 </parameters>
 </error-handler-factory>
 </extension-point>
</extensions>

26.7. Custom servlets
It is possible for an extension to include servlets without having to register those servlets in Tomcat's
WEB-INF/web.xml file. The extension needs to be in a JAR file as usual. The servlet class should be
located in the JAR file following regular Java conventions. Eg. The class my.domain.ServletClass
should be located at my/domain/ServletClass.class. You also need to create a second XML file
that contains the servlet definitions at META-INF/servlets.xml. The format for defining servlets
in this file is very similar to how servlets are defined in the web.xml file. Here is an example:

<?xml version="1.0" encoding="UTF-8" ?>
<servlets xmlns="http://base.thep.lu.se/servlets.xsd">
 <servlet>
 <servlet-name>HelloWorld</servlet-name>
 <servlet-class>net.sf.basedb.examples.extensions.HelloWorldServlet</servlet-class>
 <init-param>
 <param-name>template</param-name>
 <param-value>Hello {user}! Welcome to the Servlet world!</param-value>
 </init-param>
 </servlet>
</servlets>

The <servlets> tag is the root tag and is needed to set up the namespace and schema validation.
This may contain any number of <servlet> tags, each one defining a single servlet.

The <servlet-name> tag contains the name of the servlet. This is a required tag and must be unique
among the servlets defined by this extension. Other extensions may use the same name without
any problems.

The <servlet-class> tag contains the name of implementing class. This is required and the class
must implement the Servlet interface and have a public, no-argument constructor. We recommend

Extensions developer

254

that servlet implementations instead extends the HttpServlet class. This will make the servlet
programming easier.

A servlet may have any number <init-param> tags, containing initialisation parameters for the
servlet. Here is the code for the servlet references in the above example.

public class HelloWorldServlet
 extends HttpServlet
{
 private String template;
 public HelloWorldServlet()
 {}

 @Override
 public void init()
 throws ServletException
 {
 ServletConfig cfg = getServletConfig();
 template = cfg.getInitParameter("template");
 if (template == null) template = "Hello {user}.";
 }

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 final SessionControl sc = Base.getExistingSessionControl(request, true);
 final DbControl dc = sc.newDbControl();
 try
 {
 User current = User.getById(dc, sc.getLoggedInUserId());
 PrintWriter out = response.getWriter();
 out.print(template.replace("{user}", current.getName()));
 }
 finally
 {
 if (dc != null) dc.close();
 }
 }
 @Override
 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 doGet(req, resp);
 }
}

Invoking the servlet is done with a URL that is constructed like: $HOME$/[servlet-name].servlet,
where $HOME$ is the home directory of the extension. An alternate URL that doesn't require the
.servlet extension is available: $SERVLET_HOME$/[servlet-name], where $SERVLET_HOME$ is the
home directory of servlets for the extension. Note that this directory is on a different sub-path than
the $HOME$ directory.

Extra path information is supported if it is inserted between the servlet name and the .servlet ex-
tension: $HOME$/[servlet-name][/extra/path/info].servlet, $SERVLET_HOME$/[servlet-
name][/extra/path/info]

Query parameters are supported as normal: $HOME$/[servlet-
name].servlet?param1=value¶m2=value, $SERVLET_HOME$/[servlet-
name]?param1=value¶m2=value

<extension
 id="net.sf.basedb.clients.web.menu.extensions.helloservletworld"

Extensions developer

255

 extends="net.sf.basedb.clients.web.menu.extensions"
 >
 <index>5</index>
 <about>
 <name>Hello Servlet world</name>
 <description>
 This example uses a custom Servlet page to display the
 "Hello world" message instead of a javascript popup.
 </description>
 </about>
 <action-factory>
 <factory-class>
 net.sf.basedb.clients.web.extensions.menu.FixedMenuItemFactory
 </factory-class>
 <parameters>
 <title>Hello Servlet world!</title>
 <tooltip>Opens a Servlet generated page with the message</tooltip>
 <data-url>$HOME$/HelloWorld.servlet?ID=$SESSION-ID$</data-url>
 <data-popup>HelloServletWorld, 400, 300</data-popup>
 <icon>~/images/servlet.png</icon>
 </parameters>
 </action-factory>
</extension>

Note

To keep things as simple as possible, a new instance of the servlet class is created for each
request. If the servlet needs complex or expensive initialisation, that should be externalised
to other classes that the servlet can use.

26.8. Extension points defined by BASE
In this section, we will give an overview of the extension points defined by BASE. Most extension
points are used in the web client to add buttons and menu items, but there are a few for the core
API as well.

26.8.1. Menu: extensions
Menu items can be added to the top-level Extensions menu. Actions should implement the interface:
MenuItemAction

The MenuItemAction.getMenuType() provides support for MENUITEM, SUBMENU and SEPARATOR
menus. Which of the other properties that are needed depend on the menu type. Read the javadoc
for more information. The rendering is internal (eg. extensions can't provide their own renderers).

BASE ships with two action factories: FixedMenuItemFactory and PermissionMenuItemFactory.
The fixed factory provides a menu that is the same for all users. The permission factory can disable
or hide a menu depending on the logged in user's role-based permissions. The title, icon, etc. can
have different values depending on if the menu item is disabled or enabled.

onclick is deprecated

The onclick attribute has been deprecated since BASE 3.3. Use a custom script instead to bind
the click event with the menu item or <data-url> if the menu simply navigates to another
page. <data-popup> can be used to open the page in a popup window and should contain
three comma-separated values: name-of-window, width-of-window, height-of-window

26.8.2. Toolbars
Most toolbars on all list and single-item view pages can be extended with extra buttons. Actions
should implement the interface: ButtonAction. Button actions are very simple and only need to
provide things like a title, tooltip, icon, etc. This extension point has support for custom javascript,
stylesheets and renderers. The default renderer is ToolbarButtonRendererFactory.

Extensions developer

256

BASE ships with two action factories: FixedButtonFactory and PermissionButtonFactory. The
fixed factory provides a toolbar button that is the same for all users. The permission factory can
disable or hide a buton depending on the logged in user's role-based permissions. The title, icon,
etc. can have different values depending on if the menu item is disabled or enabled.

onclick is deprecated

The onclick attribute has been deprecated since BASE 3.3. Use a custom script instead to bind
the click event with the button. Download the example code to see it in action.

26.8.3. Edit dialogs
Most item edit dialogs can be extended with additional tabs. Actions should implement the interface:
TabAction. The actions are, in principle, simple and only need to provide a title and content (HTML).
The action may also provide javascripts for validation, etc. This extension point has support for
custom stylesheets and javascript. Rendering is fixed and can't be overridden.

BASE ships with two action factories: FixedTabFactory and IncludeContentTabFactory. The
fixed factory provides a tab with fixed content that is the same for all users and all items. This factory
is not very useful in a real scenario. The other factory provides content by including the output from
another resource, eg. a JSP page, a servlet, etc. The current context is stored in a request-scoped
attribute under the key given by JspContext.ATTRIBUTE_KEY. A JSP or servlet should use this to
hook into the current flow. Here is a code example:

// Get the JspContext that was created on the main edit page
final JspContext jspContext = (JspContext)request.getAttribute(JspContext.ATTRIBUTE_KEY);

// The current item is found in the context. NOTE! Can be null if a new item
final BasicItem item = (BasicItem)jspContext.getCurrentItem();

// Get the DbControl and SessionControl used to handle the request (do not close!)
final DbControl dc = jspContext.getDbControl();
final SessionControl sc = dc.getSessionControl();

The extra tab need to be paired with an extension that is invoked when the edit form is saved. Each
edit-dialog extension point has a corresponding on-save extension point. Actions should implement
the interface: OnSaveAction. This interface define three callback methods that BASE will call when
saving an item. The OnSaveAction.onSave() method is called first, but not until all regular prop-
erties have been updated. If the transaction is committed the OnSaveAction.onCommit() method
is also called, otherwise the OnSaveAction.onRollback() is called. The onSave() method can
throw an exception that will be displayed to the user. The other callback method should not throw
exceptions at all, since that may result in undefined behaviour and can be confusing for the user.

26.8.4. Bioassay set: Tools
The bioassay set listing for an experiment has a Tools column which can be extended by extensions.
This extension point is similar to the toolbar extension points and actions should implement the
interface: ButtonAction.

Note that the list can contain BioAssaySet, Transformation and ExtraValue items. The factory
implementation need to be aware of this if it uses the JspContext.getItem() method to examine
the current item.

26.8.5. Bioassay set: Overview plots
The bioassay set page has a tab Overview plots. The contents of this tab is supposed to be some
kind of images that have been generated from the data in the current bioassay set. What kind of plots
that can be generated typically depends on the kind of data you have. BASE ships with an extension

Extensions developer

257

(MAPlotFactory) that creates MA plots and Correction factor plots for 2-channel bioassays. Actions
should implement the interface: OverviewPlotAction. A single action generates a sub-tab in the
Overview plots tab. The sub-tab may contain one or more images. Each image is defined by a
PlotGenerator which sets the size of the image and provides an URL to a servlet that generates
the actual image. It is recommended that the servlet cache images since the data in a bioassay set
never changes. The BASE core API provides a system-managed file cache that is suitable for this.
Call Application.getStaticCache() to get a StaticCache instance. See the source code for the
core PlotServlet for details of how to use the cache.

26.8.6. Services
A service is a piece of code that is loaded when the BASE web server starts up. The service is then
running as long as the BASE web server is running. It is possible to manually stop and start ser-
vices. This extension point is different from most others in that it doesn't affects the visible interface.
Since services are loaded at startup time, this also means that the context passed to ActionFactory
methods will have a special ClientContext associated with it. There is no current item, and no user
is logged in. However, the SessionControl returned from ClientContext.getSessionControl()
gives permission to imporsonate another making it possible for the extension to access the BASE
database almost without limitation. There is no meaning for extensions to specify a RendererFac-
tory. Service actions should implement the interface: ServiceControllerAction. The interface
provides start() and stop() methods for controlling the service. BASE doesn't ship with any ser-
vice, but there is an FTP service available at the BASE plug-ins site: http://baseplugins.thep.lu.se/

wiki/net.sf.basedb.ftp3

26.8.7. Connection managers
This extension point adds support for using external files in BASE. This is a core extension point
and is available independently of the web client. Actions should implement the interface: Connec-
tionManagerFactory.

The getDisplayName() and getDescription() methods are used in the gui when a user manu-
ally selects which connection manager to use. The supports(URI) is used when auto-selecting a
connection manager based on the URI of the resource.

BASE ships with factory that supports HTTP and HTTPS file references: HttpConnectionManager-
Factory. The BASE plug-ins site has an connection manager that support the Hadoop distributed

file system (HDFS): http://baseplugins.thep.lu.se/wiki/net.sf.basedb.hdfs4

26.8.8. Fileset validators
See also

• Section 28.3.9, “Using files to store data” (page 312)

• Section 28.2.7, “Experimental platforms and item subtypes” (page 286)

In those cases where files are used to store data instead of importing it to the database, BASE can
use extensions to check that the supplied files are valid and also to extract metadata from the files.
For example, the CelValidationAction is used to check if a file is a valid Affymetrix CEL file and
to extract data headers and the number of spots from it.

Validation and metadata extraction actions should implement the ValidationAction interface.
This is a core extension point and is available independently of the web client.

This extension point is a bit more complex than most other extension points. To begin with,
the factory class will be called with the owner of the file set as the current item. Eg. the

3 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.ftp
4 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.hdfs

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.ftp
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.ftp
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.hdfs
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.ftp
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.hdfs

Extensions developer

258

ClientContext.getCurrentItem() should return a FileStoreEnabled item. It is recommend-
ed that the factory performs a pre-filtering of the items to avoid calling the actual validation code
on unsupported files. For example, the CelValidationFactory will check that the item is a Raw-
BioAssay item using the Affymetrix platform.

Each file in the file set is then passed to the ValidationAction.acceptFile(FileSetMember)
which may accept or reject the file. If the file is accepted it may be accepted for immediate validation
or later validation. The latter option is useful in more complex scenarios were files need to be vali-
dated as a group. If the file is accepted the ValidationAction.validateAndExtractMetadata()
is called, which is were the real work should happen.

The extensions for this extension point is also called when a file is replaced or removed from
the file set. The calling sequence to set up the validation is more or less the same as de-
scribed above, but the last step is to call ValidationAction.resetMetadata() instead of
ValidationAction.validateAndExtractMetadata().

Use the SingleFileValidationAction class.

Most validators that work on a single file at a time may find the SingleFileValidationAc-
tion class useful. Is should simplify the task of making sure that only the desired file type is
validated. See the source code of the CelValidationAction class for an example.

26.8.9. Logging managers
This extension point makes it possible to detect changes that are made to item and generate log
entries in real time. The core will send notifications for all item creations, updates and deletions
to all registered logging managers. It is up to each implementation to decide if an event should be
logged, where to log it and how much information that should be stored. The BASE core provides
a logging implementation that save some information to the database which can also be viewed
through the web interface.

The logging mechanism works on the data layer level and hooks into callbacks provided by Hiber-
nate. EntityLogger:s are used to extract relevant information from Hibernate and create log en-
tries. While it is possible to have a generic logger it is usually better to have different implementations
depending on the type of entity that was changed. For example, a change in a child item should,
for usability reasons, be logged as a change in the parent item. Entity loggers are created by a Log-
ManagerFactory. All changes made in a single transaction are usually collected by a LogManager
which is also created by the factory.

The LogManagerFactory interface

Each registered action factory shoulds create a LogManagerFactory that is used throughout a single
transaction. If the factory is thread-safe, the same instance can be re-used for multiple requests at
the same time. Here is a list of the methods the factory must implement:

 public LogManager getLogManager(LogControl logControl);

Creates a log manager for a single transaction. Since a transaction is not thread-safe the log
manager implementation doesn't have to be either. The factory has the possibility to create new
log managers for each transaction.

 public boolean isLoggable(Object entity);

Checks if changes to the given entity should be logged or not. For performance reasons, it usually
makes sense to not log everything. For example, the database logger implementation only logs
changes if the entity implements the LoggableData interface. The return value of this method
should be consistent with getEntityLogger().

Extensions developer

259

 public EntityLogger getEntityLogger(LogManager logManager,

 Object entity);

Create or get an entity logger that knows how to log changes to the given entity. If the entity
should not be logged, null can be returned. This method is called for each modified item in
the transaction.

The LogManager interface
A new log manager is created for each transaction. The log manager is responsible for collecting all
changes made in the transaction and store those changes in the appropriate place. The interface
doesn't define any methods for this collection, since each implementation may have very different
needs.

 public LogControl getLogControl();

Get the log control object that was supplied by the BASE core when the transaction was started.
The log controller contains methods for accessing information about the transaction, such as
the logged in user, executing plug-in, etc. It can also be used to execute queries against the
database to get even more information.

Warning

Be careful about the queries that are executed by the log controller. Since all logging code
is executed at flush time in callbacks from Hibernate we are not allowed to use the regular
session. Instead, all queries are sent through the stateless session. The stateless session
has no caching functionality which means that Hibernate will use extra queries to load
associations. Our recommendation is to avoid quires that return full entities, use scalar
queries instead to just load the values that are needed.

 public void afterCommit();

,

 public void afterRollback();

Called after a successful commit or after a rollback. Note that the connection to the database
has been closed at this time and it is not possible to save any more information to it at this time.

The EntityLogger interface
An entity logger is responsible for extracting the changes made to an entity and converting it to
something that is useful as a log entry. In most cases, this is not very complicated, but in some
cases, a change in one entity should actually be logged as a change in a different entity. For example,
changes to annotations are handled by the AnnotationLogger which which log it as a change on
the parent item.

 public void logChanges(LogManager logManager,

 EntityDetails details);

This method is called whenever a change has been detected in an entity. The details variable
contains information about the entity and, to a certain degree, what changes that has been
made.

26.8.10. Item overview loaders
The item overview functionality allow extensions to load more items in the tree structure. The ex-
tension point is a core extension point that is available independently of the web client. Actions

Extensions developer

260

should implement the ChildNodeLoaderAction interface. We recommend that the actions also ex-
tend the BasicItemNodeLoader since this will make it easier to handle situations with missing
items, permission problems and validation. Since each registered extension is checked for each item
in the overview we recommend that the action factory makes a first filtering step before an action is
created. This should be relatively simple since the current item in the ClientContext is the parent
node. For example:

// From the ActionFactory interface
public boolean prepareContext(InvokationContext<? super ChildNodeLoaderAction> context)
{
 Node parentNode = (Node)context.getClientContext().getCurrentItem();
 if (parentNode != null)
 {
 if (parentNode.getItem() instanceof Ownable)
 {
 return true;
 }
 }
 return false;
}

26.8.11. Item overview validation
The item overview functionality allow extensions to add validation code to any item in the tree. There
are two co-existing extension points, one for the actual validation code and one for the validation rule
defintions. Both extension points are core extension points that is available independently of the web
client. Validation actions should implement the NodeValidatorAction interface, which is simple
the same as NodeValidator We recommend that the actions extend the NameableNodeValidator
or BasicNodeValidator since this will make it easier to handle situations with missing items and
permission problems. Since each registered extension is checked for each item in the overview we
recommend that the action factory makes a first filtering step before an action is created. This
should be relatively simple since the current item in the ClientContext is type of that should be
validated. For example:

// From the ActionFactory interface
public boolean prepareContext(InvokationContext<? super NodeValidatorAction> context)
{
 return context.getClientContext().getCurrentItem() == Item.USER;
}

Rule definition actions should implement the ValidationRuleAction. This is simply a container
with some information about the validation rule, such as a title, description and a default severity
level. The Validator class that ships with BASE already implements this interface. The Reflect-
ValidationRuleActionFactory can be used to return an existing public static final rule
definition as an action:

<extension
 id="validationrule.invalid-url"
 extends="net.sf.basedb.util.overview.validationrule">
 <index>4</index>
 <about>
 <name>Invalid URL</name>
 <description>Checks if an URL has a valid syntax.</description>
 </about>
 <action-factory>
 <factory-class>
 net.sf.basedb.util.overview.extensions.ReflectValidationRuleActionFactory

Extensions developer

261

 </factory-class>
 <parameters>
 <field>net.sf.basedb.examples.extensions.overview.OwnerValidator.INVALID_URL</field>
 </parameters>
 </action-factory>
</extension>

26.8.12. Item overview information
The item overview functionality allow extensions to display additional information about the cur-
rently selected node in the right pane in the web interface. Each SectionAction object that is cre-
ated by extensions will result in an additional section in the GUI. Note that all extension factories
are called for all nodes. The ActionFactory.prepareContext() should be used to enable/disable
the extension depending on the node that is selected. BASE ships with the IncludeContentSec-
tionFactory factory implementation which allows a resourse (eg. another JSP script) to generate
the content of the section. The current context is stored in a request-scoped attribute under the key
given by JspContext.ATTRIBUTE_KEY. A JSP or servlet should use this to hook into the current
flow. Here is a code example:

// Get the JspContext that was created on the main edit page
final JspContext jspContext = (JspContext)request.getAttribute(JspContext.ATTRIBUTE_KEY);

// The currently selected node is found in the context.
final Node node = (Node)jspContext.getCurrentItem();

// Get the DbControl and SessionControl used to handle the request (do not close!)
final DbControl dc = jspContext.getDbControl();
final SessionControl sc = dc.getSessionControl();

26.8.13. Table list columns
This extension point makes it possible to add more columns to most major list pages in the web in-
terface. Actions should implement the ListColumnAction interface. This interface contains several
methods which can be grouped into three main types:

• Metadata methods, for example, the id and title of the column and if the column can be sorted,
filtered, etc.

• Rendering information, for example, CSS class and style information that is used for the column
header.

• Worker methods, that retrieve the value from the current item and format it for proper display.
Different methods are used for the web display and for exporting to a file.

The AbstractListColumnBean class provides a bean-like implementation for all methods except
the getValue() method. Extending from this class makes it easy to your own implementations.
BASE ships with the PropertyPathActionFactory factory that can be used without coding if the
added column can be expressed as a property path that can be handled by the Metadata class. As

usual, see the example code5 for some examples.

26.8.14. Login manager
This extension point makes it possible to authenticate users by some other means than the regular
internal username+password authentication. Authentication managers should implement the Au-

5 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examplecode

Extensions developer

262

thenticationManager action interface. This interface is simple and contain only one parameter-
less method authenticate(). There are three outcomes:

• A AuthenticatedUser is returned with information about a user that has passed authentication.

• A null value is returned to indicate that the manager could not determine if the login credentials
are valid or not. The BASE core may try another authentication manager or use internal authen-
tication.

• An exception is thrown to indicate that the manager has determined that the login credentials
are invalid.

Since the action interface doesn't contain any parameters that contain information about the login
request, the implementation need to get this from the ClientContext that is passed to the action
factory. The getCurrentItem() item is a LoginRequest containing the login and password the
user entered on the login page. The ClientContext ojbect can be cast to AuthenticationContext
which provide some extra services to the authentication manager.

Internal vs. external authentation

All login requests (except ROOT) are always sent to registered authentication managers first. Internal
authentication is only used if no authentication manager could validate the user. Even with external
authentication it is possible to let BASE cache the logins/passwords. This makes it possible to login
to BASE if the external authentication server is down.

Note

An external authentication server can only be used to grant or deny a user access to BASE. It
cannot be used to give a user permissions, or put a user into groups or different roles inside
BASE.

The authentication process goes something like this:

• The ROOT user is logging on. Internal authentication is always used for the root user and no
authentication managers are used.

• An external authentication manager determines that the login request is valid and the user is
already known to BASE. If the extra information (name, email, phone, etc.) is supplied and the
auth.synchronize setting is TRUE the extra information is copied to the BASE server.

• An external authentication manager determines that the login request is valid, but the user is not
known to BASE. This happens the first time a user logs in. BASE will create a new user account.
If the authentication manager provides extra information, it is copied to the BASE server (even if
auth.synchronize is not set). The new user account will get the default quota and be added to the
all roles and groups which has been marked as default.

• If password caching is enabled, the password is copied to BASE. If an expiration timeout has been
set, an expiration date will be calculated and set on the user account. The expiration date is only
checked when the external authentication server is down.

• The external authentication manager says that the login is invalid or the password is incorrect.
The user will not be logged in.

• The authentication manager says that something else is wrong. If password caching is enabled,
internal authentication will be used. Otherwise the user will not be logged in.

Configuration settings

The configuration settings for the authentication system are located in the base.config file. Here
is an overview of the settings. For more information read the section called “Authentication section”
(page 402).

Extensions developer

263

auth.synchronize
If extra user information is synchronized at login time or not. This setting is ignored if the driver
does not support extra information.

auth.cachepasswords
If passwords should be cached by BASE or not. If the passwords are cached a user may login to
BASE even if the external authentication server is down.

auth.daystocache
How many days to cache the passwords if caching has been enabled. A value of 0 caches the
passwords for ever.

26.8.15. Login form
This extension point is typically used in combination with a login manager to provide a customized
login form. Extensions should implement the LoginFormAction action which is used to specify
prompts, tooltips, help texts and styling information for the login and password fields. The extension
point supports custom scripts and stylesheets.

Only the first registered extension is used

Since there is only one login form, only the first registered extension is used even if there are
more extensions for this extension point.

264

Chapter 27. Web services
This chapter is an introduction of web services in BASE. It is recommended to begin your reading
with the first section in this chapter and then you can move on to either the second section for more
information how to develop client applications, or to the third section if you think there are some
services missing and you want to know how to proceed to develop a new one.

Web services support has been deprecated in BASE 3.3

The current implementation is most likely not very useful and has limited support for accessing
information in BASE. Therefore it has been decided to remove the web services support in
BASE 3.4. If anyone require web services support or similar we recommend using the BASE
extensions mechanism to implement exactly what is needed for that project and we also beleive
that a simplier API such as JSON is preferable.

Before moving on to develop client applications or new services there are few things that need to
be explained first.

1. Items in BASE are not send directly by the web services, most of them are to complex for this
should be possible. Instead is each item type represented by an info class that can hold the type's
less complex properties.

2. BASE offers a way for services to allow the client applications to put their own includes and re-
strictions on a query before it is executed. For those who intend to develop services it is recom-
mended to have a look in javadoc for the QueryOptions class. This is on the first hand for the
service developers but it can be useful for client developers to also know that this may be available
in some services.

27.1. Available services
Web services can, at the moment, be used to provide some information and data related to experi-
ments in BASE, for example, information about raw bioassays or bioassay set data. The subsection
below gives an overview of the services that are currently present in BASE short description for
each. More detailed information can be found in the javadoc and WSDL-files. Each service has it's
own class and WSDL-file.

27.1.1. Services
SessionService, SessionClient

Provides methods to manage a sessions. This is the main entry point to the BASE web services.
This contains methods for logging in and out and keeping the session alive to avoid automatic
logout due to inactivity.

ProjectService, ProjectClient
Service related to projects. You can list available projects and select one to use as the active
project.

ExperimentService, ExperimentClient
Service related to experiments. List your experiments and find out which raw bioassays that are
part of it and which bioassay sets have been created as part of the analysis. Find reporter lists
that are part of the experiment and get information about the experimental factors.

BioAssaySetService, BioAssaySetClient
Services related to bioassay sets. Get access data files that are attached to bioassay sets. Data
from the database must first be exported and saved as a file. Find annotation values on bioassay
sets.

Web services

265

RawBioAssayService, RawBioAssayClient
Services related to raw bioassays. Find out which raw data files that are present and download
them. Find annotation values on raw bioassays.

ArrayDesignService, ArrayDesignClient
Services related to array design. Find out which data files that are present and download them.
Find annotation values on array designs.

AnnotationTypeService, AnnotationTypeClient
Services related to annotation types. Find out which annotation types that can be used for
different types of items.

ReporterService, ReporterClient
Services related to reporters and reporter lists. Get information about all admin-defined extended
properties. Download reporter information for reporters.

FileService, FileClient
Services related to files. Download files.

27.2. Client development
How to develop client applications for the web services in BASE depends on which program language
you are using. BASE comes with a simple client API for java for the existing services. If you use this
API, you don't have to worry about WSDL files, stubs and skeletons and other web services related
stuff. Just use it the client API as any other java API.

The client API can be downloaded with example code from the BASE plug-ins website1. The package
contains all external JAR files you need, the WSDL files (in case you still want them) and some
example code that logs in to a BASE server, lists projects and experiments and then logs out again.
Here is a short example of how to login to a BASE server, list the experiments and then logout.

String serviceUrl = "http://your.base.server/base2/services";
String login = "mylogin";
String password = "mypassword";

// Create new session
SessionClient session = new SessionClient(serviceUrl, null, null);

// Login
session.login(login, password, null);

// Get all projects and print out name and ID
ExperimentClient ex = new ExperimentClient(session);
ExperimentInfo[] experiments = ec.getExperiments(new QueryOptions());

if (experiments != null && experiments.length > 0)
{
 for (ExperimentInfo info : experiments)
 {
 System.out.println("name=" + info.getName() + "; id=" +info.getId());
 }
}

// Logout
session.logout();

If you want to use another language than Java or you don't want to use our client API, you probably
need the WSDL files. These can be found in the client API package discussed above and also in
the BASE core distribution in the <base-dir>/misc/wsdl directory. The WSDL files can also be
generated on the fly by the BASE server by appending ?wsdl to the url for a specific service. For
example, http://your.base.server/base2/services/Session?wsdl.

1 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices

Web services

266

27.2.1. Receiving files
Some methods can be used to download files or exported data. Since this kind of data can be
binary data the usual return methods can't be used. BASE uses a method commonly known as web
services with attachments using MTOM (SOAP Message Transmission Optimization Mechanism)

to send file data. Read the MTOM Guide2 from Apache if you want to know more about this.

With the client API it is relatively easy to download a file. Here is a short program example that
downloads the CEL files for all raw bioassays in an experiment.

int experimentId = ...
SessionClient session = ...
String fileType = "affymetrix.cel";

// Create clients for experiment and raw bioassay
ExperimentClient ec = new ExperimentClient(session);
RawBioAssayClient rc = new RawBioAssayClient(session);

// Get all raw bioassays in the experiment
RawBioAssayInfo[] rawInfo = ec.getRawBioAssays(experimentId, new QueryOptions());
if (rawInfo == null && rawInfo.length == 0) return;

for (RawBioAssayInfo info : rawInfo)
{
 // We receive the file contents as an InputStream
 InputStream download = rc.downloadRawDataByType(info.getId(), fileType);

 // Save to file with the same name as the raw bioassay + .cel
 // assume that there are no duplicates
 File saveTo = new File(info.getName() + ".cel");
 FileUtil.copy(download, new FileOutputStream(saveTo));
}

If you are using another programming language than Java or doesn't want to use the client API
you must know how to get access to the received file. The data is sent as a binary attachment to
an element in the XML. It is in the interest of the client developer to know how to get access to
a received file and to make sure that the programming language/web services framework that is
used supports MTOM. Below is a listing which shows an example of a returned message from the
RawBioAssayService.downloadRawDataByType() service.

--MIMEBoundaryurn_uuid_1526E5ADD9FC4431651195044149664
Content-Type: application/xop+xml; charset=UTF-8; type="application/soap+xml"
Content-Transfer-Encoding: binary
Content-ID: <0.urn:uuid:1526E5ADD9FC4431651195044149665@apache.org>

<ns:downloadRawDataByTypeResponse xmlns:ns="http://server.ws.basedb.sf.net">
 <ns:return>
 <Test.cel:Test.cel xmlns:Test.cel="127.0.0.1">
 <xop:Include href="cid:1.urn:uuid:1526E5ADD9FC4431651195044149663@apache.org"
 xmlns:xop="http://www.w3.org/2004/08/xop/include" />
 </Test.cel:Test.cel>
 </ns:return>
</ns:downloadRawDataByTypeResponse>
--MIMEBoundaryurn_uuid_1526E5ADD9FC4431651195044149664
Content-Type: text/plain
Content-Transfer-Encoding: binary
Content-ID: <1.urn:uuid:1526E5ADD9FC4431651195044149663@apache.org>

... binary file data is here ...

2 http://axis.apache.org/axis2/java/core/docs/mtom-guide.html

http://axis.apache.org/axis2/java/core/docs/mtom-guide.html
http://axis.apache.org/axis2/java/core/docs/mtom-guide.html

Web services

267

Here is a programlisting, that shows how to pick up the file. This is the actual implemen-
tation that is used in the web service client that comes with BASE. The InputStream re-
turned from this method is the same InputStream that is returned from, for example, the
RawBioAssayClient.downloadRawDataByType() method.

// From AbstractRPCClient.java
protected InputStream invokeFileBlocking(String operation, Object... args)
 throws AxisFault, IOException
{
 //Get the original response element as sent from the server-side
 OMElement response = getService().invokeBlocking(getOperation(operation), args);

 //The file element returned from the service is the first element of the response
 OMElement fileElement = response.getFirstElement();

 //The data node always in the first element.
 OMElement dataElement = fileElement.getFirstElement();
 if (dataElement == null) return null;

 //Get the binary node and pick up the inputstream.
 OMText node = (OMText)dataElement.getFirstOMChild();
 node.setBinary(true);
 DataHandler dataHandler = (DataHandler)node.getDataHandler();
 return dataHandler.getInputStream();
}

27.3. Services development
This list should work as guide when creating new web service in BASE.

1. Create a new class that extends AbstractRPCService

2. Place the new service in same package as the abstract class, net.sf.basedb.ws.server

3. Write the routines/methods the service should deploy.

Never return void from methods

For server-side exceptions to be propagated to the client the web services method mustn't
be declared as void. We suggest that in cases where there is no natural return value, the
session ID is returned, for example:

public String myMethod(String ID, ...more parameters...)
{
 // ... your code here
 return ID;
}

4. Make the Ant build-file creates a WSDL-file when the services are compiled (see below). This step
is not needed for BASE to work but may be appreciated by client application developers.

5. Register the service in the <base-dir>/src/webservices/server/META-INF/services.xml
file. This is an XML file listing all services and is needed for BASE (Axis) to pick up the new service
and expose it to the outside world. Below is an example of hoe the Session service is registered.

Web services

268

Example 27.1. How to register a service in services.xml

<service name="Session" scope="application">
 <description>
 This service handles BASE sessions (including login/logout)
 </description>
 <messageReceivers>
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver" />
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
 class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver" />
 </messageReceivers>
 <parameter name="ServiceClass"
 locked="false">net.sf.basedb.ws.server.SessionService</parameter>
</service>

27.3.1. Generate WSDL-files
When a new service is created it can be a good idea to also get a WSDL-file generated when the
web services are compiled. The WSDL-file will be a help for those developers who intend to create
client applications to the new service. It is a one-liner in the Ant build file to do this and not very
complicated. To create a WSDL file for the new web service add a line like the one below to the
webservices.wsdl target. Replace SessionService with the name of the new service class.

<webservices.wsdl serviceClassName="SessionService"/>

27.4. Example web service client (with
download)
We have created a simple Java client that uses web services to get information about projects and
experiments from a BASE server. The example code can also download raw data files attached to
an experiment. The example code can be used as a starting point for developers wanting to do their

own client. You can download a tar file with the source and compiled code3 from the BASE plug-ins
website.

3 http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices

http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.examples.webservices

269

Chapter 28. The BASE API
28.1. The Public API of BASE
Not all public classes and methods in the base-*.jar files and other JAR files shipped with BASE
are considered as Public API. This is important knowledge since we will always try to maintain
backwards compatibility for classes that are part of the public API. For other classes, changes may
be introduced at any time without notice or specific documentation. In other words:

Only use the public API when developing plug-ins and extensions

This will maximize the chance that your code will continue to work with the next BASE release.
If you use the non-public API you do so at your own risk.

See the BASE API javadoc1 for information about what parts of the API that contributes to the
public API. Methods, classes and other elements that have been tagged as @deprecated should be
considered as part of the internal API and may be removed in a subsequent release without warning.

Keeping the backwards compatibility is an aim only. It may not always be possible. See Appendix I,
API changes that may affect backwards compatibility (page 426) to read more about changes
that have been introduced by each release that may affect existing code.

28.1.1. What is backwards compatibility?
There is a great article about this subject on http://wiki.eclipse.org/index.php/Evolving_Java-
based_APIs. This is what we will try to comply with. If you do not want to read the entire article,
here are some of the most important points:

Binary compatibility

For example:

• We cannot change the number or types of parameters to a method or constructor.

• We cannot add or change methods to interfaces that are intended to be implemented by plug-in
or client code.

Contract compatibility

For example:

• We cannot change the implementation of a method to do things differently than before. For exam-
ple, allow null as a return value when it was not allowed before.

Note

Sometimes there is a very fine line between what is considered a bug and what is considered
a feature. For example, if the actual implementation does not do what the javadoc says, do we
change the code or do we change the documentation? This has to be considered from case to
case and depends on the age of the code and if we expect plug-ins and clients to be affected
by it or not.

1 ../../../api/index.html

../../../api/index.html
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
../../../api/index.html

The BASE API

270

Source code compatibility

This is not an important matter and is not always possible to achieve. In most cases, the problems
are easy to fix. Example:

• Adding a class may break a plug-in or client that import classes with .* if the same class name
exists in another package.

28.2. The Data Layer API
This section gives an overview of the entire data layer API. The figure below show how different
modules relate to each other.

The BASE API

271

Figure 28.1. Data layer overview

The BASE API

272

28.2.1. Basic classes and interfaces
This document contains information about the basic classes and interfaces in this package. They
are important since all data-layer classes must inherit from one of the already existing abstract base
classes or implement one or more of the existing interfaces. They contain code that is common to
all classes, for example implementations of the equals() and hashCode() methods or how to link
with the owner of an item.

The BASE API

273

Figure 28.2. Basic classes and interfaces

The BASE API

274

Classes
BasicData

The root class. It overrides the equals(), hashCode() and toString() methods from the Ob-
ject class. It also defines the id and version properties. All data layer classes must inherit
from this class or one of it's subclasses.

OwnedData
Extends the BasicData class and adds an owner property. The owner is a required link to a
UserData object, representing the user that is the owner of the item.

SharedData
Extends the OwnedData class and adds properties (itemKey and projectKey) that holds access
permission information for an item. Access permissions are held in ItemKeyData and/or Pro-
jectKeyData objects. These objects only exists if the item has been shared.

CommonData
This is a convenience class for items that extends the SharedData class and implements the
NameableData and RemoveableData interfaces. This is one of the most common situations.

AnnotatedData
This is a convenience class for items that can be annotated. Annotations are held in Annota-
tionSetData objects. The annotation set only exists if annotations has been created for the item.

Interfaces
IdentifiableData

All items are identifiable, which means that they have a unique id. The id is unique for all items
of a specific type (ie. class). The id is number that is automatically generated by the database
and has no other meaning outside of the application. The version property is used for detecting
and preventing concurrent modifications to an item.

OwnableData
An ownable item is an item which has an owner. The owner is represented as a required link
to a UserData object.

ShareableData
A shareable item is an item which can be shared to other users, groups or projects. Access
permissions are held in ItemKeyData and/or ProjectKeyData objects.

NameableData
A nameable item is an item that has a name (required) and a description (optional). The name
doesn't have to be unique, except in a few special cases (for example, the name of a file).

RemovableData
A removable item is an item that can be flagged as removed. This doesn't remove the information
about the item from the database, but can be used by client applications to hide items that
the user is not interested in. A trashcan function can be used to either restore or permanently
remove items that has the flag set.

SystemData
A system item is an item which has an additional id in the form of string. A system id is required
when we need to make sure that we can get a specific item without knowing the numeric id.
Example of such items are the root user and the everyone group. A system id is generally con-
structed like: net.sf.basedb.core.User.ROOT. The system id:s are defined in the core layer
by each item class.

DiskConsumableData
This interface is used by items which occupies a lot of disk space and should be part of the
quota system, for example files. The required DiskUsageData contains information about the
size, location, owner etc. of the item.

The BASE API

275

AnnotatableData
This interface is used by items which can be annotated. Annotations are name/value pairs that
are attached as extra information to an item. All annotations are contained in an Annotation-
SetData object.

ExtendableData
This interface is used by items which can have extra administrator-defined columns. The func-
tionality is similar to annotations. It is not as flexible, since it is a global configuration, but has
better performance. BASE will generate extra database columns to store the data in the tables
for items that can be extended.

BatchableData
This interface is a tagging interface which is used by items that needs batch functionality in
the core.

RegisteredData
This interface is used by items which registered the date they were created in the database. The
registration date is set at creation time and can't be modified later. Since this didn't exist prior to
BASE 2.10, null values are allowed on all pre-existing items. Note! For backwards compatibility
reasons with existing code in BioMaterialEventData the method name is getEntryDate().

LoggableData
This is a tagging interface that indicates that the DbLogManagerFactory logging implementation
should log changes made to items that implements it.

FileStoreEnabledData
This interface is implemented by all items that can have files with related data attached to them.
The file types that can be used for a specific item are usually determined by the main type, the
subtype or platform.

SubtypableData
This interface should be implemented by all items that can be subtyped. Unless otherwise noted
the subtype is always an optional link to a ItemSubtypeData. item. In the simplest form, the
subtype is a kind of an annotation, but for items that also implements the FileStoreEnabled-
Data interface, the subtype can be used to specify the file types that are applicable for each item.

28.2.2. User authentication and access control
This section gives an overview of user authentication and how groups, roles and projects are used
for access control to items.

The BASE API

276

Figure 28.3. User authentication and access control

The BASE API

277

Users and passwords

The UserData class holds information about users. We keep the passwords in a separate table and
use proxies to avoid loading password data each time a user is loaded to minimize security risks. It
is only if the password needs to be changed that the PasswordData object is loaded. The one-to-one
mapping between user and password is controlled by the password class, but a cascade attribute
on the user class makes sure that the password is deleted when a user is deleted.

Groups, roles, projects and permission template

The GroupData, RoleData and ProjectData classes holds information about groups, roles and
projects respectively. A user may be a member of any number of groups, roles and/or projects. New
users are automatically added as members of all groups and roles that has the default property set.

The membership in a project comes with an attached permission values. This is the highest per-
mission the user has in the project. No matter what permission an item has been shared with the
user will not get higher permission. Groups may be members of other groups and also in projects. A
PermissionTemplateData is just a holder for permissions that users can use when sharing items.
The template is never part of the actual permission control mechanism.

Group membership is always accounted for, but the core only allows one project at a time to be use,
this is the active project. When a project is active new items that are created are automatically
shared according to the settings for the project. There are two cases. If the project has a permission
template, the new item is given the same permissions as the template has. If the project doesn't
have a permission template, the new item is shared to the active project with the permission given
by the autoPermission property. Note that in the first case the new item may or may not be shared
to the active project depending on if the template is shared to the project or not.

Note that the permission template is only used (by the core) when creating new items. The permis-
sions held by the template are copied and when the new item has been saved to the database there
is no longer any reference back to the template that was used to create it. This means that changes
to the template does not affect already existing items and that the template can be deleted without
problems.

Keys

The KeyData class and it's subclasses ItemKeyData, ProjectKeyData and RoleKeyData, are used
to store information about access permissions to items. To get permission to manipulate an item a
user must have access to a key giving that permission. There are three types of keys:

ItemKey
Is used to give a user or group access to a specific item. The item must be a ShareableData
item. The permissions are usually set by the owner of the item. Once created an item key cannot
be changed. This allows the core to reuse a key if the permissions match exactly, ie. for a given
set of users/groups/permissions there can be only one item key object.

ProjectKey
Is used to give members of a project access to a specific item. The item must be a ShareableData
item. Once created a project key cannot be changed. This allows the core to reuse a key if the
permissions match exactly, ie. for a given set of projects/permissions there can be only one
project key object.

RoleKey
Is used to give a user access to all items of a specific type, ie. READ all SAMPLES. The installation
will make sure that there already exists a role key for each type of item, and it is not possible to
add new or delete existing keys. Unlike the other two types this key can be modified.

A role key is also used to assign permissions to plug-ins. If a plug-in has been specified to use
permissions the default is to deny everything. The mapping to the role key is used to grant

The BASE API

278

permissions to the plugin. The granted value gives the plugin access to all items of the related
item type regardless of if the user that is running the plug-in has the permission or not. The
denied values denies access to all items of the related item type even if the logged in user has
the permission. Permissions that are not granted nor denied are checked against the logged in
users regular permissions. Permissions to items that are not linked are always denied.

Permissions

The permission property appearing in many classes is an integer values describing the permission:

Value Permission

1 Read

3 Use

7 Restricted write

15 Write

31 Delete

47 (=32+15) Set owner

79 (=64+15) Set permissions

128 Create

256 Denied

The values are constructed so that READ -> USE -> RESTRICTED_WRITE -> WRITE -> DELETE are
chained in the sense that a higher permission always implies the lower permissions also. The
SET_OWNER and SET_PERMISSION both implies WRITE permission. The DENIED permission is only
valid for role keys, and if specified it overrides all other permissions.

When combining permission for a single item the permission codes for the different paths are OR-ed
together. For example a user has a role key with READ permission for SAMPLES, but also an item key
with USE permission for a specific sample. Of course, the resulting permission for that sample is
USE. For other samples the resulting permission is READ.

If the user is also a member of a project which has WRITE permission for the same sample, the user
will have WRITE permission when working with that project.

The RESTRICTED_WRITE permission is in most cases the same as the WRITE permission. So far
the RESTRICTED_WRITE permission is only given to users to their own UserData object so they
can change their address and other contact information, but not quota, expiration date and other
administrative information.

28.2.3. Reporters
This section gives an overview of reporters in BASE.

The BASE API

279

Figure 28.4. Reporters

Reporters
The ReporterData class holds information about reporters. The externalId is a required property
that must be unique among all reporters. The external ID is the value BASE uses to match reporters
when importing data from files.

The ReporterData is an extendable class, which means that the server administrator can
define additional columns (=annotations) in the reporters table. These are accessed with the
ReporterData.getExtended() and ReporterData.setExtended() methods. See Appendix C, ex-
tended-properties.xml reference (page 409) for more information about this.

The ReporterData is also a batchable class which means that there is no corresponding class in
the core layer. Client applications and plug-ins should work directly with the ReporterData class.
To help manage the reporters there is the Reporter and ReporterBatcher classes. The main reason
for this is to increase the performance and lower the memory usage by bypassing internal caching
in the core and Hibernate. Performance is also increased by the batchers which uses more efficient
SQL against the database than Hibernate.

The lastUpdate property holds the data and time the reporter information was last updated. The val-
ue is managed automatically by the ReporterBatcher class. That goes for lastSource property too,

The BASE API

280

which holds information about where the last update comes from. By default this is set to the name
of the logged in user, but it can be changed by calling ReporterBatcher.setUpdateSource(String
source) before the batcher commits the updates to the database. The source-string should have
the format:

[ITEM_TYPE]:[ITEM_NAME]

where,in the file-case, ITEM_TYPE is File and ITEM_NAME is the file's name.

Reporter lists

Reporter lists can be used to group reporters that are somehow related to each other. This could for
example be a list of interesting reporters found in the analysis of an experiment. Each reporter in the
list may optionally be assigned a score. The meaning of the score value is not interpreted by BASE.

28.2.4. Quota and disk usage
This section gives an overview of quota system in BASE and how the disk usage is kept track of.

Figure 28.5. Quota and disk usage

Quota

The QuotaData holds information about a single quota registration. The same quota may be used by
many different users and groups. This object encapsulates allowed quota values for different types
of quota types and locations. BASE defines several quota types (file, raw data and experiment), and
locations (primary, secondary and offline).

The BASE API

281

The quotaValues property is a map from QuotaIndex to maximum byte values. This map must
contain at least one entry for the total quota at the primary location.

Disk usage

A DiskConsumableData (for example a file) item is automatically linked to a DiskUsageData item.
This holds information about the number of bytes, the location and quota type the item uses. It also
holds information about which user and group (optional) that should be charged for the disk usage.
The user is always the owner of the item.

28.2.5. Client, session and settings
This section gives an overview of client applications, sessions and settings.

The BASE API

282

Figure 28.6. Client, sessions and settings

Clients

The ClientData class holds information about a client application. The externalId property is a
unique identifier for the application. To avoid ID clashes the ID should be constructed in the same
way as Java packages, for example net.sf.basedb.clients.web is the ID for the web client ap-
plication.

A client application doesn't have to be registered with BASE to be able to use it. But we recommend
it since:

The BASE API

283

• The permission system allows an admin to specify exactly which users that may use a specific
application.

• The application can't store any context-sensitive or application-specific settings unless it is reg-
istered.

• The application can store context-sensitive help in the BASE database.

Sessions

A session represents the time between login and logout for a single user. The SessionData object
is entirely managed by the BASE core, and should be considered read-only for client applications.

Settings

There are two types of settings: context-sensitive settings and regular settings. The regular settings
are simple key-value pairs of strings and can be used for almost anything. There are four subtypes:

• Global default settings: Settings that are used by all users and client applications on the BASE
server. These settings are read-only except for administrators. BASE has not yet defined any set-
tings of this type.

• User default settings: Settings that are valid for a single user for any client application. BASE has
not yet defined any settings of this type.

• Client default settings: Settings that are valid for all users using a specific client application. Each
client application is responsible for defining it's own settings. Settings are read-only except for
administrators.

• User client settings: Settings that are valid for a single user using a specific client application.
Each client application is responsible for defining it's own settings.

The context-sensitive settings are designed to hold information about the current status of options
related to the listing of items of a specific type. This includes:

• Current filtering options (as 1 or more PropertyFilterData objects).

• Which columns and direction to use for sorting.

• The number of items to display on each page, and which page that is the current page.

• Simple key-value settings related to a given context.

Context-sensitive settings are only accessible if a client application has been registered. The settings
may be named to make it possible to store several presets and to quickly switch between them. In
any case, BASE maintains a current default setting with an empty name. An administrator may
mark a named setting as public to allow other users to use it.

28.2.6. Files and directories
This section covers the details of the BASE file system.

The BASE API

284

Figure 28.7. Files and directories

The BASE API

285

The DirectoryData class holds information about directories. Directories are organised in the
ususal way as as tree structure. All directories must have a parent directory, except the system-de-
fined root directory.

The FileData class holds information about a file. The actual file contents is stored on disk in
the directory specified by the userfiles setting in base.config. The internalName property is
the name of the file on disk, but this is never exposed to client applications. The filenames and
directories on the disk doesn't correspond to the the filenames and directories in BASE.

The url property is used for file items which are stored in an external location. In this case there
is no local file data on the BASE server.

The location property can take three values:

• 0 = The file is offline, ie. there is no file on the disk

• 1 = The file is in primary storage, ie. it is located on the disk and can be used by BASE

• 2 = The file is in secondary storage, ie. it has been moved to some other place and can't be used
by BASE immediately.

• 3 = The file is an external file whose location is referenced by the url property. If the file is protected
by passwords or certificates the file item may reference a FileServerData object. Note that an
external file in most cases can be used by client applications/plug-ins as if the file was stored
locally on the BASE server.

The action property controls how a file is moved between primary and seconday storage. It can
have the following values:

• 0 = Do nothing

• 1 = If the file is in secondary storage, move it back to the primary storage

• 2 = If the file is in primary storage, move it to the secondary storage

The actual moving between primary and secondary storage is done by an external program. See
the section called “Secondary storage controller” (page 404) and Section 25.6.2, “Secondary file
storage plugins” (page 233) for more information.

The md5 property can be used to check for file corruption when it is moved between primary and
secondary storage or when a user re-uploads a file that has been offline.

BASE can store files in a compressed format. This is handled internally and is not visible to client
applications. The compressed and compressedSize properties are used to store information about
this. A file may always be compressed if the users says so, but BASE can also do this automatically
if the file is uploaded to a directory with the autoCompress flag set or if the file has MIME type
with the autoCompress flag set.

The FileServerData class holds information about an external file server. If the connectionMan-
agerFactory isn't set BASE automatically selects a factory based on the URL of the file. There is
built-in support for HTTP and HTTPS, but it is possible to install extensions for support for other
protocols. The host property can be set to override the host part of the URL from the file. See Sec-
tion 26.8.7, “Connection managers” (page 257) for more information about connection managers.

The username and password properties are used if the server requires the user to be logged in. BASE
has built-in support for Basic and Digest authentication. The serverCertificate can be used with
HTTPS servers that uses a non-trusted certificate to tell BASE to trust the server anyway. In most
cases, this is only needed if the server uses a self-signed certificate, but could, for example, also
be used if a trusted site has forgot to renew an expired certificate. The server certificate should be

The BASE API

286

an X.509 certificate in either binary or text format. The clientCertificate and clientPassword
properties are used for servers that require that users present a valid client certificate before they
are allowed access. The client certificate is usually issued by the server operator and must be in
PKCS #12 format.

The FileTypeData class holds information about file types. It is used only to make it easier for
users to organise their files.

The MimeTypeData is used to register mime types and map them to file extensions. The information
is only used to lookup values when needed. Given the filename we can set the File.mimeType and
File.fileType properties. The MIME type is also used to decide if a file should be stored in a
compressed format or not. The extension of a MIME type must be unique. Extensions should be
registered without a dot, ie html, not .html.

28.2.7. Experimental platforms and item subtypes
This section gives an overview of experimental platforms and how they are used to enable data
storage in files instead of in the database. In some senses item subtypes are related to platforms
so they are also included here.

See also

• Section 28.3.9, “Using files to store data” (page 312)

• Section D.1, “Default platforms and variants installed with BASE” (page 413)

• Section 26.8.8, “Fileset validators” (page 257)

The BASE API

287

Figure 28.8. Experimental platforms and item subtypes

The BASE API

288

Platforms

The PlatformData holds information about a platform. A platform can have one or more
PlatformVariant:s. Both the platform and variant are identified by an external ID that is fixed and
can't be changed. Affymetrix is an example of a platform. If the fileOnly flag is set data for the
platform can only be stored in files and not imported into the database. If the flag is not set data
can be imported into the database. In the latter case, the rawDataType property can be used to lock
the platform to a specific raw data type. If the value is null the platform can use any raw data type.

Each platform and it's variant can be connected to one or more DataFileTypeData items. This item
describes the kind of files that are used to hold data for the platform and/or variant. The file types
are re-usable between different platforms and variants. Note that a file type may be attached to
either only a platform or to a platform with a variant. File types attached to platforms are inherited
by the variants. The variants can only define additional file types, not remove or redefine file types
that has been attached to the platform.

The file type is also identified by a fixed, non-changable external ID. The itemType property tells
us what type of item the file holds data for (ie. array design or raw bioassay). It also links to a
ItemSubtype which is the generic type of data in the file. This allows us to query the database for, as
an example, files with the generic type FileType.RAW_DATA. If we are in an Affymetrix experiment
we will get the CEL file, for another platform we will get another file.

The required flag in PlatformFileTypeData is used to signal that the file is a required file. This
is not enforced by the core. It is intended to be used by client applications for creating a better GUI
and for validation of an experiment.

The allowMultiple flag in PlatformFileTypeData controls if it should be possible to store more
than one file of the given type in file type. Again, this is not enforced by the core, but only a recom-
mendation to client applications. The setting is also used for validation of an experiment.

Item subtypes

The ItemSubtypeData class describes a subtype for a main itemType. In the simplest form the
subtype is a kind of annotation that is used mainly for creating a better user experience. If the
main item type is also implementing the FileStoreEnabledData interface, it is possible to register
associations to the file types that can be used together with a given item subtype. The required
and allowMultiple have are used in the same way as in the PlatformFileTypeData class.

A subtype can be related to other subtypes. This is used to "chain" together groups of item subtypes.
For example, Hybridization is a subtype for PHYSICALBIOASSAY, which is related to the Labeled
extract (EXTRACT) subtype which is related to the Label (TAG) subtype. In addition, there are
also several protocol and hardware subetypes mixed into this. The relationship between subtypes
makes it possible for client applications to filter out unrelated stuff, and to validate experiments.

FileStoreEnabled items and data files

An item must implement the FileStoreEnabledData interface to be able to store data in files
instead of in the database. The interface creates a link to a FileSetData object, which can hold
several FileSetMemberData items. Each member points to specific FileData item.

28.2.8. Parameters
This section gives an overview the generic parameter system in BASE that is used to store annotation
values, plugin configuration values, job parameter values, etc.

The BASE API

289

Figure 28.9. Parameters

The BASE API

290

The parameter system is a generic system that can store almost any kind of simple values (string,
numbers, dates, etc.) and also links to other items. It is, for example, used to store configuration
parameters to plug-ins and jobs as well as annotation values to annotatable items. The Parameter-
ValueData class is an abstract base class that can hold multiple values (all must be of the same
type). Unless only a specific type of values should be stored, this is the class that should be used
when creating references for storing parameter values. It makes it possible for a single relation to
use any kind of values or for a collection reference to mix multiple types of values. A typical use case
maps a Map with the parameter name as the key:

private Map<String, ParameterValueData<?>> configurationValues;
/**
 Link parameter name with it's values.
 @hibernate.map table="`PluginConfigurationValues`" lazy="true" cascade="all"
 @hibernate.collection-key column="`pluginconfiguration_id`"
 @hibernate.collection-index column="`name`" type="string" length="255"
 @hibernate.collection-many-to-many column="`value_id`"
 class="net.sf.basedb.core.data.ParameterValueData"
*/
public Map<String, ParameterValueData<?>> getConfigurationValues()
{
 return configurationValues;
}
void setConfigurationValues(Map<String, ParameterValueData<?>> configurationValues)
{
 this.configurationValues = configurationValues;
}

Now it is possible for the collection to store all types of values:

Map<String, ParameterValueData<?>> config = ...
config.put("names", new StringParameterValueData("A", "B", "C"));
config.put("sizes", new IntegerParameterValueData(10, 20, 30));

// When you later load those values again you have to cast
// them to the correct class.
List<String> names = (List<String>)config.get("names").getValues();
List<Integer> sizes = (List<Integer>)config.get("sizes").getValues();

28.2.9. Annotations
This section gives an overview of how the BASE annotation system works.

The BASE API

291

Figure 28.10. Annotations

The BASE API

292

Annotations

An item must implement the AnnotatableData interface to be able to use the annotation system.
This interface gives a link to a AnnotationSetData item. This class encapsulates all annotations
for the item. There are two types of annotations:

• Primary annotations are annotations that explicitely belong to the item. An annotation set can
contain only one primary annotation of each annotation type. The primary annotation are linked
with the annotations property. This property is a map with an AnnotationTypeData as the key.

• Inherited annotations are annotations that belong to a parent item, but that we want to use on
another item as well. Inherited annotations are saved as references to either a single annotation
or to another annotation set. Thus, it is possible for an item to inherit multiple annotations of
the same annotation type.

The AnnotationData class is also just a placeholder. It connects the annotation set and annotation
type with a ParameterValueData object. This is the object that holds the actual annotation values.

Annotation types

Instances of the AnnotationTypeData class defines the various annotations. It must have a value-
Type property which cannot be changed. The value of this property controls which ParameterVal-
ueData subclass is used to store the annotation values, ie. IntegerParameterValueData, String-
ParameterValueData, etc. The multiplicity property holds the maximum allowed number of values
for an annotation, or 0 if an unlimited number is allowed.

The itemTypes collection holds the codes for the types of items the annotation type can be used on.
This is checked when new annotations are created but already existing annotations are not affected
if the collection is modified.

Annotation types with the protocolParameter flag set are treated a bit differently. They will not show
up as annotations to items with a type found in the itemTypes collection. Instead, a protocol param-
eter should be attached to a protocol. Then, when an item is using that protocol it becomes possible
to add annotation values for the annotation types specified as protocol parameters. It doesn't matter
if the item's type is found in the itemTypes collection or not.

The options collection is used to store additional options required by some of the value types, for
example a max string length for string annotations or the max and min allowed value for integer
annotations.

The enumeration property is a boolean flag indicating if the allowed values are predefined as an
enumeration. In that case those values are found in the enumerationValues property. The actual
subclass is determined by the valueType property.

Most of the other properties are hints to client applications how to render the input field for the
annotation.

Units

Numerical annotation values can have units. A unit is described by a UnitData object. Each unit
belongs to a QuantityData object which defines the class of units. For example, if the quantity is
weight, we can have units, kg, mg, µg, etc. The UnitData contains a factor and offset that relates
all units to a common reference defined by the QuantityData class. For example, 1 meter is the
reference unit for distance, and we have 1 meter * 0.001 = 1 millimeter. In this case, the
factor is 0.001 and the offset 0. Another example is the relationship between kelvin and Celsius,
which is 1 kelvin + 273.15 = 1 °Celsius. Here, the factor is 1 and the offset is +273.15. The
UnitSymbolData is used to make it possible to assign alternative symbols to a single unit. This is
needed to simplify input where it may be hard to know what to type to get m² or °C. Instead, m2
and C can be used as alternative symbols.

The BASE API

293

The creator of an annotation type may select a QuantityData, which can't be changed later, and
a default UnitData. When entering annotation values a user may select any unit for the selected
quantity (unless annotation type owner has limited this by selecting usableUnits). Before the values
are stored in the database, they are converted to the default unit. This makes it possible to compare
and filter on annotation values using different units. For example, filtering with >5mg also finds
items that are annotated with 2g.

The core should automatically update the stored annotation values if the default unit is changed for
an annotation type, or if the reference factor for a unit is changed.

Categories

The AnnotationTypeCategoryData class defines categories that are used to group annotation types
that are related to each other. This information is mainly useful for client applications when dis-
playing forms for annotating items, that wish to provide a clearer interface when there are many
(say 50+) annotations type for an item. An annotation type can belong to more than one category.

28.2.10. Protocols, hardware and software
This section gives an overview of how protocols that describe various processes, such as sampling,
extraction and scanning, are used in BASE.

Figure 28.11. Protocols, hardware and software

The BASE API

294

Protocols

A protocol is something that defines a procedure or recipe for some kind of action, such as sampling,
extraction and scanning. The subtype of the protocol is used to determine what the protocol is used
for. In BASE we only store a short name and description. It is possible to attach a file that provides
a longer description of the procedure.

Parameters

The procedure described by the protocol may have parameters that are set indepentently each time
the protocol is used. It could for example be a temperature, a time or something else. The definition
of parameters is done by creating annotation types and attaching them to the protocol. It is only
possible to attach annotation types which has the protocolParameter property set to true. The same
annotation type can be used for more than one protocol, but only do this if the parameters actually
has the same meaning.

Hardware and software

BASE is pre-installed with a set of subtypes for hardware and software. They are typically used to
filter the registered hardware and software depending on what a user is doing. For example, when
adding raw data to BASE a user can select a scanner. The GUI will display the hardware that has
been registered as scanner subtype. Other subtypes are hybridization station and print robot.
An administrator may register more subtypes.

28.2.11. Plug-ins, jobs and job agents
This section gives an overview of plug-ins, jobs and job agents.

See also

• Section 21.1, “Managing plug-ins and extensions” (page 163)

• Section 20.3, “Installing job agents” (page 154)

The BASE API

295

Figure 28.12. Plug-ins, jobs and job agents

The BASE API

296

Plug-ins

The PluginDefinitionData holds information of the installed plugin classes. Much of the infor-
mation is copied from the plug-in itself from the About object and by checking which interfaces it
implements.

There are five main types of plug-ins:

• IMPORT (mainType = 1): A plug-in that imports data to BASE.

• EXPORT (mainType = 2): A plug-in that exports data from BASE.

• INTENSITY (mainType = 3): A plug-in that calculates intensity values from raw data.

• ANALYZE (mainType = 4): A plug-in that analyses data.

• OTHER (mainType = 5): Any other plug-in.

A plug-in may have different configurations. The flags supportsConfigurations and requiresConfig-
uration are used to specify if a plug-in must have or can't have any configurations. Configuration
parameter values are versioned. Each time anyone updates a configuration the version number is
increased and the parameter values are stored as a new entity. This is required because we want
to be able to know exactly which parameters a job were using when it was executed. When a job is
created we also store the parameter version number (JobData.parameterVersion). This means that
even if someone changes the configuration later we will always know which parameters the job used.

The PluginTypeData class is ued to group plug-ins that share some common functionality, by
implementing additional (optional) interfaces. For example, the AutoDetectingImporter should be
implemented by import plug-ins that supports automatic detection of file formats. Another example
is the AnalysisFilterPlugin interface which should be implemented by all analysis plug-ins that
only filters data.

Jobs

A job represents a single invokation of a plug-in to do some work. The JobData class holds informa-
tion about this. A job is usuallu executed by a plug-in, but doesn't have to be. The status property
holds the current state of a job.

• UNCONFIGURED (status = 0): The job is not yet ready to be executed.

• WAITING (status = 1): The job is waiting to be executed.

• PREPARING (status = 5): The job is about to be executed but hasn't started yet.

• EXECUTING (status = 2): The job is currently executing.

• ABORTING (status = 6): The job is executing but an ABORT signal has been sent requesting it
to abort and finish.

• DONE (status = 3): The job finished successfully.

• ERROR (status = 4): The job finished with an error.

Job agents

A job agent is a program running on the same or a different server that is regularly checking for
jobs that are waiting to be executed. The JobAgentData holds information about a job agent and

The BASE API

297

the JobAgentSettingsData links the agent with the plug-ins the agent is able to execute. The job
agent will only execute jobs that are owned by users or projects that the job agent has been shared
to with at least use permission. The priorityBoost property can be used to give specific plug-ins
higher priority. Thus, for a job agent it is possible to:

• Specify exactly which plug-ins it will execute. For example, it is possible to dedicate one agent to
only run one plug-in.

• Give some plug-ins higher priority. For example a job agent that is mainly used for importing data
should give higher priority to all import plug-ins. Other types of jobs will have to wait until there
are no more data to be imported.

• Specify exactly which users/groups/projects that may use the agent. For example, it is possible
to dedicate one agent to only run jobs for a certain project.

The BASE API

298

28.2.12. Biomaterial LIMS

Figure 28.13. Biomaterial LIMS

The BASE API

299

Biomaterials

There are three main types of biomaterials: BioSourceData, SampleData and ExtractData. All
types of are derived from the base class BioMaterialData. The reason for this is that they all share
common functionality such as pooling and events. By using a common base class we do not have
to create duplicate classes for keeping track of events and parents.

The BioSourceData is the simplest of the biomaterials. It cannot have parents and can't participate
in events. It's only used as a (non-required) parent for samples.

The MeasuredBioMaterialData class is used as a base class for the other biomaterial types. It
introduces quantity measurements and can store original and remaining quantities. They are both
optional. If an original quantity has been specified the core automatically calculates the remaining
quantity based on the events a biomaterial participates in.

All measured biomaterial have at least one event associated with them, the creation event, which
holds information about the creation of the biomaterial. A measured biomaterial can be created in
three ways:

• From a single item of the same type or the parent type. Biosource is the parent type of samples and
sample is the parent type of extracts. The parentType property must be set to the correct parent
type and the parent property is set to point to the parent item. The parent information is also
always duplicated in the sources collection of the BioMaterialEventData object representing
the creation event. It is the responsibility of the core to make sure that everything is properly
synchronized and that remaining quantities are calculated.

• From multiple items of the same type, i.e pooling. In this case the parentType property is set, but
the parent property is null. All source biomaterials are contained in the sources collection. The
core is still responsible for keeping everything synchronized and to update remaining quantities.

• As a standalone biomaterial without parents. The parentType property should be null, as should
the parent property and the sources collection.

Bioplates and plate types

Biomaterial (except biosource) may optionally be placed on BioPlateData:s. A bioplate is something
that collects multiple biomaterial as a unit. A bioplate typically has a PlateGeometryData that
determines the number of locations on the plate (BioWellData). A single well can hold a single
biomaterial at a time.

The bioplate must be of a specific BioPlateTypeData. The type can be used to put limitations on
how the plate can be used. For example, it can be limited to a single type of biomaterial. It is also
possible to lock wells so that the biomaterial in them can't be changed. Supported lock modes are:

• Unlocked: Wells are unlocked and the biomaterial may be changed any number of times.

• Locked-after-move: The well is locked after it has been used one time and the biomaterial that
was put in it has been moved to another plate.

• Locked-after-add: The well is locked after biomaterial has been put into it. It is not possible to
remove the biomaterial.

• Locked-after-create: The well is locked once it has been created. Biomaterial must be put into
wells before the plate is saved to the database.

Biomaterial and plate events

An event represents something that happened to one or more biomaterials, for example the creation
of another biomaterial. The BioMaterialEventData holds information about entry and event dates,

The BASE API

300

protocols used, the user who is responsible, etc. There are three types of events represented by the
eventType property.

1. Creation event: This event represents the creation of a (measured) biomaterial. The sources col-
lection contains information about the biomaterials that were used to create the new biomaterial.
All sources must be of the same type. There can only be one source of the parent type. These
rules are maintained by the core.

2. Bioassay event: This event represents the creation of a bioassay. This event type is needed be-
cause we want to keep track of quantities for extracts. This event has a PhysicalBioAssayData as
a product instead of a biomaterial. The sources collection can only contain extracts. If the bioassay
can hold extracts in multiple positions the position property in BioMaterialEventSourceData
can be used to track which extract that was put in each position. It is allowed to put multiple
extracts in the same position, but then the usually need to use different TagData items. However,
this is not enforced by the core.

3. Other event: This event represents some other important information about a single biomaterial
that affected the remaining quantity. This event type doesn't have any sources.

It is also possible to register events that applies to one or more bioplates using the BioPlateEvent-
Data class. The BioPlateEventParticipantData class holds information about each plate that is
part of the event. The role property is a textual description of what happened to the plate. Eg. a move
event, may have one source plate and one destination plate. It is recommended (but not required)
that all biomaterial that are affected by the plate event are linked via a BioMaterialEventData to a
BioPlateEventParticipantData. This will make it easier to keep track of the history of individual
biomaterial items. Biomaterial events that are linked in this way are also automatically updated if
the bioplate event is modified (eg. selecting a protocol, event date, etc.).

The BASE API

301

28.2.13. Array LIMS - plates
Figure 28.14. Array LIMS - plates

Plates

The PlateData is the main class holding information about a single plate. The associated Plate-
GeometryData defines how many rows and columns there are on a plate. Since this information is
used to create wells, and for various other checks it is not possible to change the number of rows
or columns once a geometry has been created.

All plates must have a PlateTypeData which defines the geometry and a set of event types (see
below).

If the destroyed flag of a plate is set it is not allowed to use the plate for a plate mapping or to create
array designs. However, it is possible to change the flag to not destroyed.

The barcode is intended to be used as an external identifier of the plate. But, the core doesn't care
about the value or if it is unique or not.

The BASE API

302

Plate events

The plate type defines a set of PlateEventTypeData objects, each one represening a particular
event a plate of this type usually goes trough. For a plate of a certain type, it is possible to attach
exactly one event of each event type. The event type defines an optional protocol type, which can be
used by client applications to filter a list of protocols for the event. The core doesn't check that the
selected protocol for an event is of the same protocol type as defined by the event type.

The ordinal value can be used as a hint to client applications in which order the events actually
are performed in the lab. The core doesn't care about this value or if several event types have the
same value.

Plate mappings

A plate can be created either from scratch, with the help of the information in a PlateMappingData,
from a set of parent plates. In the first case it is possible to specify a reporter for each well on the
plate. In the second case the mapping code creates all the wells and links them to the parent wells
on the parent plates. Once the plate has been saved to the database, the wells cannot be modified
(because they are used downstream for various validation, etc.)

The details in a plate mapping are simply coordinates that for each destination plate, row and column
define a source plate, row and column. It is possible for a single source well to be mapped to multiple
destination wells, but for each destination well only a single source well can be used.

The BASE API

303

28.2.14. Array LIMS - arraysFigure 28.15. Array LIMS - arrays

The BASE API

304

Array designs

Array designs are stored in ArrayDesignData objects and can be created either as standalone
designs or from plates. In the first case the features on an array design are described by a re-
porter map. A reporter map is a file that maps a coordinate (block, meta-grid, row, column), po-
sition or an external ID on an array design to a reporter. Which method to use is given by the
ArrayDesign.featureIdentificationMethod property. The coordinate system on an array design is di-
vided into blocks. Each block can be identified either by a blockNumber or by meta coordinates. This
information is stored in ArrayDesignBlockData items. Each block contains several FeatureData
items, each one identified by a row and column coordinate. Platforms that doesn't divide the array
design into blocks or doesn't use the coordinate system at all must still create a single super-block
that holds all features.

Array designs that are created from plates use a print map file instead of a reporter map. A print map
is similar to a plate mapping but maps features (instead of wells) to wells. The file should specifify
which plate and well a feature is created from. Reporter information will automatically be copied
by BASE from the well.

It is also possible to skip the importing of features into the database and just keep the data in the
orginal files instead. This is typically done for Affymetrix CDF files.

Array slides

The ArraySlideData represents a single array. Arrays are usually printed several hundreds in a
batch, represented by a ArrayBatchData item. The batchIndex is the ordinal number of the array
in the batch. The barcode can be used as a means for external programs to identify the array. BASE
doesn't care if a value is given or if they are unique or not. If the destroyed flag is set it prevents a
slide from beeing used by a hybridization.

The BASE API

305

28.2.15. Bioassays and raw data

Figure 28.16. Bioassays and raw data

The BASE API

306

Physical bioassays

A PhysicalBioAssayData item connect the array slides from the Array LIMS part with extracts
from the biomaterials part. The creationEvent is used to register which extracts that were used on
the bioassay. The relation to slides is a one-to-one relation. A slide can only be used on a single
physical bioassay and a bioassay can only use a single slide. The relation is optional from both sides.

Further processing of the bioassay is registered as a series of DerivedBioAssayData items. For
microarray experiments the first step is typically a scanning of the hybridization. Information about
the software/hardware and protocol used can be registered. Any data files generated by the process
can be registered with the FileSetData item. If more than one processsing step is required child
derived bioassays can be created that descrive each additional step.

If the root physical bioassay has multiple extracts in multiple positions, the extract property of a
derived bioassay is used to link with the extract that the specific derived bioassay represents. If the
link is null the derived bioassay represents all extracts on the physical bioassay.

Raw data

A RawBioAssayData object represents the raw data that is produced by analysing the data from the
physical bioassay. You may register which software that was used, the protocol and any parameters
(through the annotation system).

Files with the analysed data values can be attached to the associated FileSetData object. The
platform and, optionally, the variant has information about the file types that can be used for that
platform. If the platform file types support metadata extraction, headers, the number of spots, and
other information may be automatically extracted from the raw data file(s).

If the platform support it, raw data can also be imported into the database. This is handled by
batchers and RawData objects. Which table to store the data in depends on the rawDataType prop-
erty. The properties shown for the RawData class in the diagram are the mandatory properties. Each
raw data type defines additional properties that are specific to that raw data type.

Spot images

Spot images can be created if you have the original image files. BASE can use 1-3 images as sources
for the red, green and blue channel respectively. The creation of spotimages requires that x and y
coordinates are given for each raw data spot. The scaling and offset values are used to convert the
coordinates to pixel coordinates. With this information BASE is able to cut out a square from the
source images that, theoretically, contains a specific spot and nothing else. The spot images are
gamma-corrected independently and then put together into PNG images that are stored in a zip file.

The BASE API

307

28.2.16. Experiments and analysis

Figure 28.17. Experiments

Experiments

The ExperimentData class is used to collect information about a single experiment. It links to any
number of RawBioAssayData items, which must all be of the same RawDataType.

Annotation types that are needed in the analysis must connected to the experiment as experimental
factors and the annotation values should be set on or inherited by each raw bioassay that is part
of the experiment.

The directory connected to the experiment is the default directory where plugins that generate files
should store them.

The BASE API

308

Bioassay sets, bioassays and transformations

Each line of analysis starts with the creation of a root BioAssaySetData, which holds the intensities
calculated from the raw data. A bioassayset can hold one intensity for each channel. The number of
channels is defined by the raw data type. For each raw bioassay used a BioAssayData is created.

Information about the process that calculated the intensities are stored in a TransformationData
object. The root transformation links with the raw bioassays that are used in this line of analysis
and to a JobData which has information about which plug-in and parameters that was used in
the calculation.

Once the root bioassayset has been created it is possible to again apply a transformation to it. This
time the transformation links to a single source bioassayset instead of the raw bioassays. As before,
it still links to a job with information about the plug-in and parameters that does the actual work.
The transformation must make sure that new bioassays are created and linked to the bioassays in
the source bioassayset. This above process may be repeated as many times as needed.

Data to a bioassay set can only be added to it before it has been committed to the database. Once the
transaction has been committed it is no longed possible to add more data or to modify existing data.

Virtual databases, datacubes, etc.

The above processes requires a flexible storage solution for the data. Each experiment is related to
a VirtualDb object. This object represents the set of tables that are needed to store data for the
experiment. All tables are created in a special part of the BASE database that we call the dynamic
database. In MySQL the dynamic database is a separate database, in Postgres it is a separate
schema.

A virual database is divided into data cubes. A data cube can be seen as a three-dimensional object
where each point can hold data that in most cases can be interpreted as data for a single spot
from an array. The coordinates to a point is given by layer, column and position. The layer and
column coordinates are represented by the DataCubeLayerData and DataCubeColumnData objects.
The position coordinate has no separate object associated with it.

Data for a single bioassay set is always stored in a single layer. It is possible for more than one
bioassay set to use the same layer. This usually happens for filtering transformations that doesn't
modify the data. The filtered bioassay set is then linked to a DataCubeFilterData object, which
has information about which data points that passed the filter.

All data for a bioassay is stored in a single column. Two bioassays in different bioassaysets (layers)
can only have the same column if one is the parent of the other.

The position coordinate is tied to a reporter.

A child bioassay set may use the same data cube as it's parent bioassay set if all of the following
conditions are true:

• All positions are linked to the same reporter as the positions in the parent bioassay set.

• All data points are linked to the same (possible many) raw data spots as the corresponding data
points in the parent bioassay set.

• The bioassays in the child bioassay set each have exactly one parent in the parent bioassay set.
No parent bioassay may be the parent of more than one child bioassay.

If any of the above conditions are not true, a new data cube must be created for the child bioassay set.

The BASE API

309

The dynamic database

Figure 28.18. The dynamic database

Each virtual database consists of several tables. The tables are dynamically created when needed.
For each table shown in the diagram the # sign is replaced by the id of the virtual database object
at run time.

There are no classes in the data layer for these tables and they are not mapped with Hibernate.
When we work with these tables we are always using batcher classes and queries that works with
integer, floats and strings.

The D#Spot table

This is the main table which keeps the intensities for a single spot in the data cube. Extra values
attached to the spot are kept in separate tables, one for each type of value (D#SpotInt, D#SpotFloat
and D#SpotString).

The D#Pos table

This table stores the reporter id for each position in a cube. Extra values attached to the position
are kept in separate tables, one for each type of value (D#PosInt, D#PosFloat and D#PosString).

The BASE API

310

The D#Filter table

This table stores the coordinates for the spots that remain after filtering. Note that each filter is
related to a bioassayset which gives the cube and layer values. Each row in the filter table then adds
the column and position allowing us to find the spots in the D#Spot table.

The D#RawParents table

This table holds mappings for a spot to the raw data it is calculated from. We don't need the layer
coordinate since all layers in a cube must have the same mapping to raw data.

The BASE API

311

28.2.17. Other classes

Figure 28.19. Other classes

The BASE API

312

28.3. The Core API
This section gives an overview of various parts of the core API.

28.3.1. Authentication and sessions
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/core/authentication.html

28.3.2. Access permissions
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/core/accesspermissions.html

28.3.3. Data validation
TODO

28.3.4. Transaction handling
TODO

28.3.5. Create/read/write/delete operations
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/core/itemhandling.html

28.3.6. Batch operations
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/core/batchprocessing.html

28.3.7. Quota
TODO

28.3.8. Plugin execution / job queue
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/core/plugins.html

28.3.9. Using files to store data
BASE has support for storing data in files instead of importing it into the database. Files can be
attached to any item that implements the FileStoreEnabled interface. For example, RawBioAssay,
and ArrayDesign and a few other classes. The ability to store data in files is not a replacement for

http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/authentication.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/authentication.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/accesspermissions.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/accesspermissions.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/itemhandling.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/itemhandling.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/batchprocessing.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/batchprocessing.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/plugins.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/core/plugins.html

The BASE API

313

storing data in the database. It is possible (for some platforms/raw data types) to have data in files
and in the database at the same time. There are three cases:

• Data in files only

• Data in the database only

• Data in both files and in the database

Not all three cases are supported for all types of data. This is controlled by the Platform class,
which may disallow that data is stored in the database. To check this call Platform.isFileOnly()
and/or Platform.getRawDataType(). If the isFileOnly() method returns true, the platform
can't store data in the database. If the value is false more information can be obtained by calling
getRawDataType(), which may return:

• null: The platform can store data with any raw data type in the database.

• A RawDataType that has isStoredInDb() == true: The platform can store data in the database
but only data with the specified raw data type.

• A RawDataType that has isStoredInDb() == false: The platform can't store data in the
database.

Some FileStoreEnabled items doesn't have a platform (for example, DerivedBioAssay). In this
case, the file storage ability is controlled by the subtype of the item. See getDataFileTypes()
method in the ItemSubtype class.

For backwards compatibility reasons, each Platform that can only store data in files will cre-
ate "virtual" raw data type objects internally. These raw data types all return false from the
RawDataType.isStoredInDb() method. They also have a back-link to the platform/variant that
created it: RawDataType.getPlatform() and RawDataType.getVariant(). These two methods
will always return null when called on a raw data type that can be stored in the database.

See also

• Section 28.2.7, “Experimental platforms and item subtypes” (page 286)

• Section 26.8.8, “Fileset validators” (page 257)

• Section D.1, “Default platforms and variants installed with BASE” (page 413)

The BASE API

314

Diagram of classes and methods

Figure 28.20. Store data in files

The BASE API

315

This is rather large set of classes and methods. The ultimate goal is to be able to create links be-
tween a FileStoreEnabled item and File items and to provide some metadata about the files. The
FileStoreUtil class is one of the most important ones. It is intended to make it easy for plug-in
(and other) developers to access the files without having to mess with platform or file type objects.
The API is best described by a set of use-case examples.

Use case: Asking the user for files for a given item

A client application must know what types of files it makes sense to ask the user for. In some cases,
data may be split into more than one file so we need a generic way to select files.

Given that we have a FileStoreEnabled item we want to find out which DataFileType items that
can be used for that item. The Base.getDataFileTypes() can be used for this. You'll need to supply
information about the platform, variant and subtype of the item. The method will create a query
that returns a list of DataFileType items, each one representing a specific file type that we should
ask the user about. Examples:

1. The Affymetrix platform defines CEL as a raw data file and CDF as an array design (reporter
map) file. If we have a RawBioAssay the query will only return the CEL file type and the client
can ask the user for a CEL file.

2. The Generic platform defines PRINT_MAP and REPORTER_MAP for array designs. If we have an
ArrayDesign the query will return those two items.

3. The Scan subtype defines MICROARRAY_IMAGE for derived bioassays.

It might also be interesting to know the currently selected file for each file type and if the file is
required and if multiple files are allowed. Here is a simple code example that may be useful to
start from:

DbControl dc = ...
FileStoreEnabled item = ...
Platform platform = item.getPlatform();
PlatformVariant variant = item.getVariant();
Itemsubtype subtype = item instanceof Subtypable ?
 ((Subtypable)item).getItemSubtype() : null;

// Get list of DataFileTypes used by the platform
ItemQuery<DataFileType> query =
 Base.getDataFileTypes(item.getType(), item, platform, variant, subtype);
List<DataFileType> types = query.list(dc);

// Always check hasFileSet() method first to avoid
// creating the file set if it doesn't exists
FileSet fileSet = item.hasFileSet() ?
 null : item.getFileSet();

for (DataFileType type : types)
{
 // Get the current file, if any
 FileSetMember member = fileSet == null || !fileSet.hasMember(type) ?
 null : fileSet.getMember(type);
 File current = member == null ?
 null : member.getFile();

 // Check if a file is required by the platform/subtype
 PlatformFileType pft = platform == null ?
 null : platform.getFileType(type, variant, false);
 ItemSubtypeFileType ift = subtype == null ?
 null : subtype.getAssociatedDataFileType(type, false);
 boolean isRequired = pft == null ?
 false : pft.isRequired();
 isRequired |= ift == null ?
 false : ift.isRequired();

The BASE API

316

 // Now we can do something with this information to
 // let the user select a file ...
}

Also remember to catch PermissionDeniedException

The above code may look complicated, but this is mostly because of all checks for null values.
Remember that many things are optional and may return null. Another thing to look out for
is PermissionDeniedException:s. The logged in user may not have access to all items. The
above example doesn't include any code for this since it would have made it too complex.

Use case: Link, validate and extract metadata from the selected
files

When the user has selected the file(s) we must store the links to them in the database. This is done
with a FileSet object. A file set can contain any number of files. Call FileSet.setMember() or
FileSet.addMember() to store a file in the file set. If a file already exists for the given file type
it is replaced if the setMember method is called. The following program example assumes that we
have a map where File:s are related to DataFileType:s. When all files have been added we call
FileSet.validate() to validate the files and extract metadata.

DbControl dc = ...
FileStoreEnabled item = ...
Map<DataFileType, File> files = ...

// Store the selected files in the fileset
FileSet fileSet = item.getFileSet();
for (Map.Entry<DataFileType, File> entry : files)
{
 DataFileType type = entry.getKey();
 File file = entry.getValue();
 fileSet.setMember(type, file);
}

// Validate the files and extract metadata
fileSet.validate(dc);

Validation and extraction of metadata is important since we want data in files to be equivalent
to data in the database. The validation and metadata extraction is initiated by the core when the
FileSet.validate() is called. The validation and metadata extraction is handled by extensions so
the actual outcome depends on what has been installed on the BASE server.

Note

The FileSet.validate() method doesn't throw any exceptions. Instead, all validation errors
are returned a list of Throwable:s. The validation result is also stored for each file and can be
access with FileSetMember.isValid() and FileSetMember.getErrorMessage().

Here is the general outline of what is going on in the core:

1. The core calls the main ExtensionsManager and initiates the action factory for all file set validator
extensions.

2. After inspecting the current item and file set, the factories create one or more
ValidationAction:s.

3. For each file in the file set, the ValidationAction.acceptFile() method is called on each
action, which is supposed to either accept or deny validation of the file.

4. If the file is accepted the ValidationAction.validateAndExtractMetadata() method is called.

The BASE API

317

Only one instance of each validator class is created

The validation is not done until all files have been added to the fileset. If the same validator is
used for more than one file, the same instance is reused. Eg. the acceptFile() is called one
time for each file. Depending on the return value, the validateAndExtractMetadata() may
be called either immediately or not until all files have been processed.

Use case: Import data into the database

This should be done by existing plug-ins in the same way as before. A slight modification is needed
since it is good if the importers are made aware of already selected files in the FileSet to provide
good default values. The FileStoreUtil class is very useful in cases like this:

RawBioAssay rba = ...
DbControl dc = ...

// Get the current raw data file, if any
List<File> rawDataFiles =
 FileStoreUtil.getGenericDataFiles(dc, rba, FileType.RAW_DATA);
File defaultFile = rawDataFiles.size() > 0 ?
 rawDataFiles.get(0) : null;

// Create parameter asking for input file - use current as default
PluginParameter<File> fileParameter = new PluginParameter<File>(
 "file",
 "Raw data file",
 "The file that contains the raw data that you want to import",
 new FileParameterType(defaultFile, true, 1)
);

An import plug-in should also save the file that was used to the file set:

RawBioassay rba = ...
// The file the user selected to import from
File rawDataFile = (File)job.getValue("file");

// Save the file to the fileset. The method will check which file
// type the platform uses as the raw data type. As a fallback the
// GENERIC_RAW_DATA type is used
FileStoreUtil.setGenericDataFile(dc, rba, FileType.RAW_DATA,
 DataFileType.GENERIC_RAW_DATA, rawDataFile);

Use case: Using raw data from files in an experiment

Just as before, an experiment is still locked to a single RawDataType. This is a design issue that
would break too many things if changed. If data is stored in files the experiment is also locked to a
single Platform. This has been designed to have as little impact on existing plug-ins as possible.
In most cases, the plug-ins will continue to work as before.

A plug-in (using data from the database that needs to check if it can be used within an experiment
can still do:

Experiment e = ...
RawDataType rdt = e.getRawDataType();
if (rdt.isStoredInDb())
{
 // Check number of channels, etc...
 // ... run plug-in code ...
}

A newer plug-in which uses data from files should do:

The BASE API

318

Experiment e = ...
DbControl dc = ...
RawDataType rdt = e.getRawDataType();
if (!rdt.isStoredInDb())
{
 // Check that platform/variant is supported
 Platform p = rdt.getPlatform(dc);
 PlatformVariant v = rdt.getVariant(dc);
 // ...

 // Get data files
 File aFile = FileStoreUtil.getDataFile(dc, ...);

 // ... run plug-in code ...
}

28.3.10. Sending signals (to plug-ins)
BASE has a simple system for sending signals between different parts of a system. This signalling
system was initially developed to be able to kill plug-ins that a user for some reason wanted to abort.
The signalling system as such is not limited to this and it can be used for other purposes as well.
Signals can of course be handled internally in a single JVM but also sent externally to other JVM:s
running on the same or a different computer. The transport mechanism for signals is decoupled
from the actual handling of them. If you want to, you could implement a signal transporter that
sends signal as emails and the target plug-in would never know.

The remainder of this section will focus mainly on the sending and transportation of signals. For
more information about handling signals on the receiving end, see Section 25.2.3, “Abort a running
a plug-in” (page 217).

The BASE API

319

Diagram of classes and methods

Figure 28.21. The signalling system

The signalling system is rather simple. An object that wish to receieve signals must implement the
SignalTarget. It's only method is getSignalHandler(). A SignalHandler is an object that knows
what to do when a signal is delivered to it. The target object may implement the SignalHandler
itself or use one of the existing handlers.

The difficult part here is to be aware that a signal is usually delivered by a separate thread. The
target object must be aware of this and know how to handle multiple threads. As an example we can
use the ThreadSignalHandler which simply calls Thread.interrupt() to deliver a signal. The
target object that uses this signal handler must know that it should check Thread.interrupted()
at regular intervals from the worker thread. If that method returns true, it means that the ABORT
signal has been delivered and the main thread should clean up and exit as soon as possible.

Even if a signal handler could be given directly to the party that may be interested in sending a signal
to the target this is not recommended. This would only work when sending signals within the same

The BASE API

320

virtual machine. The signalling system includes SignalTransporter and SignalReceiver objects
that are used to decouple the sending of signals with the handling of signals. The implementation
usually comes in pairs, for example SocketSignalTransporters and SocketSignalReceiver.

Setting up the transport mechanism is usually a system responsibility. Only the system know what
kind of transport that is appropriate for it's current setup. Ie. should signals be delievered by TCP/IP
sockets, only internally, or should a delivery mechanism based on web services be implemented?
If a system wants to receive signals it must create an appropriate SignalReceiver object. Within
BASE the internal job queue set up it's own signalling system that can be used to send signals (eg.
kill) running jobs. The job agents do the same but uses a different implementation. See the section
called “Internal job queue section” (page 403) for more information about how to configure the
internal job queue's signal receiver. In both cases, there is only one signal receiver instance active
in the system.

Let's take the internal job queue as an example. Here is how it works:

• When the internal job queue is started, it will also create a signal receiver instance according to
the settings in base.config. The default is to create LocalSignalReceiver which can only be
used inside the same JVM. If needed, this can be changed to a SocketSignalReceiver or any
other user-provided implementation.

• When the job queue has found a plug-in to execute it will check if it also imple-
ments the SignalTarget interface. If it does, a signal handler is created and reg-
istered with the signal receiver. This is actually done by the BASE core by calling
PluginExecutionRequest.registerSignalReceiver() which also makes sure that the the ID
returned from the registration is stored in the database together with the job item representing
the plug-in to execute.

• Now, when the web client see's a running job which has a non-empty signal transporter prop-
erty, the Abort button is activated. If the user clicks this button the BASE core uses the in-
formation in the database to create SignalTransporter object. This is simply done by calling
Job.getSignalTransporter(). The created signal transporter knows how to send a signal to the
signal receiver it was first registered with. When the signal arrives at the receiver it will find the
handler for it and call SignalHandler.handleSignal(). This will in it's turn trigger some action
in the signal target which soon will abort what it is doing and exit.

28.4. The Query API
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/query/index.html

28.5. The Dynamic API
This documentation is only available in the old format which may not be up-to-date with
the current implementation. See http://base.thep.lu.se/chrome/site/doc/historical/development/
overview/dynamic/index.html

28.6. The Extensions API

28.6.1. The core part
The Extensions API is divided into two parts. A core part and a web client specific part. The core
part can be found in the net.sf.basedb.util.extensions package and it's sub-packages, and consists
of two sub-parts:

http://base.thep.lu.se/chrome/site/doc/historical/development/overview/query/index.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/query/index.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/dynamic/index.html
http://base.thep.lu.se/chrome/site/doc/historical/development/overview/dynamic/index.html

The BASE API

321

• An ExtensionsManager that keeps track of the JAR files on the file system containing extensions
code. The manager can detect new, updated and deleted files and is used to load metadata infor-
mation about the extensions and register them in the Registry so that they can be used. The
manager is also used to install plug-ins.

• A set of interface definitions which forms the core of the Extensions API. The interfaces defines,
for example, what an Extension is, what an ActionFactory should do and a few other things.

Let's start by looking at the extensions manager and related classes.

The BASE API

322

Figure 28.22. The extensions manager

The BASE API

323

The BASE application is using a single manager and a single registry (handled by the Application)
class. The manager has been configured to look for extensions and plug-ins in the directory specified
by the plugins.dir setting in base.config. Theoretically, a single manager can handle multiple
directories, but we do not use that feature. The BASE core also include some special files that are
added with the addURI() method. They contain definitions for the core extensions and core plug-ins
and are shipped as XML files that reside inside the BASE core JAR files.

The ExtensionsManager.scanForChanges() method is called to initiate a check for new, updated
and deleted files. The manager uses the XmlLoader to find information about each JAR or XML file
it find in the directory. After the scan, the ExtensionsManager.getFiles() method can be used
to find more information about each individual file, for example, if it is a new or modified file, if
it contains valid extension definitions and information about the author, etc. This information is
used by the installation wizard in the web client to display a dialog were the user can select which
extensions to intall. See Figure 21.2, “Extensions and plug-ins installation wizard” (page 165). Note
that no installation or other actions take place at this stage.

The ExtensionsManager.processFiles() method is called to actually do something. It needs
an ExtensionsFileProcessor implementation as an argument. As you can see in the dia-
gram above there are multiple implementations (all are not shown in the diagram), each with a
very specific task. A processor is usually also paired with a filter to target it at files that ful-
fil some criteria, for example, only at valid extension files that has been updated. Typically, the
ExtensionsManager.processFiles() method need to be called multiple times with different pro-
cessor implementations to perform a full installation of an extension or plug-in. Here is a list of the
various processors currently in use in BASE.

RegisterExtensionsProcessor
Is used to register extensions with the registry. Can be paired with different filters depending on
when it is used. At BASE startup an InstalledFilter is used so that only installed extensions
are registered.

UnregisterExtensionsProcessor
Is used to unregister extensions when a file has been deleted. This should always be paired with
for example, a DeletedFilter.

UnregisterExtensionsProcessor
Is used to unregister extensions when a file has been deleted. This should always be paired with
for example, a DeletedFilter.

ExtractResourcesProcessor
Is used to extract files from the JAR file to a local directory. This is currently used by the web
client to extract JSP files, images, etc. that are needed by web client extensions.

DeleteResourcesProcessor
The opposite of ExtractResourcesProcessor.

PluginInstallationProcessor
Is used to install and register plug-ins.

DisablePluginsProcessor
Is used to disable plug-ins from extensions that have been removed.

MarkAsProcessedProcessor
This is usually the final processor that is called and reset the timestamp on all processed files
so that the next time ExtensionsManger.scanForChanges() is called it will know what has
been modified.

Note

This list contains the core processors only. The web client part is using some additional pro-
cessors to perform, for example, servlet registration.

The BASE API

324

The result of the processing can be collected with a ProcessResults object and is then displayed to
the user as in Figure 21.3, “Extensions and plug-ins installation results” (page 166). All of the above
is only used when BASE is starting up and initializing the extensions system or when the server
administrator is performing a manual installation or update. The next diagram shows the part of
the extensions system that is used when actually using the extensions for what they are intended
to do (the web client adds some extra features to this as well, but that is discussed later).

The BASE API

325

Figure 28.23. The main Extensions API

The BASE API

326

The Registry is one of the main classes in the extension system. All extension points and extensions
must be registered before they can be used. Typically, you will first register extension points and
then extensions, beacuse an extension can't be registered until the extension point it is extending
has been registered.

An ExtensionPoint is an ID and a definition of an Action class. The other options (name, descrip-
tion, renderer factory, etc.) are optional. An Extension that extends a specific extension point must
provide an ActionFactory instance that can create actions of the type the extension point requires.

Example 28.1. The menu extensions point

The net.sf.basedb.clients.web.menu.extensions extension point requires MenuItemAc-
tion objects. An extension for this extension point must provide a factory that can create
MenuItemAction:s. BASE ships with default factory implementations, for example the FixedMenu-
ItemFactory class, but an extension may provide it's own factory implementation if it wants to.

Call the Registry.useExtensions() method to use extensions from one or several extension
points. This method will find all extensions for the given extension points. If a filter is giv-
en, it checks if any of the extensions or extension points has been disabled. It will then call
ActionFactory.prepareContext() for all remaining extensions. This gives the action factory a
chance to also disable the extension, for example, if the logged in user doesn't have a required
permission. The action factory may also set attributes on the context. The attributes can be any-
thing that the extension point may make use of. Check the documentation for the specific extension
point for information about which attributes it supports. If there are any renderer factories, their
RendererFactory.prepareContext() is also called. They have the same possibility of setting at-
tributes on the context, but can't disable an extension.

After this, an ExtensionsInvoker object is created and returned to the extension point. Note
that the ActionFactory.getActions() has not been called yet, so we don't know if the ex-
tensions are actually going to generate any actions. The ActionFactory.getActions() is not
called until we have got ourselves an ActionIterator from the ExtensionsInvoker.iterate()
method and starts to iterate. The call to ActionIterator.hasNext() will propagate down
to ActionFactory.getActions() and the generated actions are then available with the
ActionIterator.next() method.

The ExtensionsInvoker.renderDefault() and ExtensionsInvoker.render() are just conve-
nience methods that will make it easer to render the actions. The first method will of course only
work if the extension point is providing a renderer factory, that can create the default renderer.

Be aware of multi-threading issues

When you are creating extensions you must be aware that multiple threads may access the
same objects at the same time. In particular, any action factory or renderer factory has to be
thread-safe, since only one exists for each extension. Action and renderer objects should be
thread-safe if the factories re-use the same objects.

Any errors that happen during usage of an extension is handled by an ErrorHandler. The core pro-
vides two implementations. We usually don't want the errors to show up in the gui so the Loggin-
gErrorHandlerFactory is the default implementation that only writes to the log file. The Rethrow-
ErrorHandlerFactory error handler can be used to re-throw exceptions which usually means that
they trickle up to the gui and are shown to the user. It is also possible for an extension point to
provide its own implementation of an ErrorHandlerFactory.

28.6.2. The web client part
The web client specific parts of the Extensions API can be found in the
net.sf.basedb.client.web.extensions package and it's subpackages. The top-level package contains
the ExtensionsControl class which is used to administrate the extension system. It is more or

The BASE API

327

less a wrapper around the ExtensionsManager provided by the core, but adds permission control
and a few other things.

In the top-level package there are also some abstract classes that may be useful to extend for de-
velopers creating their own extensions. For example, we recommend that all action factories extend
the AbstractJspActionFactory class. All web client extension points use the JspContext class
instead of ClientContext. The JSP context provides some extra information about the current re-
quest.

The sub-packages to net.sf.basedb.client.web.extensions are mostly specific to a single extension
point or to a specific type of extension point. The net.sf.basedb.client.web.extensions.menu package,
for example, contains classes that are/can be used for extensions adding menu items to the Exten-
sions menu. See Section 26.8, “Extension points defined by BASE” (page 255) for more information
about the extension points defined by BASE.

The BASE API

328

Figure 28.24. The web client part of the Extensions API

The BASE API

329

When the Tomcat web server is starting up, the ExtensionsServlet is automatically loaded. This
servlet has as two purposes:

• Initialise the extensions system by calling ExtensionsControl.init(). This will result in an
initial scan for installed extensions. This means that the extension system is up an running as
soon as the first user log's in to BASE. The processing scheme is slightly different from what is
done when the core is setting up the initial manager. The major additions are:

• The LoadServletsProcessor is used to load servlets that has been defined in META-INF/
servlets.xml.

• The ExtractResourcesProcessor is used to extract all files from resources/* in the JAR file
to www/extensions/jar-name.jar/ in Tomcat's web application directory.

• Act as a proxy for custom servlets defined by the extensions. URL:s ending with .servlet has
been mapped to the ExtensionsServlet. When a request is made it will extract the name of the
extension's JAR file from the URL, get the corresponding ServletWrapper and then invoke the
custom servlet. More information can be found in Section 26.7, “Custom servlets” (page 253).

Using extensions only involves calling the ExtensionsControl.createContext() and
ExtensionsControl.useExtensions() methods. This returns an ExtensionsInvoker object as
described in the previous section.

To render the actions it is possible to either use the ExtensionsInvoker.iterate() method and
generate HTML from the information in each action. Or (the better way) is to use a renderer together
with the Render taglib.

To get information about the installed extensions, change settings, enabled/disable extensions, per-
forming a manual installation, etc. use the ExtensionsControl.get() method. This will create a
permission-controlled object. All users has read permission, administrators has write permission.

Note

The permission we check for is WRITE permission on the web client item. This means it is
possible to give a user permissions to manage the extension system by assigning WRITE per-
mission to the web client entry in the database. Do this from Administrate � Clients.

The XJspCompiler is mapped to handle the compilation .xjsp files which are regular JSP files with
a different extension. The difference is that the XJSP compiler include the extension's JAR file on
the class path, which means that the JSP file can use classes that would otherwise be impossible.
This feature is experimental and requires installing an extra JAR into Tomcat's lib directory. See
Section 21.1.4, “Installing the X-JSP compiler” (page 168) for more information.

28.7. Other useful classes and methods
TODO

330

Chapter 29. Write documentation
29.1. User, administrator and developer
documentation with Docbook
This chapter is for those who intend to contribute to the BASE user documentation. The chapter
contains explanations of how the documentation is organized, what the different parts is about and
other things that will make it easier to know where to insert new text.

The documentation is written with the docbook standard, which is a bunch of defined XML elements
and XSLT style sheets that are used to format the text. Later on in this chapter is a reference, over
those docbook elements that are recommended to use when writing BASE documentation. Further
information about docbook can be found in the on-line version of O'Reilly's DocBook: The Definitive

Guide1 by Norman Walsh and Leonard Muellner.

29.1.1. Documentation layout
The book, which is the main element in this docbook documentation, is divided into four separated
parts, depending on who the information is directed to. What kind of documentation each one of
these parts contains or should contain is described here below.

Overview documentation
The overview part contains, like the name says, an overview of BASE. For example an explanation
about what the purpose with BASE is, the terms that are used in the program and other general
things that anyone that is interested in the program wants/needs to know before exploring it
further.

User documentation
This part contains information that are relevant for the common BASE-user. More or less should
everything that a power user role or an user role needs to know be included here.

Administrator documentation
Things that only an administrator-role can do is documented in this part. It can be how to install
the program, how to configure the server for best performance or other subjects that are related
to the administration.

Developer documentation
Documentation concerning the participation of BASE development should be placed in this part,
e.g. coding standards, the java doc from the source code, how to develop a plug-in etc.

In addition to the four main parts, there is also a FAQ part and an Appendix part.

29.1.2. Getting started
Before writing any documentation in BASE there are a couple of things, some rules and standards,
to have in mind.

Organization of source files

The source files of the documentation are located in <base-dir>/doc/src/docbook. The different
parts of the documentation are organized into separate folders and each one of the folders contains

1 http://www.docbook.org/tdg/en/html/

http://www.docbook.org/tdg/en/html/
http://www.docbook.org/tdg/en/html/
http://www.docbook.org/tdg/en/html/

Write documentation

331

one index file and one file for each chapter in that part. The index file joins the chapters, in current
part/folder, together and does not really contain any text. The documentation root directory also
contains an index.xml file which joins the index files from the different parts together.

Create new chapter/file

Most files in the documentation, except the index files, represents a chapter. Here is how to create
a new chapter and include it in the main documentation:

1. Create a new XML-file in the folder for the part where the new chapter should be included. Give
it a name that is quite similar to the new chapter's title but use _ instead of blank space and
keep it down to one or a few words.

2. Begin to write the chapter's body, here is an example:

Example 29.1. Example of a chapter

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE chapter PUBLIC
 "-//Dawid Weiss//DTD DocBook V3.1-Based Extension for XML and graphics inclusion//EN"
 "../../../../lib/docbook/preprocess/dweiss-docbook-extensions.dtd">

<chapter id="example_chapter">
 <?dbhtml dir="example" filename="index.html" ?>
 <title>Example of a chapter </title>
 <para>
 ...
 </para>
 <sect1 id="example_chapter.sect1">
 <title>Example of top level section </title>
 <para>
 ...
 </para>
 <sect2 id="example_chapter.sect1.sect2">
 <title>Example of second level section </title>
 <para>
 ...
 </para>
 <sect3 id="example_chapter.sect1.sect2.sect3">
 <title>Example of third level section</title>
 <para>
 ...
 </para>
 </sect3>
 </sect2>
 </sect1>
</chapter>

Note

Do not forget to include the <?dbhtml> tag with the dir and/or filename attributes set
to target folder and filename for the chapter.

3. The last step is to get the new chapter included in the documentation. This is done by including
the file's name in the file index.xml that's located in the current part's folder. The following
example shows how the chapter that was created above is included in the user documentation
part (as the last chapter).

Write documentation

332

Example 29.2. Include a chapter

<part id="user">
 <?dbhtml dir="user" filename="index.html" ?>
 <title>User documentation</title>
 <include file="overview.xml"/>
 <include file="webclient.xml"/>
 <include file="project_permission.xml"/>
 <include file="file_system.xml"/>
 <include file="jobs.xml"/>
 <include file="reporters.xml"/>
 <include file="annotations.xml"/>
 <include file="platforms.xml" />
 <include file="subtypes.xml" />
 <include file="protocols.xml"/>
 <include file="wares.xml"/>
 <include file="array_lims.xml"/>
 <include file="biomaterials.xml"/>
 <include file="experiments_analysis.xml"/>
 <include file="import_data.xml"/>
 <include file="export_data.xml"/>
 <include file="example_chapter.xml"/>
</part>

Order of chapters

The chapters will come in the same order as they are included in the index file.

Controlling chunking

We have configured docbook to create a new sub-directory for each <chapter> and a new output
file for each <sect1> tag. In most cases this gives each page a relatively good size. Not too long and
not too short. However, if a chapter contains many small <sect1> sections (for example, Chapter 3,
Resources (page 9)), you end up with many pages with just a few lines of text on each page. This
is not so good and can be avoided by adding chunked="0" as an attribute to the <chapter> tag,
for example:

<chapter id="resources" chunked="0">

This will stop the chunking of <sect1> sections in this chapter.

On the other hand, if you have a <sect1> that contains many long <sect2> sections you might
want to put each <sect2> section in a separate chunk:

<sect1 id="sect.with.large.sect2" chunked="1">

The id attribute

Common to all elements is that they have an id attribute that can be used to identify the element
with. The value must be unique for the entire documentation. Most of the elements that are used
inside the BASE documentation do not need to have an id if they do not are used in any cross
references from other part of the text.

There are some elements that always should have the id set. Which these elements are and how
the id should look like for each one of those is described below. All values should be as short as
possible and associated to the current element. The id value should only consist of the lowercase
characters a-z, '_' instead of blank spaces and '.' to symbolize the different levels in the document.

chapter
The chapter should have an id that is identical or almost identical to the chapter's title.

Write documentation

333

chapter_title

sect1-sect5
The creation of a section's id is done by combining an appropriate part of the parent chapter
and/or section id with the current section's title (or part of the title). This rule may seem a little
"fuzzy" but the aim is to not create too long id's yet they must still be unique. using the upper
level's id and add the section's title or a part of the title. For a <sect2> the id could for example
be created like this:

sect1_title.sect2_title

examples
The naming of an example's id is a bit different compare to the chapter's and section's id. It
should begin with the chapter's id followed by examples and the caption of the example.

chapter_title.examples.example_caption

figures
The figure's id should have the following layout

chapter_title.figures.figure_name

Help text for the BASE web client

This documentation is also use to create the help texts that show up in the BASE web client when
clicking on the question mark icons. The parts of the text that also should be used as help texts in
the web client must be inside <helptext> tags. These texts will be exported to a XML-file at the same
time as the HTML-documentation is generated. The generated XML-file is compatible with the help
text importer in BASE and will be imported when running the update script or installation script.

Note

The <helptext> must be outside the <para> tag but inside a <sect> tag to work properly.
Do not put any <sect> tags inside the helptext. This will make the automatic chapter and
section numbering confused.

The tag supports the following attributes

external_id
Is used to identify and to find a help text in the web client. The BASE web client already has
several IDs to help texts defined, it could therefore be a good idea to have a look in the program
to see if there already is an external id to use for the particular help text.

title
Is directly connected to the name/title property for a help text item in BASE.

webonly
If set to a non-zero value, the contents of the tag will not be outputted in the HTML or PDF doc-
umentation. This is useful for minor functionality that is not important enough to be mentioned
in the documentation but has a help icon in the web client.

Example 29.3. How to use the help text tag

<sect1 id="....">
 <helptext external_id="helptexts.external.id" title="The title">
 The text that also should be used as a helptext in the program.
 <seeother>
 <other external_id="other.external.id">Related info here...</other>
 </seeother>
 </helptext>
</sect1>

Write documentation

334

Skip parts of a help text

From time to time, it may happen that you find that some parts of the text inside a <helptext>
tag does not make sense. It may, for example, be a reference to an image or an example, or a link to
another chapter or section. Put a <nohelp> tag around the problematic part to avoid it from being
outputted to the help texts.

<nohelp>See <xref linkend="chapter11" /></nohelp>

Link to other help texts

You can use <seeother> and <other> to create links between different help texts. The <seeother>
tag does not have any attributes and is just a container for one or more <other> tags. Each tag
requires a single attribute.

external_id
The external ID of the other help text to link to.

<seeother>
 <other external_id="userpreferences.password">Change password</other>
 <other external_id="userpreferences.other">Other information</other>
</seeother>

We recommend that you place the links at the end of the help text section. The links will not show
up in the HTML or PDF version.

Import help texts into BASE

Import the generated XML-file manually by uploading it from the data directory to the BASE-server's
file system and then use the help text importer plug-in to import the help text items from that file.

The help texts can also be imported by running the TestHelp test program. In short, here are the
commands you need to import the help texts:

ant docbook
ant test
cd build/test
./run.sh TestHelp

Build the documentation

Those who have checked out the documentation source from repository or got the source from a
distribution package needs to compile it to get the PDF and HTML documentation files. The compi-
lation of the documentation source requires, beside Ant, that the XML-parser Xsltproc is installed
on the local computer. More information about XsltProc and how it is installed, can be found at
http:// xmlsoft.org/ XSLT/ index.html.

Note

There is an xml-parser in newer java-versions that can be used instead of XsltProc but the
compilation will most likely take much much longer time. Therefore it's not recommended to
be used when generating/compiling the documentation in BASE.

There are two different types of format that is generated from the documentation source. The format
to view the documentation on-line will be the one with chunked HTML pages where each chapter
and section of first level are on separate pages/files. The other format is a PDF-file that are most
useful for printing and distribution. Those two types of output are generated with the ant-target:
ant docbook. This documentation is also generated with ant dist, which will put the output files
in the right location for distribution with BASE.

http://xmlsoft.org/XSLT/index.html

Write documentation

335

29.1.3. Docbook tags to use
The purpose with this section is to give an overview of those docbook elements that are most common
in this documentation and to give some example on how they should be used. There will not be any
detailed explanation of the tags here, instead the reader is recommended to get more information

from Docbook's documentation 2 or other references.

Text elements

Define Element to use Comments

Chapter <chapter> See Example 29.1, “Example of
a chapter” (page 331).

Title <title> See Example 29.1, “Example of
a chapter” (page 331).

Paragraph <para> Used almost everywhere
around real text.

Top-level subsection <sect1> See the section called “ The id
attribute ” (page 332).

Second level section <sect2> See the section called “ The id
attribute ” (page 332).

Third level section <sect3> See the section called “ The id
attribute ” (page 332).

Code elements

These elements should be used to mark up words and phrases that have a special meaning in a
coding environment, like method names, class names and user inputs, etc.

Define Element to use Comment

Class name <classname> The name of a (Java) class. The
docapi attribute can be used
to link the class to it's Javadoc
(for the BASE API). This is done
by setting the attribute to the
package name of the class, like

<classname docapi="net.sf.baseb.core">DbControl</
classname>

Interface name <interfacename> The name of an (Java) interface.
Has a docapi-attribute which
has the same functionality as
in classname above.

User input <userinput> Text that is entered by a user.

Variable name <varname> The name of a variable in a pro-
gram.

Constant <constant> The name of a constant in a
program.

Method definition <methodsynopsis> See Example 29.4, “ Method
with no arguments and a re-
turn value ” (page 336).

2 http://www.docbook.org/tdg/en/html/docbook.html

http://www.docbook.org/tdg/en/html/docbook.html
http://www.docbook.org/tdg/en/html/docbook.html

Write documentation

336

Define Element to use Comment

Modifier of a method <modifier> - " -

Classification of return value <type> - " -

Method name <methodname> - " -

No parameter/type <void> - " -

Define a parameter <methodparam> See Example 29.5, “ Method
with arguments and no return
value ” (page 336).

Parameter type <type> - " -

Parameter name <parameter> - " -

Follow one of the examples below to insert a method definition in the document.

Example 29.4. Method with no arguments and a return value

<methodsynopsis language="java">
 <modifier>public</modifier>
 <type>Plugin.MainType</type>
 <methodname>getMainType</methodname>
 <void />
</methodsynopsis>

which is rendered as:

 public Plugin.MainType getMainType();

Example 29.5. Method with arguments and no return value

<methodsynopsis language="java">
 <modifier>public</modifier>
 <void />
 <methodname>init</methodname>
 <methodparam>
 <type>SessionControl</type>
 <parameter>sc</parameter>
 </methodparam>
 <methodparam>
 <type>ParameterValues</type>
 <parameter>configuration</parameter>
 </methodparam>
 <methodparam>
 <type>ParameterValues</type>
 <parameter>job</parameter>
 </methodparam>
</methodsynopsis>

which is rendered as:

 public void init(SessionControl sc,
 ParameterValues configuration,
 ParameterValues job);

Gui elements
Docbook has some elements that can be used to symbolize GUI items in a program. Following list
contains the ones that are most common in this document.

Define Element to use Comment

Button <guibutton>

Label <guilabel>

Write documentation

337

Define Element to use Comment

Menu choice <menuchoice>

Menu <guimenu>

Submenu <guisubmenu>

Menu item <guimenuitem>

Icon <guiicon>

Example 29.6. Describe a menu choice

<menuchoice>
 <guimenu>Administrate</guimenu>
 <guisubmenu>Plug-ins & extensions</guisubmenu>
 <guimenuitem>Overview</guimenuitem>
</menuchoice>

In the text it will look like this: Administrate � Plug-ins & extensions � Overview

Images and figures
Images and figures are normally implemented like the following example. The image-file must be
located in doc/src/docbook/figures, otherwise the image will not be visible in the generated
output files.

Example 29.7. Screen-shot in the documentation

<figure id="docbook.figures.homepage">
 <title>The home page</title>
 <screenshot>
 <mediaobject>
 <imageobject>
 <imagedata
 scalefit="1"
 width="100%"
 fileref="figures/homapage.png" format="PNG"
 />
 </imageobject>
 </mediaobject>
 </screenshot>
</figure>

which will generate an image like Figure 5.1, “The home page” (page 17).

When taking screen shots of the GUI it is recommended to try to get a look and feel that matches
the other screen shots in the documentation. Following is a list of "specifications" of how to get the
look that is currently used in the documentation.

• All screen shots are from Firefox and Windows 7. Popup windows in Firefox should not have
the navigation toolbar (nor any other toolbars). Full windows should have the navigation toolbar.
Replace the URL with base2.thep.lu.se/demo/. Avoid extra toolbar buttons, etc. that are from
plug-ins you may have installed in Firefox.

• The default Windows 7 Aero theme is used with the Sky color theme, but we have disabled
the transparency setting. This can be configured by right-clicking on the windows desktop and
selecting Personalize. Then click on Window color near the bottom middle of the popup and
uncheck the Enable transparency checkbox.

• We have also disabled the Shadows under windows option. This is done from the Performace
options dialog which can be found if you go to the Control panel ›› System ›› Advanced system
settings dialog.

• The screen shots have been taken with Shotty3 in high-quality mode and saved as PNG.

http://shotty.devs-on.net/en/Overview.aspx

Write documentation

338

Warning

When using images in docbook you will always have problems with image resolution and scal-
ing. Since we are generating output for both HTML and PDF it is even worse. What we have
found to work is this:

• The screenshots must be saved without any resolution information in them, or with the
resolution set to 96 dpi. We have configured PDF to use 96 dpi instead of 72 dpi to make the
HTML and PDF output look as similar as possible.

• Scaling in HTML has been disabled. The images will always be the same size (number of
pixels) as they actually are. Please, do not make the screenshots too wide!

Tip

Change your BASE preferences, see Section 5.2.4, “Preferences” (page 22), to a small-
er font size or use the zoom functionality in the web browser to make more informa-
tion fit in the same image width.

• For small images, less than the width of the PDF page, do not specify scaling factors or
widths.

• Images that are wider than the PDF page will be clipped. To prevent this you must add the
following attributes to the <imagedata> tag: scalefit="1" width="100%". This will scale
down the image so that it fits the available width.

• If you still need to scale the image differently in the PDF use the width and depth attributes.

Examples and program listing
Following describes how to insert an example in the documentation.The examples in this document
are often some kind of program listing but they can still be examples of something else.

Use spaces instead of tabs for indentation

Use spaces for indentation in program listing, this is because of the tab-indentations will
sooner or later cause corrupt text.

• The verbatim text is split into several lines if the text contains more then 80 characters. This could
give the text an unwanted look and it's therefore recommended to manually insert new lines to
have control over layout of the text

• We have added support for syntax highlighting of program examples in the HTML version. To
enable it add a language attribute with one of the following values: java, javascript xml or sql.
The highlighting engine support more languages. To add support for those in docbook, change the
customized.chunked.xsl file. The syntax highlighting engine doesn't handle docbook markup
inside the <programlisting> tag very well. You should avoid that, by using text-only examples
withing a <![CDATA[...]]> section. By default, Java program examples include line numbering,
but XML examples don't. To disable line numbering for Java add :nogutter to the language
attribute: <programlisting language="java:nogutter">. To enable line numbering for xml
add :gutter to the language attribute: <programlisting language="xml:gutter">.

Example 29.8. Example in the documentation

The code below is used to create Example 25.2, “A typical implementation just return one of the
values” (page 206).

<example id="net.sf.basedb.core.plugin.Plugin.getMainType">
 <title>A typical implementation just return one of the values</title>
<programlisting language="java">
public Plugin.MainType getMainType()
{
 return Plugin.MainType.OTHER;
}
</programlisting>
</example>

Write documentation

339

Admonitions

The admonitions that are used in this document can be found in the table below.

Define Element to use Comment

Warning text <warning>

Notification text <note>

A tip <tip>

Important text <important>

Something to be cautious
about

<caution>

Lists

Following items can be used to define different kind of lists in the documentation. Some common
elements for the lists are also described here.

Define Element Comment

None-ordered list <itemizedlist>

Term definition list <variablelist>

Ordered list <orderedlist>

List item <listitem>

The example below shows how to create a list for term definition in the text.

Example 29.9. Example how to write a variable list

<variablelist>
 <varlistentry>
 <term>Term1</term>
 <listitem>
 <para>
 Definition/explanation of the term
 </para>
 </listitem>
 </varlistentry>

 <varlistentry>
 <term>Term2</term>
 <listitem>
 <para>
 Definition/explanation of the term
 </para>
 </listitem>
 </varlistentry>
</variablelist>

which is rendered as:

Term1
Definition/explanation of the term

Term2
Definition/explanation of the term

Link elements

Write documentation

340

Define Element Comment

Cross reference <xref linkend=""> Use this to Link to other parts
of the document.

Cross reference with own text <link> Can be used as an alternative
to xref

External URLs <ulink url="">

Example 29.10. Links

<xref linkend="docbook.usedtags.links" />
<link linkend="docbook.usedtags.links">Link to this section</link>
<ulink url="http://base.thep.lu.se">Base2's homepage</ulink>

The first element will autogenerate the linked section's/chapter's title as a hyperlinked text. As an
alternative to xref is link that lets you write your own hyperlinked text. The third and last one
should be used to link to any URL outside the document.

29.2. Create UML diagrams with MagicDraw
UML or UML-like diagrams are used to document the relationship of classes in the Core API. To
create the diagrams we use the community edition (version 12.5) of a program called MagicDraw.
This is a Java program and it should be possible to run it on any platform which has at least a Java
1.5 run-time. To get more information about MagicDraw and to download the program go to their
website: http://www.magicdraw.com/

29.2.1. Organisation
All classes and diagrams are in a single UML file. It can be found at <base-dir>/doc/src/uml/
baseuml.mdzip

Everything in MagicDraw has been organised into packages and modules. At the top we have the
Core layer and the Data layer. The Java module is for classes that related to the Java program-
ming language, such as Map and Set that are not pre-defined by MagicDraw.

http://www.magicdraw.com/

Write documentation

341

Figure 29.1. MagicDraw organisation

29.2.2. Classes
New classes should be added to one of the sub-packages inside the Data layer/Classes or Core
layer/Classes modules. It is very simple:

1. Select the sub-package in the overview and click with the right mouse button.

2. Select the New element � Class menu item in the menu that pops up.

3. The overview will expand to add a new class. Enter the name of the class and press enter.

Data layer classes

If you added a class to the data layer you also need to record some important information.

• The database table the data is stored in

• If the second-level cache is enabled or not

• If proxies are enabled or not

Write documentation

342

• The superclass

• Implemented interfaces

• Simple properties, ie. strings, numbers, dates

• Associations to other classes

To achieve this we have slightly altered the meaning of some UML symbols. For example we use
the access modifier symbols (+, ~ and -) to indicate if a property is updatable or not. Some of the
information needed is specified as tagged values that can be attached to a class. Double-click on
the new class to bring up it's properties dialog box. Switch to the Tags configuration page.

Figure 29.2. Setting tagged values

We have defined the following tags:

table
The name of the database table where the items should be stored.

cache
The number of items to store in the second-level cache of Hibernate. Only specify a value if
caching should be enabled.

proxy
A boolean flag to indicate if proxies should be used or not.

extends
Select the superclass of this class.

implements
Specify which interfaces the class implements. To save space we use the following one-letter
abbreviations:

Write documentation

343

• A = AnnotatableData

• B = BatchableData

• D = DiskConsumableData

• E = ExtendableData

• F = FileAttachableData

• G = RegisteredData

• L = LoggableData

• N = NameableData

• O = OwnableData

• R = RemoveableData

• S = ShareableData

• T = SystemData

discriminator-value
Used for classes that share the underlying database table. The discriminator value is used so
that Hibernate knows which subclass to create.

Simple properties are strings, numbers, dates, etc. that are part of an object. Properties are entered
as attributes of the class. The easiest way to enter properties are by typing directly in a diagram. It
can also be done from the Attributes configuration page.

Each attribute must have information about:

• The name of the attribute, ie. the name of the get/set method without the get or set part and
starting with a lowercase letter.

• The data type: enter or select the Java object type in the Type selection list.

• If null values are allowed or not. Specify a multiplicity of 1 if a non-null value is required, but only
if the underlying datatype can hold null values.

• If it is modifiable or not. From the Visibility list, select one of the following:

• public (+): the attribute is modifiable. This translates to public get and set methods.

• package (~): the attribute can only be set once. This translates to public get and set methods
and an update="false" tag in the Hibernate mapping.

• private (-): the attribute is private (will this ever be used?). This translates to package private
get and set methods.

Write documentation

344

Figure 29.3. Class attributes

Associations to other classes are easiest created from a diagram view by drawing an Association
link between the two classes. The ends should be given a name, multiplicity and visibility should
be selected. For the visibility we use the same options as for attributes, but with a slightly different
interpretation.

• public (+): the association is modifiable. This translates to public get and set methods for many-
to-one associations. Many-to-many associations must have a package private set method since
the set or map must never be replaced.

• package (~): same as public but the association cannot be changed once it has been created. For
many-to-one associations an update="false" tag in the Hibernate mapping should be used. For
many-to-many association there is no corresponding tag. It will be the responsibility of the core
to make sure no modifications are done.

• private (-): this is the inverse end of an association. Only used for one-to-many and many-to-many
associations and translates to package private get and set methods.

If the association involves a join table (many-to-many) the name of that table should be entered as
a tagged value to the association.

If the association have values attached to it, use the Association class link type and enter informa-
tion about the values in the attached class.

A lot more can be said about this, but it is probably better to have a look at already existing diagrams
if you have any questions. The authentication overview shown below is one of the most complex
diagrams that involves many different links.

Write documentation

345

Figure 29.4. Authentication UML diagram

Write documentation

346

Core layer classes

TODO

29.2.3. Diagrams

Create a new diagram

New diagrams should be added to one of the sub-packages inside the Data layer/Diagrams or
Core layer/Diagrams modules. It is very simple:

1. Select the sub-package in the overview and click with the right mouse button.

2. Select the New diagram � Class diagram menu item in the menu that pops up.

3. The overview will expand to add a new diagram. A new empty diagram frame is also opened on
the right part of the screen. Enter the name of the diagram and press enter.

Only class diagrams are fully supported

The community edition of MagicDraw only has full support for class diagrams. The other
diagram types has limitations, in the number of objects that can be created.

To display a class in a diagram, simply select the class in the overview and drag it into to the diagram.

Visual appearance and style

We have defined several different display style for classes. To set a style for a class right click on it in
a diagram and select the Symbol properties menu item. In the bottom of the pop-up, use the Apply
style selection list to select one of the predefined styles.

• Data class: Use this style for all primary data classes in a diagram. It will display all info that
we are interested in.

• External class: Use this style for related classes that are actually part of another diagram. This
style will hide all information except the class name. This style can be used for both data layer
and core layer classes.

• Association class: Use this style for classes that hold information related to an association between
two other classes. Classes with this style are displayed in a different color. This style can be used
for both data layer and core layer classes.

• Core class: Use this style for all primary core classes in a diagram. It will display all info that
we are interested in.

Save diagram as image

When the diagram is complete, save it as a PNG image in the <base-dir>/doc/src/docbook/fig-
ures/uml directory.

29.3. Javadoc
Existing Javadoc documentation is available on-line at: http://base.thep.lu.se/chrome/site/doc/
api/index.html.

The BASE API is divided into four different parts on the package level.

• Public API - All classes and methods in the package are public. May be used by client applications
and plug-ins. In general, backwards compatibility will be maintained.

http://base.thep.lu.se/chrome/site/doc/api/index.html
http://base.thep.lu.se/chrome/site/doc/api/index.html

Write documentation

347

• Extension API - All classes and methods in the package intended for internal extensions only. Not
part of the public API and should not be used by client applications or plug-in.

• Internal API - All classes and methods in the package are internal. Should never be used by client
application or plug-ins.

• Mixed Public and Internal API - Contains a mix of public and internal classes. Check the Javadoc
for each class/method before using it.

Introduction to the Base API and it's parts can be found on the start page of Base Javadoc. Plugin
developers and other external developers should pay most attention to the public API. What we
consider to be the public part of the API is discussed in Section 28.1, “The Public API of BASE”
(page 269).

29.3.1. Writing Javadoc
This section only covers Javadoc comments, how to write proper none-Javadoc comments are de-
scribed in Section 30.3.2, “General coding style guidelines” (page 350)

General information about Javadoc and how it is written in a proper way can be found at http://
www.oracle.com/technetwork/java/javase/documentation/index-137868.html. The rule when cod-
ing in Base is that all packages, classes, interfaces, public methods and public attributes must be
commented in Javadoc style. It is also recommended that private and protected methods has some
comments, but maybe not as detailed as the public ones. Below follow more specific details what to
have in mind when writing Javadoc in the Base project.

General
General things that are common for all Javadoc comments in Base.

• All comments should be in English.

• Do not start each new line of comment with a star.

• If a comment is mostly related to the inner workings of BASE, it should be tagged with

@base.internal

Package comments
Package comments should be placed in a file named package.html in the source code directory.

Is the package public or internal?

This information should be added in the package.html file. You must also modify the
build.xml file. The doc.javadoc target contains <group> tags which lists all packages
that are part of each group.

Class and interface comments
A comment for a class or interface should start with a general description. The class comment
should then give information about what the class can be used for, while an interface comment
more should inform which kinds of classes that are supposed to implement the interface.

@author

The first name of the author(s) of the class.

@since

The BASE verion when this class or interface was added.

@see

Optional. Links to some related subjects.

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Write documentation

348

@base.modified

Optional. Some classes has this tag too. This is for give the class-file a time stamp when it
is checked in to subversion.

Method comments
A method comment should start with a general description of the method and what it does. The
following tags must be present in this order:

@param

One tag for each parameter of the method. Make sure to tell what values are allowed and
what will happen if a disallowed value is passed.

@return

What is returned by the method. Make sure to tell what values can be returned (ie. if it can
be null).

@throws

One tag for each exception that the method can throw and describe when and why it will
be thrown.

@since

Use only this tag together with methods added in a later version then the one the class was
created in. It holds which version the method first was available in.

@see

Optional. Link to relevant information, one tag for each link.

Attribute comments
If the attribute is a static final, describe what the attribute is for an where it is typically used.
Other attributes can often be explained through their getter and setter methods.

349

Chapter 30. Core developer
reference
30.1. Publishing a new release
This documentation is available on the BASE wiki1.

30.2. Subversion / building BASE
This documentation is available on the BASE wiki2.

30.3. Coding rules and guidelines
30.3.1. Development process and other important
procedures
This section describes the development process we try to use in the BASE project. It is not carved
in stone and deviations may occur. For every new feature or enhancement the procure below should
be followed. If you encounter any problems, arrange a group meeting. Someone else may have the
solution! The text is biased towards adding new items to BASE, but it should be possible to use the
general outline even for other types of features.

1. Group meeting

• The group should have a short meeting and discuss the new or changed feature. Problem areas
should be identified, not solved!

• The person who is going to make the analysis, design and development is responsible for taking
notes. They should be kept until the analysis and design phase has been finished.

• A follow-up meeting should be held at the end of the analysis phase.

• A single meeting may of course discuss more than one feature.

2. Analysis and design

• Create an diagram of the classes including their properties, links and associations. Use the already
existing diagrams and code as a template. The diagram should have information about cache and
proxy settings.

• Write a short document about the diagram, especially things that are not obvious and explain any
deviations from the recommendations in the coding guidelines.

• Identify things that may affect backwards compatibility. For more information about such things
read Section 28.1, “The Public API of BASE” (page 269) and Section 30.3.3, “API changes and
backwards compatibility” (page 356).

• Identify what parts of the documentation that needs to changed or added to describe the new
feature. This includes, but is not limited to:

1 http://base.thep.lu.se/wiki/ReleaseProcedure
2 http://base.thep.lu.se/wiki/BuildingBase

http://base.thep.lu.se/wiki/ReleaseProcedure
http://base.thep.lu.se/wiki/BuildingBase
http://base.thep.lu.se/wiki/ReleaseProcedure
http://base.thep.lu.se/wiki/BuildingBase

Core developer reference

350

• User and administrator documentation, how to use the feature, screenshots, etc.

• Plug-in and core developer documentation, code examples, database schema changes, etc.

• If there are any problems with the existing code, these should be solved at this stage. Write some
prototype code for testing if necessary.

• Group meeting to verify that the specified solution is ok, and to make sure everybody has enough
knowledge of the solution.

3. Create the classes for the data layer

• If step 2 is properly done, this should not take long.

• Follow the coding guidelines in Section 30.3.4, “Data-layer rules” (page 357).

• At the end of this step, go back and have a lock at the diagram/documentation from the analysis
and design phase and make sure everything is still correct.

4. Create the corresponding classes in the core layer

• For simple cases this is also easy. Other cases may require more effort.

• If needed, go back to the analysis and design phase and do some more investigations. Make sure
the documentation is updated if there are changes.

5. Create test code

• Build on and use the existing test as much as possible.

6. Write code to update existing installations
Important

• If the database schema is changed or if there for some reason is need to update existing data
in the database, the Install.SCHEMA_VERSION counter must be increased.

• Add code to the net.sf.basedb.core.Update class to increase the schema version and
modify data in existing installations.

7. Write new and update existing user documentation

• Most likely, users and plug-in developers wants to know about the feature.

Important

Do not forget to update the Appendix I, API changes that may affect backwards compati-
bility (page 426) document if you have introduced any incomaptible changes.

30.3.2. General coding style guidelines

Naming

General
All names should be in English. Names should be descriptive and derived from the the domain
the code is intended for. Try to avoid names longer than twenty characters.

Packages
Package names must be in all lower case letters. The top-level package of BASE is
net.sf.basedb.

Core developer reference

351

Classes and Interfaces
Names of classes and interfaces should be a concatenation of one or more words. The initial
letter of all words in the name, including the first word, should be upper case letters. The rest
of the characters should be lower case. Example:

public class SoftwareType
{
 ...
}

Constant member variables
Constant member variables, usually defined static final, should be named using all upper case
characters. Words in the name should be separated by underscore characters. Example:

public static final int VERSION_NUMBER = 3;

Private member variables
Private member variables should be a concatenation of one or more descriptive words. The initial
letter of all words in the name, except the first word, should be upper case letters. The rest of
the characters should be lower case. Example:

private String loginComment;

Methods
Methods should be named using a descriptive statement, usually made up by several words.
Typically the first word is a verb, stating the action and the others stating the target and at-
tributes. Lower and upper case letters should then be mixed, with all words in the name except
the first one starting with an upper case letter and the rest being in lower case letters. Example:

public ItemQuery<Annotation> getAllInheritedAnnotations()
{
 ...
}

Mutator (get/set) methods
Avoid direct access to attributes (member variables) from outside of a class. Instead make at-
tributes private and use mutator methods to access them. Prefix the mutator methods with get
and set respectively to fetch or change an attribute. If the getter returns a boolean value prefix
the mutator method with (typically) is, has or can. Examples:

private String name;
public String getName()
{
 return name;
}
public void setName(String name)
{
 this.name = name;
}

private boolean activated;
public boolean isActivated()
{
 return activated;
}

Exceptions
The names of Exceptions must end with the word Exception. Example:

Core developer reference

352

public class NoMoreNumbersException
 extends Exception
{
 ...
}

Layout and comments

Interface layout
Interfaces should only have public members, i.e. static attributes and method prototypes.

White space
All code must be properly indented. In general each new block starts a new indentation level.
Use tab when indenting.

Code blocks
The starting brace "{" of a code block should be placed on a line by itself at the same indentation
level as the preceeding line of code. The first line in the new block should be indented one tab-stop
more. The ending brace "}" should be placed at the same indentation level as the matching
starting brace. Use braces even if the code block is only one line. Example:

public String getName()
{
 if (name == null)
 {
 return "unknown";
 }
 else
 {
 return name;
 }
}

Javadoc
Packages, classes, public methods and public attributes should be commented in Javadoc style.
It is recommended that private and protected methods also has some comments, but maybe not
as detailed as the public ones.

• All comments should be in English.

• Do not start each line of a comment with a star.

More info about Javadoc can be found at: http://www.oracle.com/technetwork/java/javase/
documentation/index-137868.html

Package comments
Place package comments in a file named package.html in the source code directory.

Class comments
A class comment should start with a general description of the class and what it does. Use the
@author tag to specify the names of the programmers that was involved in coding the file and
the @since tag to specify the version of BASE when the class first appeared. Example:

/**
 ...
 @author Nicklas, Martin
 @since 2.0
*/
public class BasicItem
{
 ...

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Core developer reference

353

}

Method comments
A method comment should start with a general description of the method and what it does.
Use @param to describe each parameter and @return to describe what the method returns. Use
@throws to describe all checked exceptions including when and why they can be thrown. Use
@see to link to other related method and information.

Attribute comments
If it is a static final attribute, describe what the attribute is for and where it is typically used.

@base.developer
The @base.developer tag can be used anywhere to add comments that are mainly targeted to
the developers of BASE.

@base.internal
The @base.internal tag can be used at package and class-level documentation to mark that
part of the code as an internal API that should not be used by plug-ins and other client code.
See Section 28.1, “The Public API of BASE” (page 269).

Inline comments

• All comments should be in English.

• Comment on why instead of what. Your code should be clear enough to answer questions on
what it does. It is more important to document why it does it.

• Do not place end line comments at the end of statements.

• Do not use decorated banner like comments, as these are hard to maintain. If more extensive
commenting is needed - use Javadoc.

• Avoid using semicolon (;) as part of inline comments. Searching for all comments containing
a semicolon is used to find commented out code blocks.

Commented out code
Avoid leaving code that is commented out. It is a distraction when maintaining the code. Some-
times, for example during a big refactoring, it is not possible to fix everything at once. In this
case it is allowed to comment out code, but it is recommended that a TODO marker (see below)
is added to make it easier to find places that need to be fixed later.

Todo comments
If there are parts of the code that cannot be completed at the time the majority of the code is
written, place a comment starting with TODO (in capital letters), followed with a description
of what needs to be done. If there is a ticket in the Trac server, use the ticket number in the
comment. Example:

public static Date copy(Date value)
{
 return value == null ? null : new Date(value.getTime());
 // TODO (#1234): check if there is a better way to copy
}

Subversion comment and GNU licence message
Each file should start with a subversion comment and the GNU licence and copyright message.
Non-java files should also include this information, in a format appropriate for the specific file.

/*

Core developer reference

354

 $Id: core_ref.xml 5820 2011-10-24 10:46:11Z nicklas $

 Copyright (C) Authors contributing to this file.

 This file is part of BASE - BioArray Software Environment.
 Available at http://base.thep.lu.se/

 BASE is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 3
 of the License, or (at your option) any later version.

 BASE is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with BASE. If not, see <http://www.gnu.org/licenses/>.
*/

Statements

Package and import statements
The package statement is the first statement to appear in the source file. All declared classes
must belong to a named package. It is not allowed for classes to belong to the "default" package,
i.e. to omit the package statement in the source file. Exception: Test code may belong to the
default package.

Import statements should follow directly after the package statement. Try to avoid preceeding
class names in code with package names. Instead use import statements.

Wildcards in import statements make it difficult to see dependencies, other than those to pack-
ages. Therefore import classes/interfaces explicitely. The only exception is when classes in sub-
packages to the current package are accessed. Such items are either imported explicitely or the
whole subpackage may be imported with wildcard. However, avoid wildcard imports when sub-
packages are large - more than approximately 4 items.

Do not explicitely import packages or classes not used in your program code. Try to maintain
an alphabetical order among the imported classes. Group classes from the same package. Most
IDE:s have functionality for maintaining import statements. Use it.

Inside a class, attributes and methods should be organised in the following order:

• public static final attributes

• other static attributes

• public static methods

• other static methods

• private attributes

• constructors

• Methods defined by interfaces, grouped by the interface in which they are defined

• Methods that override a method from a superclass, with methods from the topmost superclass
first

• Additional methods for the specific class

Core developer reference

355

Classes and interfaces
Class and interface statements should be organized in the following manner:

• class or interface statement

• extends statement indented on a separate row

• implements statement indented on one or more rows

• class body

public class SomeClass
 extends SomeBase
 implements Clonable, SomeInterface
{
 ...
}

public interface Testable
 extends Clonable
{
 ...
}

Methods
If a method throws checked exceptions, these should be declared indented on a separate row
directly after the method declaration. Example:

public int getNextValue(int previousValue)
 throws NoMoreValuesException
{
 ...
}

Local variables
Local variables should be declared and initialized where they are used. They should be declared
in the smallest possible scope. Avoid overloading variable names in inner blocks.

Array declarations
The square brackets indicating an array of something should be immediately to the right of
whatever class or datatype the array consists of (e.g. String[] args) do not use C-style array
declarations (String args[]).

Conditional statements

• There must always be braces around the block following the condition control structure, even
if it's just a single statement block. This doesn't apply to the cases when the single statement
is on the same line as the condition.

• Avoid placing statements resulting in side effects (e.g. function calls) in the condition construct.

• Do not jump out of conditional blocks with break, return or exit. The exception is the usage
of break in switch-statements.

• Use continue-statements in for- and while- loops with caution. It's recommended to mark the
statement with a clear comment.

// IF-statements:
if (...)
{
 ...

Core developer reference

356

}
else
{
 ...
}

if (...) ...;

// FOR-statements:
for (init; condition; update)
{
 ...
 /* #### CONTINUE-STATEMENT #### */
 if (...) continue;
 ...
}

// WHILE-statement:
while (condition)
{
 ...
}

// DO-WHILE-statement:
do
{
 ...
}
while (condition);

// SWITCH-statement:
switch (operand)
{
 case: ...
 {
 ...
 break;
 }
 default:
 {
 ...
 }
}

// Exception blocks:
try
{
 ...
}
catch (SpecialException se)
{
 ...
}
catch (Exception e)
{
 ...
}
finally
{
 ...
}

30.3.3. API changes and backwards compatibility
The main rule is to do not introduce any changes that are backwards incompatible. That is, existing
client applications and plug-ins should continue to run in the next release of BASE, without the
need to change them. It may sound easy but there are many things to watch out for. There is a great
article about this subject on http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs.

http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs

Core developer reference

357

The Public API
Not all code in BASE is considered to be part of the public API. See Section 28.1, “The Public

API of BASE” (page 269) and the javadoc3 for information about the public API. Changes made
to the internal API does not have to follow the same rules.

Binary compatibility
This is hardest requirement and means that existing binaries must run with the updated BASE
version. The Eclipse document discusses this type of compatibility in great detail.

Contract compatibility
Methods should continue to do things in the same ways as before. Avoid introducing side-effects
and expanding/contracting the allowed range of return or parameter values. This may not always
be easy to keep this type of compatibility. For example, adding a new option to an enumeration
may break code that is not prepared for it.

Internal data structure compatibility
It may not be possible to keep the internal data structures. If they change the update script
should convert the old data to the new format. Avoid exposing the internal data structure to
client applications. Use wrapper classes, etc, to hide as much as possible.

Source code compatibility
This is not an important issue and in most cases the problems are easy to fix.

Do not forget to log changes!

Any change that may affect backwards compatibility must be logged in Appendix I, API
changes that may affect backwards compatibility (page 426).

30.3.4. Data-layer rules
The coding guidelines for this package has been slightly modified from the the general coding guide-
lines. Here is a short list with the changes.

Class and interface names
Class names should follow the general guidelines, but should in most cases end with Data.

public class SampleData
 extends CommonData
 implements DiskConsumableData
{
 ...
}

Attributes and methods order
Inside a class, attributes and methods should be organised in related groups, ie. the private
attribute is together with the getter and setter methods that uses that attribute. This makes it
easy to re-use existing code with copy-and-paste operations.

public static int long MAX_ADDRESS_LENGTH = 255;
private String address;
/**
 @hibernate.property column="`address`" type="string" length="255" not-null="false"
*/
public String getAddress()
{
 return address;
}
public void setAddress(String address)

3 ../../../api/index.html

../../../api/index.html
../../../api/index.html

Core developer reference

358

{
 this.address = address;
}

private int row;
/**
 @hibernate.property column="`row`" type="int"
*/
public int getRow()
{
 return row;
}
public void setRow(int row)
{
 this.row = row;
}

Extend/implement the basic classes and interfaces
Each data-class must inherit from one of the already existing abstract base classes. They contain
code that is common to all classes, for example implementations of the equals() and hash-
Code() methods or how to link with the owner of an item. For information about which class-
es/interfaces that can be used see Section 28.2.1, “Basic classes and interfaces” (page 272).

Define a public no-argument constructor
Always define a public no-argument constructor. No other constructors are needed. If we want
to use other persistence mechanisms or serializability in the future this type of constructor is
probably the most compatible. The constructor should be empty and not contain any code. Do
not initialise properties or create new objects for internal use. Most of the time the object is
loaded by Hibernate and Hibernate will ensure that it is properly initialised by calling all setter
methods.

For example, a many-to-many relation usually has a Set or a Map to hold the links to the other
objects. Do not create a new HashSet or HashMap in the constructor. Wait until the getter method
is called and only create a new object if Hibernate hasn't already called the setter method with
it's own object. See the code example below. There is also more information about this in Many-
to-many and one-to-many mappings (page 365).

// From GroupData.java
public GroupData()
{}

private Set<UserData> users;
public Set<UserData> getUsers()
{
 if (users == null) users = new HashSet<UserData>();
 return users;
}

See also:

• "Hibernate in action", chapter 3.2.3 "Writing POJOs", page 67-69

• Hibernate reference documentation: 4.1.1. Implement a no-argument constructor4

Object identity
We use database identity to compare objects, ie. two objects are considered equal if they are of
the same class and have the same id, thus representing the same database row. All this stuff
is implemented by the BasicData class. Therefore it is required that all classes are subclasses
of this class. It is recommended that the equals() or hashCode() methods are not overridden
by any of the subclasses. We would have liked to make them final, but then the proxy feature
of Hibernate would not work.

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/persistent-classes.html#persistent-classes-pojo-constructor

Core developer reference

359

Avoid mixing saved and unsaved objects

The approch used for object identity may give us a problem if we mix objects which hasn't
been saved to the database, with objects loaded from the database. Our recommendation
is to avoid that, and save any objects to the database before adding them to sets, maps or
any other structure that uses the equals() and hashCode() methods.

To be more specific, the problem arises because the following two rules for hash codes are
contradicting when the hash code is based on the database id:

1. The hash code of an object mustn't change.

2. Equal objects must have equal hash code.

For objects in the database, the hash code is based on the id. For new objects, which
doesn't have an id yet, we fall back to the system hash code. But, what happens when we
save the new object to the database? If nobody has asked for the hash code it is safe to
use the id, otherwise we must stick with the system hash code. Now, imagine that we load
the same object from the database in another Hibernate session. What will now happen?
The loaded object will have it's hash code based on the id but the original object is still
using the system hash code, which most likely is not the same as the id. Yet, the equals()
method returns true. This is a violation of the contract for the equals method. If these two
objects are used in a set it may cause unexpected behaviour. Therefore, do not put new
objects in a set, or other collection, that calls the hashCode() method before the object
is saved to the database.

See also:

• "Hibernate in action", chapter 3.4 "Understanding object identity", page 87-90

• "Hibernate in action", chapter 4.1.4 "The scope of object identity", page 119-121

• "Hibernate in action", chapter 4.1.6 "Implementing equals() and hashCode(), page 122-126

• Hibernate reference documentation: 4.3. Implementing equals() and hashCode()5

No final methods
No methods should be tagged with the final keyword. This is a requirement to be able to use
the proxy feature of Hibernate, which we need for performance reasons.

See also:

• Hibernate reference documentation: 4.1.3. Prefer non-final classes6

• Hibernate reference documentation: 21.1.3. Single-ended association proxies7

Second-level cache
To gain performance we use the second-level cache of Hibernate. It is a transparent fea-
ture that doesn't affect the code in any way. The second-level cache is configured in the
hibernate.cfg.xml and ehcache.xml configuration files and not in the individual class map-
ping files. BASE is shipped with a standard configuration, but different deployment scenarios
may have to fine-tune the cache settings for that particular hardware/software setup. It is be-
yond the scope of this document to discuss this issue.

The second-level cache is suitable for objects that are rarely modified but are often needed. For
example, we do not expect the user information represented by the UserData object to change
very often, but it is displayed all the time as the owner of various items. Before coming up with
a good caching strategy we have to answer the following questions:

1. Should objects of this class be cached at all?

2. How long timeout should we use?

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/persistent-classes.html#persistent-classes-equalshashcode
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/persistent-classes.html#persistent-classes-pojo-final
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/performance.html#performance-fetching-proxies

Core developer reference

360

3. How many objects should we keep in memory or on disk?

The first question is the most important. Good candidates are classes with few objects that
change rarely, but are read often. Also, objects which are linked to by many other objects are
good candidates. The UserData class is an example which matches all three requirements. The
TagData class is an example which fulfils the first two. The BioMaterialEventData class is
on the other hand a bad cache candidate, since it is not linked to any other object than a
BioMaterialData object.

The answer to the second question depends on how often an object is modified. For most objects
this time is probably several days or months, but we would not gain much by keeping objects
in the cache for so long. Suddenly, the information has changed and we won't risk that old
information is kept that long. We have set the timeout to 1 hour for all classes so far, and we
don't recommend a longer timeout. The only exception is for immutable objects, that cannot be
changed at all, which may have an infinite timeout.

The answer to the third question depends a lot on the hardware (available memory). With lots
of memory we can afford to cache more objects. Caching to disk is not really necessary if the
database is on the same machine as the web server, but if it is on another machine we have to
consider the network delay to connect to the database versus the disk access time. The default
configuration does not use disk cache.

See also:

• "Hibernate in action", chapter 5.3 "Caching theory and practice", page 175-194.

• Hibernate reference documentation: 21.2. The Second Level Cache8

Proxies
Proxies are also used to gain performance, and they may have some impact on the code. Proxies
are created at runtime (by Hibernate) as a subclass of the actual class but are not populated
with data until some method of the object is called. The data is loaded from the database the
first time a method other than getId() is called. Thus, we can avoid loading data that is not
needed at a particular time.

There can be a problem with using the instanceof operator with proxies and the table-per-
class-hierarchy mapping. For example, if we have the abstract class Animal and subclasses Cat
and Dog. The proxy of an Animal is a runtime generated subclass of Animal, since we do not
know if it is a Cat or Dog. So, x instanceof Dog and x instanceof Cat would both return
false. If we hadn't used a proxy, at least one of them would always be true.

Proxies are only used when a not-null object is linked with many-to-one or one-to-one from
another object. If we ask for a specific object by id, or by a query, we will never get a proxy.
Therefore, it only makes sense to enable proxies for classes that can be linked from other classes.
One-to-one links on the primary key where null is allowed silently disables the proxy feature,
since Hibernate doesn't know if there is an object or not without querying the database.

Proxy vs. cache

The goal of a proxy and the second-level cache are the same: to avoid hitting the database. It is
perfectly possible to enable both proxies and the cache for a class. Then we would start with a
proxy and as soon as a method is called Hibernate would look in the second-level cache. Only if
it is not there it would be loaded from the database. But, do we really need a proxy in the first
place? Well, I think it might be better to use only the cache or only proxies. But, this also makes
it even more important that the cache is configured correctly so there is a high probability that
the object is already in the cache.

If a class has been configured to use the second-level cache, we recommend that proxies are
disabled. For child objects in a parent-child relationship proxies should be disabled, since they

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/performance.html#performance-cache

Core developer reference

361

have no other links to them than from the parent. If a class can be linked as many-to-one from
several other classes it makes sense to enable proxies. If we have a long chain of many-to-one
relations it may also make sense to enable proxies at some level, even if the second-level cache
is used. In that case we only need to create one proxy instead of looking up several objects in
the cache. Also, think about how a particular class most commonly will be used in a client
application. For example, it is very common to display the name of the owner of an item, but we
are probably not interested in displaying quota information for that user. So, it makes sense to
put users in the second-level cache and use proxies for quota information.

Batchable classes and stateless sessions

Hibernate has a stateless session feature. A stateless session has no first-level cache
and doesn't use the second-level cache either. This means that if we load an item with a
stateless session Hibernate will always traverse many-to-one and one-to-one associations
and load those objects as well, unless they are configured to use proxies.

BASE use stateless sessions for loading BatchableData items (reporters, raw data and
features) since they are many and we want to use as little memory as possible. Here it is
required that proxies are enabled for all items that are linked from any of the batchable
items, ie. RawBioAssay, ReporterType, ArrayDesignBlock, etc. If we don't do this Hi-
bernate will generate multiple additional select statements for the same parent item which
will affect performance in a bad way.

On the other hand, the proxies created from a stateless session cannot later be initialised.
We have to get the ID from the proxy and the load the object using the regular session.
But this can also results in lots of additional select statements so if it is known before that
we need some information it is recommended that a FETCH JOIN query is used so that
we get fully initialized objects instead of proxies to begin with.

Here is a table which summarises different settings for the second-level cache, proxies, batch
fetching and many-to-one links. Batch fetching and many-to-one links are discussed later in
this document.

First, decide if the second-level cache should be enabled or not. Then, if proxies should be
enabled or not. The table then gives a reasonable setting for the batch size and many-to-one
mappings. NOTE! The many-to-one mappings are the links from other classes to this one, not
links from this class.

The settings in this table are not absolute rules. In some cases there might be a good reason
for another combination. Please, write a comment about why the recommendations were not
followed.

Table 30.1. Choosing cache and proxy settings

Global configuration Class mapping Many-to-one mapping

Cache Proxy Batch-size Outer-join

no no* yes true

yes no* no false

no yes yes false

yes yes no false

* = Do not use this setting for classes which are many-to-one linked from a batchable class.

See also:

• "Hibernate in action", chapter 4.4.6 "Selecting a fetching strategy in mappings", page 146-147

• "Hibernate in action", chapter 6.4.1 "Polymorphic many-to-one associations", page 234-236

• Hibernate reference documentation: 21.1.3. Single-ended association proxies9

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/performance.html#performance-fetching-proxies

Core developer reference

362

Hibernate mappings
We use Javadoc tags to specify the database mapping needed by Hibernate. The tags are pro-
cessed by XDoclet at build time which generates the XML-based Hibernate mapping files.

XDoclet doesn't support all mappings

The XDoclet that we use was developed to generate mapping files for Hibernate 2.x. Since
then, Hibernate has released several 3.x versions, and the mapping file structure has
changed. Some changes can be handled by generating a corresponding 2.x mapping and
then converting it to a 3.x mapping at build time using simple search-and-replace opera-
tions. One such case is to update the DTD reference to the 3.0 version instead of the 2.0
version. Other changes can't use this approach. Instead we have to provide extra mappings
inside an XML files. This is also needed if we need to use some of the new 3.x features
that has no 2.x counterpart.

Class mapping

/**
 This class holds information about any data...
 @author Your name
 @since 3.0
 @hibernate.class table="`Anys`" lazy="false" batch-size="10"
*/
public class AnyData
 extends CommonData
{
 // Rest of class code...
}

The class declaration must contain a @hibernate.class Javadoc entry where Hibernate can
find the name of the table where items of this type are stored. The table name should generally
be the same as the class name, without the ending Data and in a plural form. For example
UserData � Users. The back-ticks (`) around the table name tells Hibernate to enclose the name
in whatever the actual database manager uses for such things (back-ticks in MySQL, quotes for
an ANSI-compatible database).

Always set the lazy attribute

The lazy attribute enables/disables proxies for the class. Do not forget to specify this
attribute since the default value is true. If proxies are enabled, it may also make sense to
specify a batch-size attribute. Then Hibernate will load the specified number of items
in each SELECT statement instead of loading them one by one. It may also make sense to
specify a batch size when proxies are disabled, but then it would probably be even better
to use eager fetching by setting outer-join="true" (see many-to-one mapping).

Classes that are linked with a many-to-one association from a batchable class must spec-
ify lazy="true". Otherwise the stateless session feature of Hibernate may result in a
large number of SELECT:s for the same item, or even circular loops if two or more items
references each other.

Remember to enable the second-level cache

Do not forget to configure settings for the second-level cache if this should be enabled.
This is done in the hibernate.cfg.xml and ehcache.xml.

See also:

• "Hibernate in action", chapter 3.3 "Defining the mapping metadata", page 75-87

• Hibernate reference documentation: 5.1.3. Entity10

Property mappings
Properties such as strings, integers, dates, etc. are mapped with the @hibernate.property
Javadoc tag. The main purpose is to define the database column name. The column names

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#mapping-declaration-class

Core developer reference

363

should generally be the same as the get/set method name without the get/set prefix, and with
upper-case letters converted to lower-case and an underscore inserted. Examples:

• getAddress() � column="`address`"

• getLoginComment() � column="`login_comment`"

The back-ticks (`) around the column name tells Hibernate to enclose the name in whatever the
actual database manager uses for such things (back-ticks in MySQL, quotes for an ANSI-com-
patible database).

String properties

public static int long MAX_STRINGPROPERTY_LENGTH = 255;
private String stringProperty;
/**
 Get the string property.
 @hibernate.property column="`string_property`" type="string"
 length="255" not-null="true"
*/
public String getStringProperty()
{
 return stringProperty;
}
public void setStringProperty(String stringProperty)
{
 this.stringProperty = stringProperty;
}

Do not use a greater value than 255 for the length attribute. Some databases has that as
the maximum length for character columns (ie. MySQL). If you need to store longer texts use
type="text" instead. You can then skip the length attribute. Most databases will allow up to
65535 characters or more in a text field. Do not forget to specify the not-null attribute.

You should also define a public constant MAX_STRINGPROPERTY_LENGTH containing the maxi-
mum allowed length of the string.

Numerical properties

private int intProperty;
/**
 Get the int property.
 @hibernate.property column="`int_property`" type="int" not-null="true"
*/
public int getIntProperty()
{
 return intProperty;
}
public void setIntProperty(int intProperty)
{
 this.intProperty = intProperty;
}

It is also possible to use Integer, Long or Float objects instead of int, long and float. We
have only used it if null values have some meaning.

Boolean properties

private boolean booleanProperty;
/**
 Get the boolean property.

Core developer reference

364

 @hibernate.property column="`boolean_property`"
 type="boolean" not-null="true"
*/
public boolean isBooleanProperty()
{
 return booleanProperty;
}
public void setBooleanProperty(boolean booleanProperty)
{
 this.booleanProperty = booleanProperty;
}

It is also possible to use a Boolean object instead of boolean. It is only required if you absolutely
need null values to handle special cases.

Date values

private Date dateProperty;
/**
 Get the date property. Null is allowed.
 @hibernate.property column="`date_property`" type="date" not-null="false"
*/
public Date getDateProperty()
{
 return dateProperty;
}
public void setDateProperty(Date dateProperty)
{
 this.dateProperty = dateProperty;
}

Hibernate defines several other date and time types. We have decided to use the type="date"
type when we are only interested in the date and the type="timestamp" when we are interested
in both the date and time.

See also:

• "Hibernate in action", chapter 3.3.2 "Basic property and class mappings", page 78-84

• "Hibernate in action", chapter 6.1.1 "Built-in mapping types", page 198-200

• Hibernate reference documentation: 5.1.4. property11

• Hibernate reference documentation: 5.2.2. Basic value types12

Many-to-one mappings

private OtherData other;
/**
 Get the other object.
 @hibernate.many-to-one column="`other_id`" not-null="true" outer-join="false"
*/
public OtherData getOther()
{
 return other;
}
public void setOther(OtherData other)
{
 this.other = other;
}

We create a many-to-one mapping with the @hibernate.many-to-one tag. The most important
attribute is the column attribute which specifies the name of the database column to use for

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#mapping-declaration-property
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#mapping-types-basictypes

Core developer reference

365

the id of the other item. The back-ticks (`) around the column name tells Hibernate to enclose
the name in whatever the actual database manager uses for such things (back-ticks in MySQL,
quotes for an ANSI-compatible database).

We also recommend that the not-null attribute is specified. Hibernate will not check for null
values, but it will generate table columns that allow or disallow null values. See it as en extra
safety feature while debugging. It is also used to determine if Hibernate uses LEFT JOIN or
INNER JOIN in SQL statements.

The outer-join attribute is important and affects how the cache and proxies are used. It can
take three values: auto, true or false. If the value is true Hibernate will always use a join
to load the linked object in a single select statement, overriding the cache and proxy settings.
This value should only be used if the class being linked has disabled both proxies and the
second-level cache, or if it is a link between a child and parent in a parent-child relationship.
A false value is best when we expect the associated object to be in the second-level cache or
proxying is enabled. This is probably the most common case. The auto setting uses a join if
proxying is disabled otherwise it uses a proxy. Since we always know if proxying is enabled or
not, this setting is not very useful. See Table 30.1, “Choosing cache and proxy settings” (page
361) for the recommended settings.

See also:

• "Hibernate in action", chapter 3.7 "Introducing associations", page 105-112

• "Hibernate in action", chapter 4.4.5-4.4.6 "Fetching strategies", page 143-151

• "Hibernate in action", chapter 6.4.1 "Polymorphic many-to-one associations", page 234-236

• Hibernate reference documentation: 5.1.7. Mapping one to one and many to one associations13

Many-to-many and one-to-many mappings
There are many variants of mapping many-to-many or one-to-many, and it is not possible to give
examples of all of them. In the code these mappings are represented by Set:s, Map:s, List:s, or
some other collection object. The most important thing to remember is that (in our application)
the collections are only used to maintain the links between objects. They are (in most cases) not
used for returning objects to client applications, as is the case with the many-to-one mapping.

For example, if we want to find all members of a group we do not use the GroupData.getUsers()
method, instead we will execute a database query to retrieve them. The reason for this design is
that the logged in user may not have access to all users and we must add a permission checking
filter before returning the user objects to the client application. Using a query will also allow
client applications to specify sorting and filtering options for the users that are returned.

// RoleData.java
private Set<UserData> users;
/**
 Many-to-many from roles to users.
 @hibernate.set table="`UserRoles`" lazy="true"
 @hibernate.collection-key column="`role_id`"
 @hibernate.collection-many-to-many column="`user_id`"
 class="net.sf.basedb.core.data.UserData"
*/
public Set<UserData> getUsers()
{
 if (users == null) users = new HashSet<UserData>();
 return users;
}
void setUsers(Set<UserData> users)
{
 this.users = users;
}

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#d0e7576

Core developer reference

366

As you can see this mapping is a lot more complicated than what we have seen before. The
most important thing is the lazy attribute. It tells Hibernate to delay the loading of the related
objects until the set is accessed. If the value is false or missing, Hibernate will load all objects
immediately. There is almost never a good reason to specify something other than lazy="true".

Another important thing to remember is that the getter method must always return the same
object that Hibernate passed to the setter method. Otherwise, Hibernate will not be able to detect
changes made to the collection and as a result will have to delete and then recreate all links. To
ensure that the collection object is not changed we have made the setUsers() method package
private, and the getUsers() will create a new HashSet for us only if Hibernate didn't pass one
in the first place.

Let's also have a look at the reverse mapping:

// UserData.java
private Set<RoleData> roles;
/**
 Many-to-many from users to roles
 @hibernate.set table="`UserRoles`" lazy="true"
 @hibernate.collection-key column="`user_id`"
 @hibernate.collection-many-to-many column="`role_id`"
 class="net.sf.basedb.core.data.RoleData"
*/
Set<RoleData> getRoles()
{
 return roles;
}
void setRoles(Set<RoleData> roles)
{
 this.roles = roles;
}

The only real difference here is that both the setter and the getter methods are package private.
This is a safety measure because Hibernate will get confused if we modify both ends. Thus, we
are forced to always add/remove users to/from the set in the RoleData object. The methods in
the UserData class are never used by us. Note that we do not have to check for null and create
a new set since Hibernate will handle null values as an empty set.

So, why do we need the second collection at all? It is never accessed except by Hibernate, and
since it is lazy it will always be "empty". The answer is that we want to use the relation in HQL
statements. For example:

SELECT ... FROM RoleData rle WHERE rle.users ...
SELECT ... FROM UserData usr WHERE usr.roles ...

Without the second mapping, it would not have been possible to execute the second HQL state-
ment. The inverse mapping is also important in parent-child relationships, where it is used to
cascade delete the children if a parent is deleted (see below).

Do not use the inverse="true" setting

Hibernate defines an inverse="true" setting that can be used with the @hibernate.set
tag. If specified, Hibernate will ignore changes made to that collection. However, there is
one problem with specifying this attribute. Hibernate doesn't delete entries in the associ-
ation table, leading to foreign key violations if we try to delete a user. The only solutions are
to skip the inverse="true" attribute or to manually delete the object from all collections
on the non-inverse end. The first alternative is the most efficient since it only requires a
single SQL statement. The second alternative must first load all associated objects and
then issue a single delete statement for each association.

Core developer reference

367

In the "Hibernate in action" book they have a very different design where they recommend
that changes are made in both collections. We don't have to do this since we are only
interested in maintaining the links, which is always done in one of the collections.

Parent-child relationships

When one or more objects are tightly linked to some other object we talk about a parent-child
relationship. This kind of relationship becomes important when we are about to delete a parent
object. The children cannot exist without the parent so they must also be deleted. Luckily, Hi-
bernate can do this for us if we specify a cascade="delete" option for the link. This example
is a one-to-many link between client and help texts.

// ClientData.java
private Set<HelpData> helpTexts;
/**
 This is the inverse end.
 @see HelpData#getClient()
 @hibernate.set lazy="true" inverse="true" cascade="delete"
 @hibernate.collection-key column="`client_id`"
 @hibernate.collection-one-to-many class="net.sf.basedb.core.data.HelpData"
*/
Set<HelpData> getHelpTexts()
{
 return helpTexts;
}

void setHelpTexts(Set<HelpData> helpTexts)
{
 this.helpTexts = helpTexts;
}

// HelpData.java
private ClientData client;
/**
 Get the client for this help text.
 @hibernate.many-to-one column="`client_id`" not-null="true"
 update="false" outer-join="false" unique-key="uniquehelp"
*/
public ClientData getClient()
{
 return client;
}
public void setClient(ClientData client)
{
 this.client = client;
}

This show both sides of the one-to-many mapping between parent and children. As you can
see the @hibernate.set doesn't specify a table, since it is given by the class attribute of the
@hibernate.collection-one-to-many tag.

In a one-to-many mapping, it is always the "one" side that handles the link so the "many" side
should always be mapped with inverse="true".

Maps

Another type of many-to-many mapping uses a Map for the collection. This kind of mapping is
needed when the association between two objects needs additional data to be kept as part of
the association. For example, the permission (stored as an integer value) given to users that are
members of a project. Note that you should use a Set for mapping the inverse end.

Core developer reference

368

// ProjectData.java
private Map<UserData, Integer> users;
/**
 Many-to-many mapping between projects and users including permission values.
 @hibernate.map table="`UserProjects`" lazy="true"
 @hibernate.collection-key column="`project_id`"
 @hibernate.index-many-to-many column="`user_id`"
 class="net.sf.basedb.core.data.UserData"
 @hibernate.collection-element column="`permission`" type="int" not-null="true"
*/
public Map<UserData, Integer> getUsers()
{
 if (users == null) users = new HashMap<UserData, Integer>();
 return users;
}
void setUsers(Map<UserData, Integer> users)
{
 this.users = users;
}

// UserData.java
private Set<ProjectData> projects;
/**
 This is the inverse end.
 @see ProjectData#getUsers()
 @hibernate.set table="`UserProjects`" lazy="true"
 @hibernate.collection-key column="`user_id`"
 @hibernate.collection-many-to-many column="`project_id`"
 class="net.sf.basedb.core.data.ProjectData"
*/
Set<ProjectData> getProjects()
{
 return projects;
}
void setProjects(Set<ProjectData> projects)
{
 this.projects = projects;
}

See also:

• "Hibernate in action", chapter 3.7 "Introducing associations", page 105-112

• "Hibernate in action", chapter 6.2 "Mapping collections of value types", page 211-220

• "Hibernate in action", chapter 6.3.2 "Many-to-many associations", page 225-233

• Hibernate reference documentation: Chapter 7. Collection Mapping14

• Hibernate reference documentation: Chapter 24. Example: Parent/Child15

One-to-one mappings
A one-to-one mapping can come in two different forms, depending on if both objects should have
the same id or not. We start with the case were the objects can have different id:s and the link
is done with an extra column in one of the tables. The example is from the mapping between
physical bioassays and arrayslides.

// PhysicalBioAssayData.java
private ArraySlideData arrayslide;
/**
 Get the array slide
 @hibernate.many-to-one column="`arrayslide_id`" not-null="false"
 unique="true" outer-join="false"
*/
public ArraySlideData getArraySlide()
{

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/collections.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/example-parentchild.html

Core developer reference

369

 return arrayslide;
}
public void setArraySlide(ArraySlideData arrayslide)
{
 this.arrayslide = arrayslide;
}

// ArraySlideData.java
private PhysicalBioAssayData bioassay;
/**
 Get the bioassay.
 @hibernate.one-to-one property-ref="arraySlide"
*/
public PhysicalBioAssayData getPhysicalBioAssay()
{
 return hybridization;
}
public void setPhysicalBioAssay(PhysicalBioAssayData bioassay)
{
 this.bioassay = bioassay;
}

As you can see, we use the @hibernate.many-to-one mapping with unique="true" for the
bioassay side. This will force the database to only allow the same array slide to be linked once.
Also note that since, not-null="false", null values are allowed and it doesn't matter which
end of the relation that is inserted first into the database.

For the array slide end we use a @hibernate.one-to-one mapping and specify the name of
the property on the other end that we are linking to. One important thing to remember is to
keep both ends synchronized. This should usually be done at the core layer and not in the data
layer. Doing it in the data layer may effectively disable lazy loading if the synchronization code
causes proxy initialization.

The second form of a one-to-one mapping is used when both objects must have the same id
(primary key). The example is from the mapping between users and passwords.

// UserData.java
/**
 @hibernate.id column="`id`" generator-class="foreign"
 @hibernate.generator-param name="property" value="password"
*/
public int getId()
{
 return super.getId();
}
private PasswordData password;
/**
 Get the password.
 @hibernate.one-to-one class="net.sf.basedb.core.data.PasswordData"
 cascade="all" outer-join="false" constrained="true"
*/
public PasswordData getPassword()
{
 if (password == null)
 {
 password = new PasswordData();
 password.setUser(this);
 }
 return password;
}
void setPassword(PasswordData user)
{
 this.password = password;
}

// PasswordData.java
private UserData user;
/**

Core developer reference

370

 Get the user.
 @hibernate.one-to-one class="net.sf.basedb.core.data.UserData"
*/
public UserData getUser()
{
 return user;
}
void setUser(UserData user)
{
 this.user = user;
}

In this case, we use the @hibernate.one-to-one mapping in both classes. The
constrained="true" tag in UserData tells Hibernate to always insert the password first,
and then the user. The makes it possible to use the (auto-generated) id for the password as
the id for the user. This is controlled by the mapping for the UserData.getId() method,
which uses the foreign id generator. This generator will look at the password property, ie.
call getPassword().getId() to find the id for the user. Also note the initialisation code
and cascade="all" tag in the UserData.getPassword() method. This is needed to avoid
NullPointerException:s and to make sure everything is created and deleted properly.

See also:

• "Hibernate in action", chapter 6.3.1 "One-to-one association", page 220-225

• Hibernate reference documentation: 5.1.7. 5.1.7. Mapping one to one and many to one asso-

ciations16

Class documentation
The documentation for the class doesn't have to be very lengthy. A single sentence is usually
enough. Provide tags for the author, version, last modification date and a reference to the cor-
responding class in the net.sf.basedb.core package.

/**
 This class holds information about any items.

 @author Your name
 @since 2.0
 @see net.sf.basedb.core.AnyItem
 @base.modified $Date: 2007-08-17 09:18:29 +0200 (Fri, 17 Aug 2007) $
 @hibernate.class table="`Anys`" lazy="false"
*/
public class AnyData
 extends CommonData
{
...
}

Method documentation
Write a short one-sentence description for all public getter methods. You do not have document
the parameters or the setter methods, since it would just be a repetition. Methods defined by
interfaces are documented in the interface class. You should not have to write any documentation
for those methods.

For the inverse end of an association, which has only package private methods, write a notice
about this and provide a link to to non-inverse end.

// UserData.java
private String address;
/**
 Get the address for the user.

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#d0e7576
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#d0e7576

Core developer reference

371

 @hibernate.property column="`address`" type="string" length="255"
*/
public String getAddress()
{
 return address;
}
public void setAddress(String address)
{
 this.address = address;
}

private Set<GroupData> groups;
/**
 This is the inverse end.
 @see GroupData#getUsers()
 @hibernate.set table="`UserGroups`" lazy="true" inverse="true"
 @hibernate.collection-key column="`user_id`"
 @hibernate.collection-many-to-many column="`group_id`"
 class="net.sf.basedb.core.data.GroupData"
*/
Set<GroupData> getGroups()
{
 return groups;
}
void setGroups(Set<GroupData> groups)
{
 this.groups = groups;
}

Field documentation
Write a short one-sentence description for public static final fields. Private fields does not
have to be documented.

/**
 The maximum length of the name of an item that can be
 stored in the database.
 @see #setName(String)
*/
public static final int MAX_NAME_LENGTH = 255;

UML diagram
Groups of related classes should be included in an UML-like diagram to show how they are
connected and work together. For example we group together users, groups, roles, etc. into an
authentication UML diagram. It is also possible that a single class may appear in more than
one diagram. For more information about how to create UML diagrams see Section 29.2, “Create
UML diagrams with MagicDraw” (page 340).

30.3.5. Item-class rules
This document contains important information about item classes for the BASE develop-
er. Item classes are classes that handles the business logic for the data classes in the
net.sf.basedb.core.data package. In general there is one item class for each data class. When
extending the database and creating new classes it is important that it follows the design of the
already existing code.

Basic class and interface hierarchy

To simplify the development of items, we have created a set of abstract classes and interfaces. A real
class for an item must inherit from one of those classes and may implement any of the interfaces if
needed. The strucure is similar to the structure found in the net.sf.basedb.core.data package
(See Section 28.2, “The Data Layer API” (page 270)).

Core developer reference

372

Figure 30.1. Basic class and interface hierarchy

Core developer reference

373

Access permissions

Each item class must be prepared to handle the access permissions for the logged in user. The base
classes will do most of the required work, but not everything. There are four cases which the item
class must be aware of:

• Initialise permissions in the initPermissions() method.

• Check for write permission in settter methods.

• Check for use permission when creating associations to other items.

• Make sure the getQuery() method returns only items with at least read permission.

Initialise permissions

The permissions for an item are initialised by a call to the initPermissions() method. This method
is called as soon as the item becomes attached to a DbControl object, which is responsible for man-
aging items in the database. The initPermissions() method shuld be overridden by subclasses
that needs to grant or deny permissions that is not granted or denied by default. When overriding
the initPermissions() method it is important to:

• Combine the additional permissions with those that was passed as parameters. Use the binary OR
operator (|) with the result from the Permission.grant() and Permission.deny() methods
to do this.

• Call super.initPermissions(). Otherwise, no permissions will be set all, resulting in an Per-
missionDeniedException almost immediately.

Here is an example from the OwnedItem class. If the currently logged in user is the same as the
owner of the item, DELETE, SET_OWNER and SET_PERMISSION permissions are granted. Remember
that delete permission also implies READ, USE and WRITE permissions.

// OwnedItem.java
void initPermissions(int granted, int denied)
{
 UserData owner = getData().getOwner();
 // owner may be null for new items
 if (owner != null && owner.getId() == getSessionControl().getLoggedInUserId())
 {
 granted |= Permission.grant(Permission.DELETE, Permission.SET_OWNER,
 Permission.SET_PERMISSION);
 }
 super.initPermissions(granted, denied);
}

Here is another example for News items, which grants read permission to anyone (even if not logged
in) if today is between the start and end date of the news entry:

// News.java
void initPermissions(int granted, int denied)
 throws BaseException
{
 long today = new Date().getTime();
 long startDate = getData().getStartDate().getTime();
 long endDate = getData().getEndDate() == null ? 0 :
 getData().getEndDate().getTime()+24*3600*1000;
 if (startDate <= today && (endDate == 0 || today <= endDate))

Core developer reference

374

 {
 granted |= Permission.grant(Permission.READ);
 }
 super.initPermissions(granted, denied);
}

A third example from the Help class which is a child item to Client. Normally you will get READ
permission on all child items if you have READ permission on the parent item, and CREATE, WRITE and
DELETE permissions if you have WRITE permission on the parent item. In this case you don't have to
override the initPermissions() method if the child class extends the ChildItem class. Instead, it
should implement the getSharedParent() method. The ChildItem.initPermissions() will take
care of checking the permissions on the parent instead of on the child. Note that this only works
if the parent itself hasn't overridden the initPermissions() method, since that method is never
called in this case.

// Help.java
public class Help
 extends ChildItem
 implements Nameable

...

SharedData getSharedParent()
{
 return getData().getClient();
}

Permissions granted by the base classes

BasicItem
This class will grant or deny permissions as the are defined by the roles the logged in user is
a member of. If a subclass extend directly from this class, it is common that the initPermis-
sions() method needs to be overridden.

ChildItem
This class grant READ permission if the logged in user has READ permission on the parent item,
and CREATE, WRITE and DELETE permission if the logged in user has WRITE (configurable) per-
mission on the parent item.

OwnedItem
The owner of an item gets DELETE, SET_OWNER and SET_PERMISSION permissions. Delete per-
mission also implies read, use and write permissions. Subclasses to this class usually doesn't
have to overide the initPermissions() method.

SharedItem
The logged in user get permissions as specified in the associated ItemKey and/or ProjectmKey.
Subclasses to this class usually doesn't have to overide the initPermissions() method.

Checking for write permission in setter methods

An item class is required to check for WRITE permission in each method that modifies the state from
a public method. Example:

public void setName(String name)
 throws PermissionDeniedException
{
 checkPermission(Permission.WRITE);
 // ... rest of code
}

Core developer reference

375

Warning

If you forget this, an unauthorised user may be able to change the properties of an item. WRITE
permissions are not checked in any other central place in the core code. Place the permission
check on the first line in the method, before any data validation. This will make it easier to
spot places where the permission check is forgotten.

Checking for use permission when creating associations

An item class is required to check for USE permission on associated objects in each method that
modifies the association from a public method. Example from the Protocol class:

public void setFile(File file)
 throws PermissionDeniedException
{
 checkPermission(Permission.WRITE);
 if (file != null) file.checkPermission(Permission.USE);
 getData().setFile(file == null ? null : file.getData());
}

Warning

If you forget this, an unauthorised user may be able to change the association of an item. USE
permissions are not checked in any other central place in the core code. Place the permission
check as early in the method as possible after it has been validated that the value isn't null.

Making sure the getQuery() method only returns items with read permission

This method can be one of the most complex ones of the entire class. The query it generates must
always be compatible with the initPermissions() method. Ie. it must not return any items for
which the initPermissions() method doesn't grant READ permission. And the other way around,
if the initPermissions() method grants READ permission to and item, the query should be able
to return it. The simplest case is if you doesn't override the initPermissions() method in such a
way that it affects READ permissions. In this case you can just create a query and return it as it is.
The query implementation will take care of the rest.

// Client.java
public static ItemQuery<Client> getQuery()
{
 return new ItemQuery<Client>(Client.class);
}

A common case is when an item is the child of another item. Usually the parent is a Shareable
item which means that we optimally should check the item and project keys on the parent when
returning the children. But, this is a rather complex operation, so in this case we have choosen
a different approach. The getQuery() method of child items must take a parameter of the parent
type. The query can the safely return all children of that parent, since having a reference to the
parent item, means that READ permission is granted. A null value for the parent is allowed, but then
we fall back to check for role permissions only (with the help of a ChildFilter object).

// Help.java
private static final QueryRuntimeFilter RUNTIME_FILTER =
 new QueryRuntimeFilterFactory.ChildFilter(Item.HELP, Item.CLIENT);

public static ItemQuery<Help> getQuery(Client client)
{
 ItemQuery<Help> query = null;
 if (client != null)
 {

Core developer reference

376

 query = new ItemQuery<Help>(Help.class, null);
 query.restrictPermanent(
 Restrictions.eq(
 Hql.property("client"),
 Hql.entity(client)
)
);
 }
 else
 {
 query = new ItemQuery<Help>(Help.class, RUNTIME_FILTER);
 }
 return query;
}

There are many other variants of the getQuery() method, for example all items having to with the
authentication, User, Group, Role, etc. must check the logged in user's membership. We don't show
any more examples here. Take a look in the source code if you want more information. You can also
read Section 28.4, “The Query API” (page 320) for more examples.

Data validation

An item class must validate all data that is passed to it as parameters. There are three types of
validation:

1. Validation of properties that are independent of other properties. For example, the length of a
string or the value of number.

2. Validation of properties that depends on other properties on the same object. For example, we have
properties for the row and column counts, and then an array of linked objects for each position.

3. Validation of properties that depends on the values of other objects. For example, the login of a
user must be unique among all users.

For each of these types of validation we have choosen a strategy that is as simple as possible and
doesn't force us to complex requirements on the code for objects. First, we may note that case 1 is
very common, case 2 is very uncommon, and case 3 is just a bit more common than case 2.

Case 1 validation

For case 1 we choose to make the validation in the set method for each property. Example:

public void setName(String name)
 throws InvalidDataException
{
 checkPermission(Permission.WRITE);
 // Null is not allowed
 if (name == null) throw new InvalidUseOfNullException("name");
 // The name must not be too long
 if (name.length > MAX_NAME_LENGTH)
 {
 throw new StringTooLongException("name", name, MAX_NAME_LENGTH);
 }
 getData().setName(name);
}
// Note! In this case we should actually use NameableUtil instead

This will take care of all case 1 validation except that we cannot check properties that doesn't allow
null values if the method never is called. To solve this problem we have two strategies:

• Provide a default value that is set in the constructor. For example the name of a new user can
be initilised to "New user".

Core developer reference

377

• Use constructor methods with parameters for required objects.

Which strategy to use is decided from case to case. Failure to validate a property will usually result
in a database exception, so no real harm is done, except that we don't want to show the ugly error
messages to our users. The News class uses a mix of the two strategies:

// News.java
public static News getNew(DbControl dc, Date startDate, Date newsDate)
{
 News n = dc.newItem(News.class);
 n.setName("New news");
 n.setStartDate(startDate);
 n.setNewsDate(newsDate);
 n.getData().setEntryDate(new Date());
 return n;
}
...
public void setStartDate(Date startDate)
 throws PermissionDeniedException, InvalidDataException
{
 checkPermission(Permission.WRITE);
 getData().setStartDate(DateUtil.setNotNullDate(startDate, "startDate"));
}
...

Case 2 validation

This case requires interception of saves and updates and a call to the validate() method on the
item. This automatically done on items which implements the Validatable interface. Internally
this functionality is implemented by the DbControl class, which keeps a "commit queue" that holds
all loaded items that implements the Validatable interface. When DbControl.commit() is called,
the queue is iterated and the validate() method is called for each item. Here is another example
from the News class which must validate that the three dates (startDate, newsData and endData)
are in proper order:

// News.java
void validate()
 throws InvalidDataException, BaseException
{
 super.validate();
 Date startDate = getData().getStartDate();
 Date newsDate = getData().getNewsDate();
 Date endDate = getData().getEndDate();
 if (startDate.after(newsDate))
 {
 throw new InvalidDataException("Invalid date. startDate is after newsDate.");
 }
 if (endDate != null && newsDate.after(endDate))
 {
 throw new InvalidDataException("Invalid date. newsDate is after endDate.");
 }
}

Case 3 validation

Usually, we do not bother with checking for this case, but delegates to the database to do the check.
The reason that we do not bother to check for this case is that we can't be sure to succeed even if we
first check the database. It is possible that during the time between our check and the actual insert
or update, another transaction has already inserted another object into the database that violates
the check. This is not perfect and the error messages are a bit ugly, but under the circumstances
it is the best we can do.

Core developer reference

378

Participating in transactions
Sometimes it is neccessary for an item to intercept certain events. For example, the File object
needs to know if a transaction has been completed or rollbacked so it can clean up temporary files
that have been used. We have created the Transactional interface, which is a tagging interface
that tells the core to call certain methods on the item at certain events. The interface doesn't contain
any methods, the item class needs to override methods from the BasicItem class. The following
events/methods have been defined:

Note

The methods are always called for new items and items that are about to be deleted. It is
only neccessary for an item to implement the Transactional interface if it needs to act on
UPDATE events.

onBeforeCommit(Action)
This method is called before a commit is issued to Hibernate. It should be used by an item when it
needs to update dependent objects before anything is written to the database. Note that nothing
has been sent to the database yet and new items has not got an id when this method is called.
If you override this method you must call super.onBeforeCommit() to allow the superclass to
do whatever it needs to do. Here is an example from the OwnedItem class which sets the owner
to the currently logged in user, if no owner has been explicitely specified:

void onBeforeCommit(Transactional.Action action)
 throws NotLoggedInException, BaseException
{
 super.onBeforeCommit(action);
 if (action == Transactional.Action.CREATE && getData().getOwner() == null)
 {
 org.hibernate.Session session = getDbControl().getHibernateSession();
 int loggedInuserId = getSessionControl().getLoggedInUserId();
 UserData owner =
 HibernateUtil.loadData(session, UserData.class, loggedInuserId);
 if (owner == null) throw new NotLoggedInException();
 getData().setOwner(owner);
 }
}

setProjectDefaults(Project)
This method is called before inserting new items into the database to allow items to propagate
default values from the active project. The method is only called when a project is active. Sub-
classes should always call super.setProjectDefaults() and should only set default values
that hasn't been explicitely set by client code (including setFoo(null) calls).

Note

With few exceptions a project can only hold ItemSubtype items as default values. This
means that the item that is going to use the default value should implement the Subty-
peable interface and list the other related item types in the @SubtypableRelatedItems
annotation.

// DerivedBioAssay.java
@Override
@SubtypableRelatedItems({Item.PHYSICALBIOASSAY, Item.DERIVEDBIOASSAYSET, Item.SOFTWARE,
 Item.HARDWARE, Item.PROTOCOL})
public ItemSubtype getItemSubtype()
{
 return getDbControl().getItem(ItemSubtype.class, getData().getItemSubtype());
}

/**
 Set protocol, hardware and software from project default settings.

Core developer reference

379

*/
@Override
void setProjectDefaults(Project activeProject)
 throws BaseException
{
 super.setProjectDefaults(activeProject);
 if (!hasPermission(Permission.WRITE)) return;

 DbControl dc = getDbControl();
 if (!protocolHasBeenSet)
 {
 ProtocolData protocol =
 (ProtocolData)activeProject.findDefaultRelatedData(dc, this, Item.PROTOCOL, false);
 if (protocol != null)
 {
 getData().setProtocol(protocol);
 protocolHasBeenSet = true;
 }
 }
 if (!hardwareHasBeenSet)
 {
 HardwareData hardware =
 (HardwareData)activeProject.findDefaultRelatedData(dc, this, Item.HARDWARE, false);
 if (hardware != null)
 {
 getData().setHardware(hardware);
 hardwareHasBeenSet = true;
 }
 }
 if (!softwareHasBeenSet)
 {
 SoftwareData software =
 (SoftwareData)activeProject.findDefaultRelatedData(dc, this, Item.SOFTWARE, false);
 if (software != null)
 {
 getData().setSoftware(software);
 softwareHasBeenSet = true;
 }
 }
}

onAfterInsert()
This method is called on all items directly after Hibernate has inserted it into the database. This
method can be used in place of the onBeforeCommit() in case the id is needed.

onAfterCommit(Action)
This method is called after a successful commit has been issued to Hibernate. It should be used
by an item which needs to do additional processing. For example the File object may need to
cleanup temporary files. This method should not use the database and it must not fail, since
it is impossible to rollback anything that has already been committed to the database. If the
method fails, it should log an exception with the Application.log() method.

onRollback(Action)
This method is called after an unsuccessful commit has been issued to Hibernate. The same
rules as for the onAfterCommit() method applies to this method.

Internally this functionality is implemented by the DbControl class, which keeps a "commit queue"
that holds all new objects, all objects that are about to be deleted and all objects that implements
the Transactional interface. When DbControl.commit() is called, the queue is iterated and on-
BeforeCommit() is called for each item, and then either onAfterCommit() or onRollback(). The
Action parameter is of an enumeration type which can hae three different values:

• CREATE: This is a new item which is saved to the database for the first time.

• UPDATE: This is an existing item, which has been modified.

• DELETE: This is an existing item, which is now being deleted from the database

Core developer reference

380

Template code for item classes

The AnyItem.java17 and AChildItem.java18 files contains two complete item classes with lots of tem-
plate methods. Please copy and paste as much as you want from these, but do not forget to change
the specific details.

Class declaration

An item class should extend one of the four classes: BasicItem, OwnedItem, SharedItem and Com-
monItem. Which one depends on what combination of interfaces are needed for that item. The most
common situation is probably to extend the CommonItem class. Do not forget to include the GNU
licence and copyright statement. Also note that the corresponding data layer class is specified as
a generics parameter of the superclass.

/*
 $Id $

 Copyright (C) 2011 Your name

 This file is part of BASE - BioArray Software Environment.
 Available at http://base.thep.lu.se/

 BASE is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 3
 of the License, or (at your option) any later version.

 BASE is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with BASE. If not, see <http://www.gnu.org/licenses/>.
*/
package net.sf.basedb.core;
import net.sf.basedb.core.data.AnyData;
/**
 This class is used to represent an AnyItem in BASE.

 @author Your name
 @since 3.0
 @see AnyData
 @base.modified $Date$
*/
public class AnyItem
 extends CommonItem<AnyData>
{
 ...
}

Static methods and fields

getNew(DbControl)
This method is used to create a new item. The new item must be created by calling the
DbControl.newItem().

/**
 Create a new <code>AnyItem</code> item.

17 ../../examples/AnyItem.java.txt
18 ../../examples/AChildItem.java.txt

../../examples/AnyItem.java.txt
../../examples/AChildItem.java.txt
../../examples/AnyItem.java.txt
../../examples/AChildItem.java.txt

Core developer reference

381

 @param dc The <code>DbControl</code> which will be used for
 permission checking and database access
 @return The new <code>AnyItem</code> item
 @throws BaseException If there is an error
*/
public static AnyItem getNew(DbControl dc)
 throws BaseException
{
 AnyItem a = dc.newItem(AnyItem.class);
 a.setName("New any item");
 return a;
}

The method must initialise all not-null properties to a sensible default values or it may take
values as parameters:

// User.java
public static User getNew(DbControl dc, String login, String password)
 throws BaseException
{
 User u = dc.newItem(User.class);
 u.setName("New user");
 u.setLogin(login);
 u.setPassword(password);
 int defaultQuotaId = SystemItems.getId(Quota.DEFAULT);
 org.hibernate.Session session = dc.getHibernateSession();
 QuotaData defaultQuota =
 HibernateUtil.loadData(session, QuotaData.class, defaultQuotaId);
 u.getData().setQuota(defaultQuota);
 return u;
}

When the default value is an association to another item, use the data object (QuotaData) not
the item object (Quota) to create the association. The reason for this is that the logged in user
may not have read permission to the default object. Ie. The logged in user may have permission
to create users, but not permission to read quota.

getById(DbControl, int)
This method is used to load an item from the database when the id of that item is known. Use the
DbControl.loadItem() method to load the item. If the item is not found an ItemNotFoundEx-
ception should be thrown.

/**
 Get an <code>AnyItem</code> item when you know the id.

 @param dc The <code>DbControl</code> which will be used for
 permission checking and database access.
 @param id The id of the item to load
 @return The <code>AnyItem</code> item
 @throws ItemNotFoundException If an item with the specified
 id is not found
 @throws PermissionDeniedException If the logged in user doesn't
 have read permission to the item
 @throws BaseException If there is another error
*/
public static AnyItem getById(DbControl dc, int id)
 throws ItemNotFoundException, PermissionDeniedException, BaseException
{
 AnyItem a = dc.loadItem(AnyItem.class, id);
 if (a == null) throw new ItemNotFoundException("AnyItem[id="+id+"]");
 return a;
}

Core developer reference

382

getQuery()
See Section , “Making sure the getQuery() method only returns items with read permission”
(page 375).

Constructors

Each item class needs only one constructor, which takes an object of the corresponding data class
as a parameter. The constructor should never be invoked directly. Use the DbControl.newItem()
method.

AnyItem(AnyData anyData)
{
 super(anyData);
}

Core methods

isUsed()
This method is defined by the BasicItem class and is called whenever we need to know if there
are other items referencing the current item. The main use case is to let client applications know
if it is safe to delete an object or not. The default implementation checks AnyToAny links between
items. A subclass must override this method if it can be referenced by other items. A subclass
should always call super.isUsed() as a last check if it is not used by any other item. The
method should check if it is beeing used (referenced by) some other item. For example, a Tag is
used if there is an Extract with that tag. The simplest way to check if the item is used is to use
a predefined query that counts the number of references.

/**
 Check if:

 Some {@link Extract}:s are marked with this tag

*/
public boolean isUsed()
 throws BaseException
{
 org.hibernate.Session session = getDbControl().getHibernateSession();
 org.hibernate.Query query = HibernateUtil.getPredefinedQuery(session,
 "GET_EXTRACTS_FOR_TAG", "count(*)");
 /*
 SELECT {1}
 FROM ExtractData ext
 WHERE ext.tag = :tag
 */
 query.setEntity("tag", this.getData());
 boolean used = HibernateUtil.loadData(Long.class, query) > 0;
 return used || super.isUsed();
}

Sometimes it may be harder to decide what counts as using an item or not. Some examples:

• An event for a sample does not count as using the sample, since they hava a parent-child
relationship. Ie. deleting the sample will also delete all events associated with it. On the other
hand, the protocol registered for the event counts as using the protocol, because deleting the
protocol should not delete all events.

• As a general rule, if one item is used by a second item, then the second item cannot be used by
the first. It could lead to situations where it would be impossible to delete either one of them.

Core developer reference

383

getUsingItems()
Find all items that are referencing this one. This method is related to the isUsed() method and
is defined in the BasicItem class. The default implementation load all items linked via an Any-
ToAny link that has the usingTo flag set to true. A subclass must override this method if it can
be referenced to be used by other items. A subclass should always call super.getUsingItems()
first and then add extra items to the Set returned by that call. For example, a Tag should load
all Extract:s with that tag.

/**
 Get all:

 {@link Extract}:s marked with this tag

*/
@Override
public Set<ItemProxy> getUsingItems()
{
 Set<ItemProxy> using = super.getUsingItems();
 org.hibernate.Session session = getDbControl().getHibernateSession();

 // Extracts
 org.hibernate.Query query = HibernateUtil.getPredefinedQuery(session,
 "GET_EXTRACTS_FOR_TAG", "ext.id");
 /*
 SELECT {1}
 FROM ExtractData ext
 WHERE ext.tag = :tag
 */
 query.setEntity("tag", this.getData());
 addUsingItems(using, Item.EXTRACT, query);
 return using;
}

initPermissions(int, int)
See Section , “Initialise permissions” (page 373).

validate()
See the section called “Data validation” (page 376).

onBeforeCommit(Action), setProjectDefaults(Project), onAfterInsert(), onAfterCommit(Action) ,
onRollback(Action)

See the section called “Participating in transactions” (page 378).

Getter and setter methods

The get methods for basic property types are usually very simple. All that is needed is to return the
value. Be aware of date values though, they are mutable and must be copied.

/**
 Get the value of the string property.
*/
public String getStringProperty()
{
 return getData().getStringProperty();
}

/**
 Get the value of the int property.
*/
public int getIntProperty()
{
 return getData().getIntProperty();

Core developer reference

384

}

/**
 Get the value of the boolean property.
*/
public boolean isBooleanProperty()
{
 return getData().isBooleanProperty();
}

/**
 Get the value of the date property.
 @return A date object or null if unknown
*/
public Date getDateProperty()
{
 return DateUtil.copy(getData().getDateProperty());
}

The set methods must always check for WRITE permission and validate the parameters. There are
plenty of utility method to help with this.

/**
 The maximum length of the string property. Check the length
 agains this value before calling {@link #setStringProperty(String)}
 to avoid exceptions.
*/
public static final int MAX_STRINGPROPERTY_LENGTH =
 AnyData.MAX_STRINGPROPERTY_LENGTH;

/**
 Set the value of the string property. Null values are not
 allowed and the length must be shorter than
 {@link #MAX_STRINGPROPERTY_LENGTH}.
 @param value The new value
 @throws PermissionDeniedException If the logged in user
 doesn't have write permission
 @throws InvalidDataException If the value is null or too long
*/
public void setStringProperty(String value)
 throws PermissionDeniedException, InvalidDataException
{
 checkPermission(Permission.WRITE);
 getData.setStringProperty(
 StringUtil.setNotNullString(value, "stringProperty", MAX_STRINGPROPERTY_LENGTH)
);
}

/**
 Set the value of the int property. The value mustn't be less than
 zero.
 @param value The new value
 @throws PermissionDeniedException If the logged in user
 doesn't have write permission
 @throws InvalidDataException If the value is less than zero
*/

public void setIntProperty(int value)
 throws PermissionDeniedException, InvalidDataException
{
 checkPermission(Permission.WRITE);
 getData.setIntProperty(
 IntegerUtil.checkMin(value, "intProperty", 0)
);
}

/**
 Set the value of the boolean property.
 @param value The new value

Core developer reference

385

 @throws PermissionDeniedException If the logged in user
 doesn't have write permission
*/
public void setBooleanProperty(boolean value)
 throws PermissionDeniedException
{
 checkPermission(Permission.WRITE);
 getData.setBooleanProperty(value);
}

/**
 Set the value of the date property. Null values are allowed.
 @param value The new value
 @throws PermissionDeniedException If the logged in user
 doesn't have write permission
*/
public void setDateProperty(Date value)
 throws PermissionDeniedException
{
 checkPermission(Permission.WRITE);
 getData().setDateProperty(DateUtil.setNullableDate(value, "dateProperty"));
}

Many-to-one associations

Many-to-one associations require sligthly more work. First of all, the item must be connected to
a DbControl since it is used to load the information from the database and crete the new item
object. Secondly, we must make sure to check for use permission on the referenced object in the
setter method.

/**
 Get the associated other item.
 @return The OtherItem item
 @throws PermissionDeniedException If the logged in user
 doesn't have read permission
 @throws BaseException If there is another error
*/
public OtherItem getOtherItem()
 throws PermissionDeniedException, BaseException
{
 return getDbControl().getItem(OtherItem.class, getData().getOtherItem());
}

/**
 Set the associated item. Null is not allowed.
 @param other The other item
 @throws PermissionDeniedException If the logged in user
 doesn't have write permission
 @throws InvalidDataException If the other item is null
 @throws BaseException If there is another error
*/
public void setOtherItem(OtherItem other)
 throws PermissionDeniedException, InvalidDataException, BaseException
{
 checkPermission(Permission.WRITE);
 if (otherItem == null) throw new InvalidUseOfNullException("otherItem");
 getData().setOtherItem(otherItem.getData());
}

One-to-many and many-to-many associations

If the association is a one-to-many or many-to-many it becomes a little more complicated again.
There are many types of such associations and how they are handled usually depends on if the
are set:s, map:s, list:s or any other type of collections. In all cases we need methods for adding
and removing items, and a method that returns a Query that can list all associated items. The first

Core developer reference

386

example if for parent/child relationship, which is a one-to-many association where the children are
mapped as a set.

/**
 Create a child item for this any item.
 @return The new AChildItem object
 @throws PermissionDeniedException If the logged in user doesn't have
 write permission
 @throws BaseException If there is another error
*/
public AChildItem newChildItem()
 throws PermissionDeniedException, BaseException
{
 checkPermission(Permission.WRITE);
 return AChildItem.getNew(getDbControl(), this);
}

/**
 Get a query that will return all child items for this any item.
 @return A {@link Query} object
*/
public ItemQuery<AChildItem> getChildItems()
{
 return AChildItem.getQuery(this);
}

The second example is for the many-to-many associations between users and roles, which is also
mapped as a set.

// Role.java
/**
 Add a user to this role.
 @param user The user to add
 @throws PermissionDeniedException If the logged in user doesn't
 have write permission for the role and
 use permission for the user
 @throws InvalidDataException If the user is null
*/
public void addUser(User user)
 throws PermissionDeniedException, InvalidDataException
{
 checkPermission(Permission.WRITE);
 if (user == null) throw new InvalidUseOfNullException("user");
 user.checkPermission(Permission.USE);
 getData().getUsers().add(user.getData());
}

/**
 Remove a user from this role.
 @param user The user to remove
 @throws PermissionDeniedException If the logged in user doesn't
 have write permission for the role and
 use permission for the user
 @throws InvalidDataException If the user is null
*/
public void removeUser(User user)
 throws PermissionDeniedException, InvalidDataException
{
 checkPermission(Permission.WRITE);
 if (user == null) throw new InvalidUseOfNullException("user");
 user.checkPermission(Permission.USE);
 getData().getUsers().remove(user.getData());
}

/**
 Check if the given user is member of this role or not.

Core developer reference

387

 @param user The user to check
 @return TRUE if the user is member, FALSE otherwise
*/
public boolean isMember(User user)
{
 return getData().getUsers().contains(user.getData());
}

/**
 Get a query that returns the users that
 are members of this role. This query excludes users that the logged
 in user doesn't have permission to read.
 @see User#getQuery()
*/
public ItemQuery<User> getUsers()
{
 ItemQuery<User> query = User.getQuery();
 query.joinPermanent(
 Hql.innerJoin("roles", Item.ROLE.getAlias())
);
 query.restrictPermanent(
 Restrictions.eq(
 Hql.alias(Item.ROLE.getAlias()),
 Hql.entity(this)
)
);
 return query;
}

// User.java
/**
 Get a query that returns the roles where this user is a
 member. The query excludes roles that the logged in user doesn't have
 permission to read.
 @see Role#getQuery()
*/
public ItemQuery<Role> getRoles()
{
 ItemQuery<Role> query = Role.getQuery();
 query.joinPermanent(
 Hql.innerJoin("users", Item.USER.getAlias())
);
 query.restrictPermanent(
 Restrictions.eq(
 Hql.alias(Item.USER.getAlias()),
 Hql.entity(this)
)
);
 return query;
}

Note that we have a query method in both classes, but the association can only be changed from
the Role. We recommend that modifier methods are put in one of the classes only. The last example
is the many-to-many relation between projects and users which is a map to the permission for the
user in the project.

// Project.java
/**
 Grant a user permissions to this project. Use an empty set
 or null to remove the user from this project.

 @param user The user
 @param permissions The permissions to grant, or null to revoke all permissions
 @throws PermissionDeniedException If the logged in user doesn't have
 write permission for the project
 @throws InvalidDataException If the user is null
 @see Permission
*/

Core developer reference

388

public void setPermissions(User user, Set<Permission> permissions)
 throws PermissionDeniedException, InvalidDataException
{
 checkPermission(Permission.WRITE);
 if (user == null) throw new InvalidUseOfNullException("user");
 if (permissions == null || permissions.isEmpty())
 {
 getData().getUsers().remove(user.getData());
 }
 else
 {
 getData().getUsers().put(user.getData(), Permission.grant(permissions));
 }
}

/**
 Get the permissions for a user in this project.
 @param user The user for which we want to get the permission
 @return A set containing the granted permissions, or an
 empty set if no permissions have been granted
 @throws InvalidDataException If the user is null
 @see Permission
*/
public Set<Permission> getPermissions(User user)
 throws InvalidDataException
{
 if (user == null) throw new InvalidUseOfNullException("user");
 return Permission.fromInt(getData().getUsers().get(user.getData()));
}

/**
 Get a query that returns the users that
 are members of this project. This query excludes users that the logged
 in user doesn't have permission to read.
 @see User#getQuery()
*/
public ItemQuery<User> getUsers()
{
 ItemQuery<User> query = User.getQuery();
 query.joinPermanent(
 Hql.innerJoin("projects", Item.PROJECT.getAlias())
);
 query.restrictPermanent(
 Restrictions.eq(
 Hql.alias(Item.PROJECT.getAlias()),
 Hql.entity(this)
)
);
 return query;
}

// User.java
/**
 Get a query that returns the projects where this user is a
 member. The query excludes projects that the logged in user doesn't have
 permission to read. The query doesn't include projects where this user is
 the owner.
 @see Project#getQuery()
*/
public ItemQuery<Project> getProjects()
{
 ItemQuery<Project> query = Project.getQuery();
 query.joinPermanent(
 Hql.innerJoin("users", Item.USER.getAlias())
);
 query.restrictPermanent(
 Restrictions.eq(
 Hql.index(Item.USER.getAlias(), null),
 Hql.entity(this)
)
);
 return query;

Core developer reference

389

}

As you can see from these examples, the code is very different depending on the type of association.
We don't give any more examples here, but if you are unsure you should look in the source code
to get more inspiration.

30.3.6. Batch-class rules
TODO

30.3.7. Test-class rules
TODO

Part V. FAQ

391

Chapter 31. Frequently Asked
Questions with answers
This chapter presents a list of solutions to common problems and tasks in BASE. The information is
is collected from the mailing lists, private communication, and from issues frequently encountered
in BASE introduction courses. If you have BASE solutions that should be added to this chapter
please contact us through the usual communication channels, see Chapter 3, Resources (page 9)
for contact information.

31.1. Reporter related questions with an-
swers
Q: My favourite database is not used for annotating reporters. Can I add my database to BASE

and if so, how should it proceed?

A: Yes, you can add resources to annotate reporters. You will need to upgrade BASE and you may
have to contact your system administrator for doing so.

In order to change, remove or add annotation fields attached to reporters, you will need mod-
ify the extended-properties.xml file and run a BASE update. Please refer to section Sec-
tion 20.2, “Installation instructions” (page 150) for information about both processes. Once
done with the upgrade, you'll have to define a new reporter import plug-in. Instructions can
be found in Chapter 21, Plug-ins and extensions (page 163).

Q: I have made a mistake while loading my reporters. How can I delete them all in one go ?

A: The reporter import plug-in can be executed in delete mode. Run the plug-in again and select
the same file you used for the import. Select the Mode=delete option. In the Error handling
section select the Reporter is used=skip option. This will delete all reporters that was created
in the previous import.

Q: I get a message "Error: Unable to import root bioassay. Item not found:
Reporter[externalId=AFFX-2315060]" when I try to create a root bioassayset.

A: BASE requires all reporters (probesets in Affymetrix speak) to be stored in the database before
they can be used. The reporter information is typically imported from a reporter annotation
file but in some cases the reporter annotation file supplied by Affymetrix fails to describe all
reporters (probesets) on a chip. BASE will refuse to store data related to such chips until the
missing reporters are added to the database. Hence the rejection of the new root bioassayset.

The resolution is straightforward, simply import the probeset information from the CDF file
associated with the array design. The catch is that normal BASE user credential is not enough
to perform the import therefore someone with proper credential (the BASE server administra-
tor is one of them) must perform the import. Follow the instructions at Section 9.2.1, “Import/
update reporter from files” (page 68) to import reporters. Make sure to select plug-in option
to ignore already existing reporters when starting the import otherwise the existing reporter
annotations will be changed. The goal here is to add missing reporters to allow BASE work
with your data. The CDF file does not contain any annotation information and cannot be used
to annotate reporters.

31.2. Array design related questions with
answers
Q: What it the best way to create an array design in BASE when starting from a GAL file?

Frequently Asked Ques-
tions with answers

392

A: This requires some work but here is the procedure to remember:

A gal file tells where Reporters have been spotted on an array. So a GAL file can be used to
do 2 things

1. Define the features of an array design for a non-Affymetrix platform using the Reporter Map
importer plug-in.

To do so, after having created an new array design, go to the single-item view by of the newly
created array design. Click on the Import the button. If you do not see it, it means that you
have not enough privileges (contact the administrator).

This starts the plug-in configuration wizard. Select the auto detect option and in the next
step your GAL file.

Now, there is the risk that no file format has been defined for GAL files. This must be done
by an administrator or other user with proper privileges. See Section 21.2, “Plug-in config-
urations” (page 171) for information about this.

Once done (and if everything went fine), you can see from the Array Design list view that the
Has features entry has been modified and is set to 'Yes (n)' where n indicates the number
of spots (features) for this array.

Note

Features can also be loaded from a Genepix GPR file with the same procedure.

2. Define the Reporters present on the array design using the Reporter importer plug-in.

To do so, Go to View � Reporters and click on Import. This starts a Reporter Importer
plug-in

More information about importing Reporters can be found in Chapter 9, Reporters (page 67)

Q: I am confused. What is the difference between Reporter map importer, Print map importer
and Reporter importer?

A: The reporter map and print map importer are used to import features to an array design. The
latter one must be used when your array design is connected to PCR plates and supports two
file formats: Biorobotics TAM and Molecularware MWBR. See http://www.flychip.org.uk/pro-
tocols/robotic_spotting/fileformats.php for more information about those file formats. If you
are only using commercial platforms or if you do not use plates in the array LIMS, you have no
need for the print map importer and should use the reporter map importer instead.

The reporter importer is used to load reporter annotations into BASE.

31.3. Biomaterial, Protocol, Hardware, Soft-
ware related questions with answers
Q: I have just created a new item but I can not see it. Am I doing something wrong?

A: Try clearing the filter. To do so: use the view / presets dropdown and select the clear filter
entry. This will remove all characters in the search boxes and all preselection of item in the
drop down lists. If this does not solve your problem, then check if the view / presets has the
owned by me entry selected.

Q: I can only see XX columns in the list view but I know I have a lot more information. Is there
a way I can customise the column display?

http://www.flychip.org.uk/protocols/robotic_spotting/fileformats.php
http://www.flychip.org.uk/protocols/robotic_spotting/fileformats.php

Frequently Asked Ques-
tions with answers

393

A: Yes, you can display many more columns. See Section 5.4.3, “Configuring which columns to
show” (page 34).

Q: Is it possible to sort the values in a column in the list view?

A: Of course it is. See Section 5.4.1, “Ordering the list” (page 32).

Q: Is it possible to sort the annotation types from Annotation & parameters tab in the single-item
view?

A: No. This is not possible at the moment. The annotations are always sorted by the name of the
annotation type.

Q: I have to create pools of samples in my experiment due to scarcity of the biological material.
Can I represent those pooled samples is BASE?

A: Yes, you can. From the sample list select a number of samples by marking their checkboxes.
Then click on the Pool button. For more information see Section 16.2.1, “Create sample” (page
102). Pooling can also be applied to extracts.

Q: I need to create a new item subtype but the New… button is grey and does not work. Why?

A: Your privileges are not high enough and you have not been granted permission to create sub-
types. Contact your BASE administrator. For more information about permissions, please refer
to Chapter 22, Account administration (page 178).

Q: I have created an Annotation Type Temperature and shared it to everyone but when I want to
use it for annotating a sample, I can not find it! How is that?

A: The most likely explanation is that this particular annotation type has been declared as a
protocol parameter. This means that it will only be displayed in BASE if you have used a sample
creation protocol which uses that parameter.

Q: I have carried out an experiment using both Affymetrix and Agilent arrays but I can not select
more than one raw data type in BASE. What should I do?

A: In this particular case and because you are using 2 different raw data file formats, you will have
to split your experiment in 2. One experiment for those samples processed using Affymetrix
platform and another one using Agilent platform. You do not necessarily have to provide all
information about the samples again but simply create new raw bioassay data which can be
grouped in a new experiment.

31.4. Data Files and Raw Data related ques-
tions with answers
Q: It seems that BASE does not support the data files generated by my brand new scanner. Is it

possible to add it to BASE?

A: Yes it is possible to extend BASE so that it can support your system. You will need to define a
new raw data type for BASE by modifying the raw-datatypes.xml configuration file.

Then, you will have to run the updatedb.sh to make the new raw data type available to the
system. See Section 20.1, “Upgrade instructions” (page 149).

Finally, you will have to configure a raw data import plug-in in order to be able to create raw-
bioassays. See Section 21.2, “Plug-in configurations” (page 171) and Section 17.2.3, “Import
raw data” (page 127) for further information.

Q: Are Affymetrix CDT and CAB files supported by BASE?

Frequently Asked Ques-
tions with answers

394

A: There is no support for CDT or CAB. Currently only CDF and CEL files are supported by the
Affymetrix plug-ins. Annotation files (.csv) are used for uploading probeset (reporter in BASE
language) information. The issue of supporting CDT and CAB files is an import and a plug-in
issue. There are two ways to solve this:

1. Write code that treats the files in a proper way and submit the solution to the developer
team (preferred route).

2. Submit a ticket through http://base.thep.lu.se explaining what you'd like to see with respect
to to CDT and CAB files.

Note

To include CDT and CAB support to BASE, the file formats must be open, that is we
must be able to read them without proprietary non-distributable code.

Q: Are Illumina data files supported by BASE?

A: Yes, but not by default. There is an Illumina package1 that provides Illumina support to BASE.
The package is straightforward to install, visit the package site for more information.

31.5. Analysis related questions with an-
swers
Q: Is it possible to use the formula filter to filter for null values (or non-null values)?

A: Yes, use an expression like: ch(0) != null. This will match all values, except null values.

Q: OK, I have uploaded 40 CEL files in BASE but are there any tool to perform normalisation on
Affymetrix raw data?

A: Yes, there is. BASE team has created a plug-in based on RMAExpress methods from Bolstad

and Irizarry2 so you can normalise Affymetrix data sets of reasonable size (not 1000 CEL files
at a time though even though this might depend on your set-up...) The plug-in is not included

in a standard BASE installation, but can be downloaded from the BASE plug-ins web site3.

Q: I am trying to import raw bioassays using the import button in the experiment properties view
but BASE claims that Could not find any plugins that you have permission to use. I know
there are import plug-ins available to me since I have successfully imported data before, why
does the import fail?

A: All raw bioassays in the experiment are already imported. In this case the BASE server cannot
detect anything to import and returns the somewhat confusing message. Simply add the non-
imported raw bioassays to the experiment and try again.

http://base.thep.lu.se
http://baseplugins.thep.lu.se/wiki/net.sf.basedb.illumina
http://rmaexpress.bmbolstad.com/
http://rmaexpress.bmbolstad.com/
http://baseplugins.thep.lu.se/wiki/se.lu.thep.affymetrix

Part VI. Appendix

396

Appendix A. Core plug-ins shipped
with BASE
Here is a categorized list of all plug-ins installed with a pristine BASE installation. Some plug-ins
must be configured before use. The requirements are listed below and configuration samples are
given for for plug-ins that supports/requires configurations. Use the right-click menu of the mouse
to download these XML files for further import into BASE (see Section 21.2.2, “Importing and ex-
porting plug-in configurations” (page 173)).

Contributed plug-ins are available at http://baseplugins.thep.lu.se 1. These plug-ins are either de-
veloped outside the core team or require external non-Java compilers and tools. These packages are
excluded from the BASE package to make the installation process somewhat simpler.

A.1. Core analysis plug-ins
BASE 1 plug-in executor

Simulates the plug-in runner from Base 1.2. Must be configured before use. The recommend-
ed approach is to use the plug-in configuration file from the BASE 1.2 installation. See Sec-
tion 21.1.3, “BASE version 1 plug-ins” (page 168) for more information.

External program executor
Export data from BASE and execute an external program for analysis. Afterwards, data can be
imported back to BASE. A configuration is needed to run this plug-in. The plug-in is very flexible
and can handle several export/import data formats (which can be extended by adding special
export/import plug-ins). Here is a list of the built-in exporter/importer implementations.

• BASEFile exporter for the ExternalProgramExecutor: Exporter implementation that export
data in BASE file format.

• BASEfile importer for the ExternalProgramExecutor: Importer implementation that can
import data in BASEfile format.

• BFS exporter for the ExternalProgramExecutor: Exporter implementation that export data
in BFS file format.

• BFS importer for the ExternalProgramExecutor: Importer implementation that can import
data in BFS file format.

• File-only importer for the ExternalProgramExecutor: Importer implementation that simply
upload all created files to BASE.

Note

This plug-in can in theory handle everything (and more) that the BASE 1 plug-in executor
can, except that it doesn't do any translation of field names used in BASE 1.

Formula extra value calculator
Calculates extra values for a bioassay set using a user-defined formula. No configuration is
needed.

Formula filter
Filters a bioassay set using a user-defined formula. No configuration is needed.

Formula intensity transformer
Creates a new bioassay set with transformed intensity values using a user-defined formula. No
configuration is needed.

1 http://baseplugins.thep.lu.se

http://baseplugins.thep.lu.se
http://baseplugins.thep.lu.se

Core plug-ins
shipped with BASE

397

Manual derived bioassay creator, Manual transformation
Allows a user to manually register an external analysis procedure that has happened outside of
BASE and to register the parameters used and the generated output files. On plug-in create a
derived bioassay set and the other a transformation/bioassay set. Both plug-ins need a config-
uration to register possible parameters and output files.

Normalisation: Lowess
Normalisation using LOWESS algorithm. No configuration is needed.

Normalisation: Median ratio
Normalisation based on median ratio. No configuration is needed.

A.2. Core export plug-ins
Unless otherwise noted, none of the export plug-ins need a configuration.

BASEfile exporter
Exports bioassay set data to serial or matrix BASEfile format.

BFS exporter
Exports bioassay set data to BFS format.

GAL exporter
Exports the features of an array design to a GAL file.

Help texts exporter
Exports help texts to an XML file.

Packed file exporter
Exports files and directories as an archive-file. A configuration is needed to specify compression
format. Support for the following formats are included in BASE:

• BZipped TAR archive: Collects the selected files/directories into a TAR file and compress it
with BZIP2.

• GZipped TAR archive: Collects the selected files/directories into a TAR file and compress it
with GZIP.

• TAR archive: Collects the selected files/directories into an uncompressed TAR file.

• ZIP archive: Collects the selected files/directories into a ZIP file.

See Section 25.6.4, “File packer plug-ins” (page 236) for information about implementing support
for other file formats.

Plate mapping exporter
Exports plate mappings.

Plugin configuration exporter
Exports plug-in configurations to an XML file.

Table exporter
Exports data from table listings in the web-interface to a TAB-separated text file or XML file.

A.3. Core import plug-ins
There are many import plug-ins in BASE. Their use are in most cases seamless and the user does
not need to be aware of detailed plug-in usage. However, there is a set of batch import plug-ins

Core plug-ins
shipped with BASE

398

that are targeted for importing multiple items into BASE. These batch importers require some user
knowledge for proper and efficient use of them. The batch plug-ins are listed in the Section A.3.1,
“Core batch import plug-ins” (page 399) sub-section below together with pointers to further reading
on how to use the plug-ins.

Affymetrix CDF probeset importer
This plug-in is used to import probesets (reporters in BASE language) from an Affymetrix CDF
file. It can be used in import mode from the reporter list view and from the array design view and
in verification mode from the array design view. The plug-in can only set the name and ID of the
reporters, since the CDF file doesn't contains any annotation information. Probesets already in
BASE will not be affected by the import. No configuration is needed.

Annotation importer
Imports annotation to any annotatable item in BASE. Configurations are supported but not
required.

GTF reporter importer
Imports reporter information from GTF (Gene transfer format) files. Configurations are supported
but not required. BASE has pre-installed configurations that uses the gene_id or transcript_id
as reporter id.

GTF reporter map importer
Imports array design features from GTF (Gene transfer format) files. A configuration is needed.
BASE has pre-installed configurations that uses the gene_id or transcript_id as reporter id.

Help texts importer
Imports help texts from an XML file into BASE. No configuration is needed.

Illumina raw data importer
This plug-in is used to import raw data from Illumina BeadStudion data files. No configuration
is needed.

Plate importer
Imports plates from a simple flat file. A configuration is needed. BASE has pre-installed config-
urations for 96- and 384-well plates.

Plate mapping importer
Imports plate mappings exported by the Plate mapping exporter. No configuration is needed.

Plugin configuration importer
Imports plug-in configurations from an XML file. No configuration is needed.

Print map importer
Imports array design features from TAM or MwBR files. This plug-in require that the array design
is connected with plates. No configuration is needed.

Raw data importer
Imports raw data from a text file. A configuration is needed. BASE has pre-installed configura-
tions for GenePix and Cufflinks data files.

Reporter importer
Import reporter (probeset) information from a file. A configuration is not needed, but is recom-
mended. BASE has pre-installed configurations for several different file types.

Since BASE 2.0, available configurations:

Reporter map importer
Imports array design features from text files. This plug-in can be used without connection to
plates. A configuration is needed. BASE has pre-installed configurations for some file formats.

Core plug-ins
shipped with BASE

399

A.3.1. Core batch import plug-ins
The batch import plug-ins all work similarly and their usage is described in Section 18.2, “Batch
import of data” (page 140). All batch importers have support for configurations but can also be used
without.

Array batch importer
Imports and updates array batches in a batch.

Array design importer
Imports and updates array designs in a batch.

Array slide importer
Imports and updates array slides in a batch.

Bioplate importer
Imports and updates bioplates in a batch. Note that this import can't be used to put biomaterial
on the bioplates.

Biosource importer
Imports and updates biosources in a batch.

Derived bioassay importer
Imports and updates derived bioassays in a batch.

Extract importer
Imports and updates extracts in a batch.

Physical bioassay importer
Imports and updates physical bioassays in a batch.

Raw bioassay importer
Imports and updates raw bioassays in a batch.

Sample importer
Imports and updates samples in a batch.

A.4. Core intensity plug-ins
Formula intensity calculator

Calculate intensities from raw data using a user-defined formula. No configuration is needed,
but formulas must be defined using View � Formulas.

A.5. Uncategorized core plug-ins
Spot images creator

Converts a full-size image into JPEG images for each spot. No configuration is needed.

TAR file unpacker
Unpacks a tar file on the BASE file system. It also supports TAR files compressed with GZIP
or BZIP algorithms. This plug-in can be used to automatically unpack files during upload. No
configuration is needed.

ZIP file unpacker
Unpacks ZIP and JAR files on the BASE's file system. This plug-in can be used to automatically
unpack files during upload. No configuration is needed.

BZip2 file unpacker
Unpacks BZip2 compressed files to the BASE file system. This plug-in can be used to automat-
ically unpack files during upload. No configuration is needed.

Core plug-ins
shipped with BASE

400

GZip file unpacker
Unpacks GZip compressed files to the BASE file system. This plug-in can be used to automati-
cally unpack files during upload. No configuration is needed.

401

Appendix B. base.config reference
The base.config file is the main configuration file for BASE. It is located in the <basedir>/www/
WEB-INF/classes directory. Most configuration properties have sensible defaults or are only used
for advanced features. However, a few are required and may need to be specified or changed:

• db.dialect, db.driver, db.url, db.username, db.password: Settings for connecting to the database.

• userfiles: Setting that specify where uploaded files are stored on the BASE server.

• plugins.dir: Settings that specify where plug-ins and extensions are installed.

Database driver section
This section has parameters needed for the database connection, such as the database dialect,
username and password.

db.dialect
The Hibernate dialect to use when generating SQL commands to the database. Use:

• org.hibernate.dialect.MySQL5InnoDBDialect for MySQL

• org.hibernate.dialect.PostgreSQLDialect for PostgreSQL
Other dialects may work but are not supported.

db.driver
The JDBC driver to use when connecting to the database. Use:

• com.mysql.jdbc.Driver for MySQL

• org.postgresql.Driver for PostgreSQL
Other JDBC drivers may work but are not supported.

db.url
The connection URL that locates the BASE database. The exact syntax of the string depends on
the JDBC driver. Here are two examples which leaves all other settings to their defaults:

• jdbc:mysql://localhost/basedb for MySQL

• jdbc:postgresql:basedb for PostgreSQL
You can get more information about the parameters that are supported on the connection URL

by reading the documentation from MySQL1 and PostgreSQL2.

Note

For MySQL we recommend that you set the character encoding to UTF-8 and en-
able the server-side cursors feature. The latter option will reduce memory usage
since the JDBC driver does not have to load all data into memory. The value below
should go into one line jdbc:mysql://localhost/basedb?characterEncoding=UTF-
8&useCursorFetch=true&defaultFetchSize=100&useServerPrepStmts=true

db.dynamic.catalog
The name of the catalog where the dynamic database used to store analysed data is located. If
not specified the same catalog as the regular database is used. The exact meaning of catalog

1 http://dev.mysql.com/doc/refman/5.1/en/connector-j-reference-configuration-properties.html
2 http://jdbc.postgresql.org/documentation/81/connect.html

http://dev.mysql.com/doc/refman/5.1/en/connector-j-reference-configuration-properties.html
http://jdbc.postgresql.org/documentation/81/connect.html
http://dev.mysql.com/doc/refman/5.1/en/connector-j-reference-configuration-properties.html
http://jdbc.postgresql.org/documentation/81/connect.html

base.config reference

402

depends on the actual database. For MySQL the catalog is the name of the database so this
value is simply the name of the dynamic database. PostgreSQL does not support connecting
to multiple databases with the same connection so this should have the same value as the
database in the db.url setting.

db.dynamic.schema
The name of the schema where the dynamic database used to store analysed data is located.
MySQL does not have schemas so this value should be left empty. PostgreSQL supports schemas
and we recommend that the dynamic part is created in it's own schema to avoid mixing the
dynamic tables with the regular ones.

db.username
The username to connect to the database. The user should have full permission to both the
regular and the dynamic database.

db.password
The password for the user.

db.batch-size
The batch size to use when inserting/updating items with the Batch API. A higher value requires
more memory, a lower value degrades performance since the number of database connections
increases. The default value is 50.

db.queries
The location of an XML file which contains database-specific queries overriding those that does
not work from the /common-queries.xml file. Use:

• /mysql-queries.xml for MySQL

• /postgres-queries.xml for PostgreSQL
See also Section H.1, “mysql-queries.xml and postgres-queries.xml” (page 425).

db.extended-properties
The location of an XML file describing the extended properties for extendable item types, ie.
the reporters. The default value is /extended-properties.xml. See Appendix C, extended-
properties.xml reference (page 409) for more information about extended properties.

db.raw-data-types
The location of an XML file describing all raw data types and their properties. The default value is
/raw-data-types.xml. See Appendix D, Platforms and raw-data-types.xml reference (page
413) for more information about raw data types.

db.cleanup.interval
Interval in hours between database cleanups. Set this to 0 to disable (recommened for job
agents). The default value is 24. The cleanup will remove entries in the database that have been
orphaned due to other information that has been removed. For example, change history entries,
any-to-any links and permission keys.

Authentication section
This section describes parameters that are needed if you are going to use external authentication.
If you let BASE handle this you will not have to bother about these settings. See Section 26.8.14,
“Login manager” (page 261) for more information about external authentication.

auth.synchronize
If this setting is 1 or TRUE, BASE will synchronize the extra information (name, address, email,
etc.) sent by the authentication manager when a user logs in to BASE. This setting is ignored
if the manager does not provide extra information.

base.config reference

403

auth.cachepasswords
If passwords should be cached by BASE or not. If the passwords are cached a user may login to
BASE even if the external authentication server is down. The cached passwords are only used
if the external authentication does not answer properly.

auth.daystocache
How many days a cached password is valid if caching is enabled. A value of 0 caches the pass-
words forever.

Internal job queue section
This section contains setting that control the internal job queue. The internal job queue is a simple
queue that executes jobs more or less in the order they were added to the queue. To make sure
long-running jobs do not block the queue, there are four slots that uses the expected execution time
to decide if a job should be allowed to execute or not.

jobqueue.internal.enabled
If 0 or FALSE the internal job queue will be disabled.

jobqueue.internal.runallplugins
If 1 or TRUE the internal job queue will ignore the useInternalJobQueue flag specified
on plug-ins. If 0 or FALSE the internal job queue will only execute plug-ins which has
useInternalJobQueue=true

jobqueue.internal.signalreceiver.class
A class implementing the SignalReceiver interface. The class must have a pub-
lic no-argument constructor. If no value is specified the default setting is:
net.sf.basedb.core.signal.LocalSignalReceiver.

Change to net.sf.basedb.core.signal.SocketSignalReceiver if the internal job queue
must be able to receive signals from outside this JVM.

jobqueue.internal.signalreceiver.init
Initialisation string sent to SignalReceiver.init(). The syntax and meaning of the string
depends on the actual implementation that is used. Please see the Javadoc for more information.

jobqueue.internal.checkinterval
The number of seconds between checks to the database for jobs that are waiting for execution.

jobqueue.internal.shortest.threads, jobqueue.internal.short.threads,
jobqueue.internal.medium.threads, jobqueue.internal.long.threads

Maximum number of threads to reserve for jobs with a given expected execution time. A job with
a short execution time may use a thread from one of the slots with longer execution time. When
all threads are in use, new jobs will have to wait until an executing job has finished.

jobqueue.internal.shortest.threadpriority, jobqueue.internal.short.threadpriority,
jobqueue.internal.medium.threadpriority, jobqueue.internal.long.threadpriority

The priority to give to jobs. The priority is a value between 1 and 10. See http://
download.oracle.com/javase/6/docs/api/java/lang/Thread.html for more information about
thread priorities.

Job agent section
This section contains settings that BASE uses when communicating with external job agents. See
Section 20.3, “Installing job agents” (page 154) for more information about job agents.

agent.maxage
Number of seconds to keep job agent information in the internal cache. The information includes,
CPU and memory usage and the status of executing jobs. This setting controls how long the

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html
http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html

base.config reference

404

information is kept in the cache before a new request is made to the job agent. The default value
is 60 seconds.

agent.connection.timeout
The timeout in milliseconds to wait for a response from a job agent when sending a request to
it. The default timeout is 1000 milliseconds. This should be more than enough if the job agent
is on the internal network, but may have to be increased if it is located somewhere else.

Secondary storage controller
This section contains settings for the secondary storage controller. See Section 25.6.2, “Secondary
file storage plugins” (page 233) for more information about secondary storage.

secondary.storage.driver
The class name of the plug-in that acts as the secondary storage controller. BASE ships with
a simple plug-in that just moves files to another directory, but it is not enabled by default. The
class name of that plug-in is net.sf.basedb.core.InternalStorageController. If no class
is specified the secondary storage feature is disabled.

secondary.storage.init
Initialisation parameters sent to the plug-in when calling the init() method. The syntax and
meaning of this string depends on the plug-in. For the internal controller this is simply the path
to the secondary directory.

secondary.storage.interval
Interval in seconds between each execution of the secondary storage controller plug-in. If this
property is not specified, secondary.storage.time should be set, or the secondary storage feature
will be disabled.

secondary.storage.time
Time-point values specifying the time(s) of day that the secondary storage controller should be
executed. If present, this setting overrides the secondary.storage.interval setting. Time-point val-
ues are given as comma-separated list of two-digit, 24-based hour and two-digit minute values.
For example: 03:10,09:00,23:59.

Change history logging section
This section contains settings for logging the change history of items. Logging is disabled by default,
but BASE ships with one implementation that log changes to the database. To enable it, log in to
the web client with administrator privileges and enable the Database log manager extension. See
Section 26.8.9, “Logging managers” (page 258) for more information about implementing custom
logging.

changelog.show-in-web
A boolean value that specifies if the Change history tab should be visible in the web interface
or not. The change history tab will show log information that has been stored in the database
and it doesn't make sense to show this tab unless the Database log manager has been enabled.

Note

By default, only users that are members of the Administrator role have permission to
view the change history. To give other users the same permission, add the Change history
permission to the appropriate role(s).

changelog.dblogger.detailed-properties
A boolean value that specifies the amount of information that should be logged by the database
log manager. If set, the log will contain information about which properties that was modified
on each item, otherwise only the type of change (create, update, delete) is logged.

base.config reference

405

SMTP server section
This section contains settings for the SMTP server used for outgoing mail. This is optional, and if
not configured outgoing mail will be disabled.

mail.server.host
The host name of the SMTP server to use for outgoing mail. If not configured mailing functions
will be disabled.

mail.server.port
The port the SMTP server is listening on. If not configured a default port is used. Eg. 25 for
regular mail server, 465 for SSL mail server.

mail.server.ssl
A boolean value that specifies if the SMTP server is using SSL or not.

mail.server.tls
A boolean value that specifies if the SMTP server is using TLS or not.

mail.from.email
The email address that will be used as the sender of outgoing emails. If not configured mailing
functions will be disabled.

mail.from.name
Thename that will be used as the sender of outgoing emails. If not configured, a default name
is automatically generated using the host name of the BASE server.

Plug-ins and extensions
plugins.dir

The path to the directory where jar-files for external plug-ins and extensions are located. All new
plug-ins and extensions found in this directory, can be selected for installation, see Section 21.1,
“Managing plug-ins and extensions” (page 163).

plugins.autounload
Enable this setting to let BASE detect if a plug-in JAR file is changed and automatically load and
use the new code instead of the old code. This setting is useful for plug-in developers since they
don't have to restart the web server each time the plug-in is recompiled.

• true,yes,1 to enable

• false,no,0 to disable (default if no value is specified)
Note that extensions doesn't support this feature. Use the installation wizard to update an
extension.

extensions.disabled
A boolean flag that, if set, disables all external extensions. Plug-ins or core extensions will never
be disabled.

Other settings
userfiles

The path to the directory where uploaded and generated files should be stored. This is the pri-
mary file storage. See the section called “Secondary storage controller” (page 404) for informa-
tion about how to configure the secondary storage. Files are not stored in the same directory

base.config reference

406

structure or with the same names as in the BASE file system. The internal structure may con-
tain sub-directories.

permission.timeout
Number of minutes to cache a logged in user's permissions before reloading them. The default
value is 10. This setting affect how quickly a changed permission propagate to a logged in user.
Permissions are always reloaded when a user logs in.

cache.timeout
Number of minutes to keep user sessions in the internal cache before the user is automatically
logged out. The timeout is counted from the last access made from the user.

cache.static.disabled
If the static cache should be enabled or disabled. It is enabled by default. Disabling the static
cache may reduce performance in some cases. The static cache is used to cache processed in-
formation, for example images, so that the database doesn't have to be queried on every request.

cache.static.max-age
The maximum age in days of files in the static cache. Files that hasn't been accessed (read or
written) in the specified amount of time are deleted.

helptext.update
Defines if already existing helptexts in BASE should be overwritten when updating the program,
Section 20.1, “Upgrade instructions” (page 149)

• true will overwrite existing helptexts.

• false will leave the existing helptexts in database unchanged and only insert new helptexts.

locale.language, locale.country, locale.variant
Configure the server to a specific locale. The language and country should be valid ISO codes

as specified by the java.util.Locale3 documentation. The variant can be any value that is valid
as part of a filename.

Note

Note that language codes are usually lower-case but country codes are upper case. Eg. sv
is the language code for swedish, and SE is the country code.

This configuration can be used to provide translations to some parts of the web gui. The aim is to
externalize all hard-coded gui elements from the code but it's a long way before this is a reality.
The default text elements of the gui are shipped within the BASE jar files and doesn't have any
locale-specific dependency. This means that unless a more specific translation is provided the
default texts are always used as a fallback. Most of the default texts are found in property files in
the /net/sf/basedb/clients/web/resources directory inside the base-webclient-3.x.jar
file. Translations should be located in the same relative path either inside their own JAR file
or in the WEB-INF/classes directory. The file names should be extended with the language,
country and variant separated with an underscore. For example, files with a swedish translation
should be named *_sv.properties, and files with a swedish translation in Finland using the
'foo' variant should be named *_sv_FI_foo.properties.

Note

Note that it is valid to have empty values for language and/or country and still specify a
variant. Underscores are NOT collapsed. For example, in a swedish translation using the
'foo' variant the files should be named *_sv__foo.properties.

Important

All files should be saved in UTF-8 format.

3 http://download.oracle.com/javase/6/docs/api/java/util/Locale.html

http://download.oracle.com/javase/6/docs/api/java/util/Locale.html
http://download.oracle.com/javase/6/docs/api/java/util/Locale.html

base.config reference

407

SSL section
This section is for global configuration of SSL (HTTPS) connection settings used when BASE need to
access external file items. Note that users can re-configure SSL connections per-file basis by setting
up File-server items, so there is usually no need to change anything in this section. If the majority
of users on the BASE server is using a particular https file server for external files it may make
sense to register the certificates globally.

When a https connection is made the server must present a valid certificate or the client (BASE) will
refuse to connect to it. Typically, all certificates that have been signed by a recognised Certification
Authority are considered valid. The major reason for configuring this section is to provide support for
servers that use a self-signed certificate. Server-side certificate are stored in a trust-store. A default
trust-store is shipped with the Java runtime installation and is found in <java-home>/jre/lib/
security/cacerts. This file contains the certificates of all recognised certification authorities.

A https server may also require that the client has a valid certificate in order to accept connections
from it. Typically, the owner of the server issues a certificate that the client must install in order to
access the server. This type of certificate is stored in a key-store. By default, no key-store is setup.

If all you need is to support servers with self-signed certificates we recommend that those certificates
are imported to the above mentioned file. No configuration changes are needed. If a key-store is
needed, you must also configure the trust-store. Read the Java Secure Socket Extension Reference

Guide4 for more information about Java security and SSL. Java ships with a certificate management
tool that can be used to manage certificate files and a lot of other things. The keytool - Key and

Certificate Management Tool5 document contains more information about this tool.

If you want to setup your own test environment with a https server that only accepts clients with
a trusted certificate you can find some information about this on our wiki: http://base.thep.lu.se/
wiki/HttpsFiles

ssl.context.protocol
The SSL protocol to use. The default value is TLS.

ssl.context.provider
A security provider implementation. If not specified a suitable default is selected.

ssl.keystore.file
The full path to a key-store file. If not specified no key-store is used.

ssl.keystore.password
The password for unlocking the keys in the key-store. All keys must use the same password.

ssl.keystore.type
The file type of the key-store file. The default value is 'JKS'.

ssl.keystore.provider
The name of a provider implementation to use for reading the key-store file. If not specified a
suitable default is used.

ssl.keystore.algorithm
The algorithm used in the key-store file. The default value is 'SunX509'.

ssl.truststore.file
The full path to a trust-store certificate file. If not specified the default depends on the key-store
setting. If no key-store is configured, the default trust-store is used. If a key-store has been
configured no trust-store is used.

4 http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
5 http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://base.thep.lu.se/wiki/HttpsFiles
http://base.thep.lu.se/wiki/HttpsFiles
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html

base.config reference

408

ssl.truststore.password
The password for unlocking the certificates in the trust-store. All certificates must use the same
password.

ssl.truststore.type
The file type of the trust-store file. The default value is 'JKS'.

ssl.truststore.provider
The name of a provider implementation to use for reading the trust-store file. If not specified a
suitable default is used.

ssl.truststore.algorithm
The algorithm used in the trust-store file. The default value is 'PKIX'.

Migration section
The settings in this section only affect the migration program that can be used to move a BASE in-
stallation from a MySQL database to PostgreSQL. For more information about this see Section 20.5,
“Migrating from MySQL to PostgreSQL” (page 160).

migrate.export.compress
Enable this option to compress the data files generated by the export. This may improve perfor-
mance in case disk speed is a limiting factor. Default is to not compress.

migrate.export.fetch-size
The number of rows that should be fetch at the same time from the database. A higher value
may increase the performance but uses more memory. The default value is 20000.

migrate.import.analyze
Enable this flag to issue an SQL statment for statistical analysis of the imported data before
continuing with the next table. Disabling this may result in very poor performance. This option
is enabled by default.

migrate.import.drop-primary-key
Enable this flag to drop the primary key of a table before importing data to it. This may increase
the performance. The primary key is re-created after the data has been imported. This option
is enabled by default.

migrate.import.drop-constraints
Enable this flag to drop unique constraints and indexes before importing data to a table. This
may increase the performance. The constraints and indexes are re-created after the data has
been imported. NOTE! Foreign key constraints are not affected by this flag, since they must
always be dropped. This option is enabled by default.

409

Appendix C. extended-properties.xml
reference
What is extended-properties.xml?
The extended-properties.xml file is a configuration file for customizing some of the tables in
the BASE database. It is located in the <basedir>/www/WEB-INF/classes directory. Only a limited
number of tables support this feature, the most important one is the table for storing reporter
information.

Tip

It is also possible to put additional extended property definitions in the <basedir>/www/WEB-
INF/classes/extended-properties subdirectory. BASE will merge all *.xml it finds with
the main extended-properties.xml file. The extra configuration files should have the same
format as the main extended-properties.xml file. The extra files may contain extra columns
for classes that are already defined in the main file, but existing columns can't be removed
or re-defined. We recommend that you don't modify the default extended-properties.xml
file at all (unless you want to remove some of the columns). This will make it easier when
upgrading BASE since you don't have to worry about losing your own changes.

The default extended-properties.xml that ships with BASE is biased towards the BASE version
1.2 setup for 2-spotted microarray data. If you want your BASE installation to be configured differ-
ently we recommend that you do it before the first initialisation of the database. It is possible to
change the configuration of an existing BASE installation but it may require manual updates to the
database. Follow this procedure:

1. Shut down the BASE web server. If you have installed job agents you should shut down them
as well.

2. Modify the extended-properties.xml file or create a new file in the extended-properties
subdirectory. If you have installed job agents, make sure they all have the same version as the
web server.

3. Run the updatedb.sh script. New columns will automatically be created, but the script can't
delete columns that have been removed, or modify columns that have changed data type. You will
have to do these kind of changes by manually executing SQL against your database. Check your
database documentation for information about SQL syntax.

Create a parallel installation

You can always create a new temporary parallel installation to check what the table gener-
ated by installation script looks like. Compare the new table to the existing one and make
sure they match.

4. Start up the BASE web server and job agents, if any, again.

Start with few columns

It is better to start with too few columns, since it is easier to add more columns than it is to
remove columns that are not needed.

Sample extended properties setups
• After installing BASE the default extended-properties.xml is located in the <basedir>/www/
WEB-INF/classes directory. This setup is biased towards the BASE version 1.2 setup for 2-spot-
ted cDNA arrays. If you are migrating from BASE version 1.2 you must to use the default setup.

extended-
properties.xml reference

410

• A minimalistic_extended-properties.xml setup which doesn't define any extra columns at
all. This file can be found in the <basedir>/misc/config directory, and should be used if it is
not known what reporter data will be stored in the database. The addition of more columns later
is straightforward.

Format of the extended-properties.xml file
The extended-properties.xml is an XML file. The following example will serve as a description
of the format:

<?xml version="1.0" ?>
<!DOCTYPE extended-properties SYSTEM "extended-properties.dtd">
<extended-properties>
 <class name="ReporterData">
 <property
 name="extra1"
 column="extra1"
 title="Extra property"
 type="string"
 length="255"
 null="true"
 update="true"
 insert="true"
 averagemethod="max"
 restricted-edit="false"
 description="An extra property for all reporters"
 >
 <link
 regexp=".*"
 url="http://www.myexternaldb.com/find?{value}"
 />
 </property>
 </class>
</extended-properties>

Each table that can be customized is represented by a <class> tag. The value of the name attribute
is the name of the Java class that handles the information in that table. In the case of reporters
the class name is ReporterData.

Each <class> tag may contain one or more <property> tags, each one describing a single column
in the table. The possible attributes of the <property> tag are:

extended-
properties.xml reference

411

Table C.1. Attributes for the <property> tag

Attribute Required Comment

name yes A unique name (within the
class) of the extra property. The
name must only contain let-
ters, numbers and underscores
but the first character can't be
a number. The name is used
to identify the extra column in
the Java code and in the Query
API.

column yes The name of the database
column. This value must
be unique within the class.
Valid names depends on the
database, but it should be safe
to follow the same rules as for
the name attribute. In most cas-
es, it makes sense to use the
same value for both the name
and column attributes.

title no The title of the extra property
as it is displayed in client ap-
plications. If not specified the
value of the name attribute is
used.

description no A longer (but still short!) de-
scription of the extra property
which can be used in client ap-
plications to provide help.

type yes The data type of the column.
Allowed values are:

• int

• long

• float

• double

• boolean

• string

• date

• timestamp

Note that the given types are
converted into the most appro-
priate database column type by
Hibernate.

length no If the column is a string type,
this is the maximum length
that can be stored in the
database. If no value is given,
255 is assumed.

null no If the column should allow
null values or not. Allowed
values are true (default) and
false.

insert no If values for this property
should be inserted into the
database or not. Allowed values
are true (default) and false.

update no If values for this property
should be updated in the
database or not. Allowed values
are true (default) and false.

restricted-edit no Allowed values are false (de-
fault) and true. If set, there is
some restriction on who may
change the values. This is cur-
rently only implemented for
users. If the property is re-
stricted only an administrator
is allowed to change the value,
not the user itself.

averagemethod no The method to use when cal-
culating the average of a set of
values. This attribute replaces
the averagable attribute. The
following values can be used:

• none: average values are not
supported (default for non-
numerical columns)

• arithmetic_mean: calculate
the arithmetic mean (default
for numerical columns; not
supported for non-numerical
columns)

• geometric_mean: calculate
the geometric mean (not sup-
ported for non-numerical
columns)

• quadratic_mean: calculate
the quadtratic mean (not
supported for non-numerical
columns)

• min: use the minimum value
of the values in the set

• max: use the maximum value
of the values in the set

extended-
properties.xml reference

412

Each <property> tag may contain zero or more <link> tags that can be used by client application
to provide clickable links to other databases. Each <link> has a regexp and an url attribute. If the
regular expression matches the value a link will be created, otherwise not. The order of the <link>
tags are important, since only the first one that matches is used. The url attribute may contain the
string {value} which will be replaced by the actual value when the link is generated.

Note

If the link contains the character & it must be escaped as &. For example, to link to a
UniGene entry:

<link
 regexp="\w+\.\d+"

 url="http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=unigene&term={value}[ClusterID]"
/>

413

Appendix D. Platforms and
raw-data-types.xml reference
Raw data can be stored either as files attached to items and/or in the database. The Platform
item has information about this. For more information see Section 28.3.9, “Using files to store data”
(page 312).

D.1. Default platforms and variants in-
stalled with BASE
Platform Variants Data file types

Name ID Name ID Item Name ID

Reporter
map

generic.reportermapArray design

Print map generic.printmap

Generic generic - -

Raw bioas-
say

Generic raw
data

generic.rawdata

Array design CDF file affymetrix.cdfAffymetrix affymetrix - -

Raw bioas-
say

CEL file affymetrix.cel

Array design GTF ref-seq
file

refseq.gtfSequencing sequencing Expression-
like

sequencing.expression

Raw bioas-
say

FPKM track-
ing file

sequencing.fpkm_tracking

D.2. raw-data-types.xml reference
A given platform either supports importing data to the database or it doesn't. If it supports import,
it may be locked to specific raw data type or it may use any raw data type. Among the default
platforms installed with BASE, the Affymetrix platform doesn't support importing data while the
Generic platform supports importing to any raw data type.

Raw data types are defined in the raw-data-types.xml file. This file is located in the <basedir>/
www/WEB-INF/classes directory and contains information about the database tables and columns
to use for storing raw data. BASE ships with default raw data types for many different microarray
platforms, including Genepix, Agilent and Illumina.

Tip

It is also possible to put additional raw data type definitions in the <basedir>/www/WEB-INF/
classes/raw-data-types subdirectory. BASE will merge all *.xml it finds with the main
raw-data-types.xml file. The extra configuration files should have the same format as the
main raw-data-types.xml file. Duplicate raw data types are not supported and it is not pos-
sible to add extra columns to existing types using this approach.

If you want your BASE installation to be configured differently we recommend that you do it before
the first initialisation of the database. It is possible to change the configuration of an existing BASE
installation but it requires manual updates to the database. Following procedure covers how to
update:

1. Shut down the BASE web server. If you have installed job agents you should shut down them
as well.

Platforms and raw-da-
ta-types.xml reference

414

2. Modify the raw-data-types.xml file or create a new file in the raw-data-types subdirectory. If
you have installed job agents, make sure they all have the same version as the web server.

3. Run the updatedb.sh script. Tables for new raw data types and new columns for existing raw
data types automatically be created, but the script can't delete tables or columns that have been
removed, or modify columns that have changed datatype. You will have to do these kind of changes
by manually executing SQL against your database. Check your database documentation for in-
formation about SQL syntax.

Create a parallel installation

You can always create a new temporary parallel installation to check what the table gener-
ated by installation script looks like. Compare the new table to the existing one and make
sure they match.

4. Start up the BASE web server and job agents, if any, again.

Start with few columns

It is better to start with too few columns, since it is easier to add more columns than it is to
remove columns that are not needed.

Format of the raw-data-types.xml file
The following example will serve as a description of the format used in raw-data-types.xml:

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="raw-data-types.xsl"?>
<!DOCTYPE raw-data-types SYSTEM "raw-data-types.dtd" >
<raw-data-types>
 <raw-data-type
 id="genepix"
 name="GenePix"
 channels="2"
 table="RawDataGenePix"
 >
 <property
 name="diameter"
 title="Spot diameter"
 description="The diameter of the spot in µm"
 column="diameter"
 type="float"
 />
 <property
 name="ch1FgMedian"
 title="Channel 1 foreground median"
 description="The median of the foreground intensity in channel 1"
 column="ch1_fg_median"
 type="float"
 channel="1"
 />
 <!-- skipped a lot of properties -->
 <intensity-formula
 name="mean"
 title="Mean FG - Mean BG"
 description="Subtract mean background from mean foreground"
 >
 <formula
 channel="1"
 expression="raw('ch1FgMean') - raw('ch1BgMean')"
 />
 <formula
 channel="2"
 expression="raw('ch2FgMean') - raw('ch2BgMean')"
 />
 </intensity-formula>

Platforms and raw-da-
ta-types.xml reference

415

 <!-- and a few more... --->
 </raw-data-type>
</raw-data-types>

Each raw data type is represented by a <raw-data-type> tag. The following attributes can be used:

Table D.1. Attributes for the <raw-data-type> tag

Attribute Required Comment

id yes A unique ID of the raw data
type. It should contain only let-
ters, numbers and underscores
and the first character must be
a letter.

name yes A unique name of the raw data
type. The name is usually used
by client applications for dis-
play.

table yes The name of the database table
to store data in. The table name
must be unique and can only
contain letters, numbers and
underscores. The first character
must be a letter.

channels yes The number of channels used
by this raw data type. It must
be a number > 0.

description no An optional (longer) description
of the raw data type.

Following the <raw-data-type> tag is one or more <property> tags. Each one defines a column
in the database that is designed to hold data values of a particular type. The following attributes
can be used on this tag:

Table D.2. Attributes for the <property> tag

Attribute Required Comment

* All attributes defined by the
<property> tag in extend-
ed-properties.xml. See
Table C.1, “Attributes for the
<property> tag” (page 411).

channels no The channel number the prop-
erty belongs to. Allowed values
are 0 to the number of chan-
nels specified for the raw da-
ta type. If the property doesn't
belong to any channels set the
value to 0 or leave it unspeci-
fied.

Following the <property> tags comes 0 or more <intensity-formula> tags. Each one defines
mathematical formulas that can be used to calculate the intensity values from the raw data. In the
Genepix case, there are several formulas which differs in the way background is subtracted from
foreground intensity values. For other raw data types, the intensity formula may just copy one of
the raw data values.

Platforms and raw-da-
ta-types.xml reference

416

The intensity formulas are installed as Formula items in the database. This means that you can
manually add, change or remove intensity formulas directly from the web interface. The intensity
formulas in the raw-data-types.xml file are only used at installation time.

The <intensity-formula> tag has the following attributes:

Table D.3. Attributes for the <intensity-formula> tag

Attribute Required Comment

name yes A unique name for the formula.
This is only used during instal-
lation.

title yes The title of the formula. This is
used by client applications for
display.

description no An optional, longer, description
of the formula.

The <intensity-formula> must contain one <formula> tag for each channel of the raw data type.
The attributes of this tag are:

Table D.4. Attributes for the <formula> tag

Attribute Required Comment

channel yes The channel number. One tag
for each channel must be speci-
fied. No duplicates are allowed.

expression yes The mathematical expression
used to calculate the intensi-
ties. The expression is parsed
with the Jep parser. It supports
the common mathematical op-
erations such as +, -, *, /, some
mathematical function like,
log2(), ln(), sqrt(), etc. See the
API documentation for Jep for
more information. You can also
use two special function devel-
oped specifically for this case:

• raw(name): Get the val-
ue from the raw data
property with the giv-
en name, for example:
raw('ch1FgMedian').

• mean(name): Get the
mean value of the raw da-
ta property with the giv-
en name, for example:
mean('ch1BgMean'). The
mean is calculated from all
raw data spots in the raw
bioassay.

417

Appendix E. web.xml reference
The web.xml file is one step up from the main configuration directory. It is located in the <basedir>/
www/WEB-INF directory. This configuration file contains settings that are related to the web applica-
tion only. Most settings in this file should not be changed because they are vital for the functionality
of BASE.

<error-page>
If an error occurs during a page request, the execution is forwarded to the specified JSP which
will display information about the error.

<context-param>: max-url-length
This setting is here to resolve a potential problem with too long generated URL:s. This may
happen when BASE needs to open a pop-up window and a user has selected a lot of items
(e.g., several hundred). Typically the generated URL contains all selected ID:s. Some web servers
have limitations on the length of an URL (e.g., Apache has a default max of 8190 bytes). If the
generated URL is longer that this setting, BASE will re-write the request to make the URL shorter
and supply the rest of the parameters as part of a POST request instead. This functionality can
disabled by setting this value to 0. For more information see http://base.thep.lu.se/ticket/1032.

<servlet>: BASE
A servlet that starts BASE when Tomcat starts, and stops BASE when Tomcat stops. Do not
modify.

<servlet>: view/download
File view/download servlet. It is possible to change the default MIME type for use with files of
unknown type.

<servlet>: upload
Servlet for handling file uploads. Do not modify.

<servlet>: spotimage
Servlet for displaying spot images. Do not modify.

<servlet>: plotter
Servlet for the plot tool in the analysis section. You may specify max and default values for the
width and height for the generated images. The supported image formats are "png" and "jpeg".

<servlet>: eeplotter
Servlet for the plot tool in the experiment explorer section. It can use the same configuration
properties for size and image format as the plotter servlet.

<servlet>: news-feed
Servlet for generating a RSS feed for the news on the front page. Comment out this servlet if
you do not want to use the RSS feed.

<servlet>: AxisServlet/AxisRESTServlet
Servlet handling web service requests. If you are not planning to access your BASE installation
using web services these servlets may be disabled.

<servlet>: ExtensionsServlet
Servlet for handling startup/shutdown of the extensions system as well as requests to extension
servlets. Do not modify. Do not disable even if extensions are not used.

<servlet>: xjsp
Experimental servlet for compiling *.xjsp files used by extensions. The servlet redirects the com-
pilation of *.xjsp files to a compiler that includes the extension supplied JAR file(s) in the class
path. Can be disabled if no extensions use this feature. See also Section 21.1.4, “Installing the
X-JSP compiler” (page 168) for more information about how to enable this feature.

http://base.thep.lu.se/ticket/1032

web.xml reference

418

<servlet>: compile
Experimental servlet for compiling all JSP files. This is mostly useful for developers who want to
make sure that no compilation error exists in any JSP file. Can also be used to pre-compile all
JSP files to avoid delays during browsing. This servlet is disabled by default.

<filter>: characterEncoding
A filter that sets the character encoding for the JSP generated HTML. We recommend leaving
this at the default UTF-8 encoding, this default should work with most language in all modern
browsers.

E.1. Content security policy
Support for Content Security Policy was added in BASE 3.3. This is a technology that is used to
prevent web browsers from accessing and executing content that is considered unsafe. This includes
JavaScript, style sheets, images, browser plug-ins, etc. The policy is implemented by white-listing
what is allowed, everything else is blocked.

In BASE, we have choosen a relatively restrictive policy which only allow resources to be lodaded
from the BASE server. Browser plug-ins are always blocked. This should work well for a standard
BASE installation. But some (older) extensions to BASE doesn't adhere to the restrictions implied by
the policy and may not work unless it is relaxed a bit. Typically, the problem is that the extensions
uses inline javascript code to handle mouse clicks and other events, which is forbidden by the default
policy settings. In this case, the policy must be relaxed a bit. Typically, adding script-src 'self'
'unsafe-inline'; to the policy setting should take care of most issues. If this is not enough to
make the extension work the following link is a good starting point for reading more about this:

http://www.html5rocks.com/en/tutorials/security/content-security-policy/1

<filter>: csp-filter
A filter that sets the Content security policy header in all responses from the BASE web server.
This filter can be removed to disable content security policy, but use this only as a last resort
if nothing else works.

The following parameters can be specified for the filter:

• policy: The policy string that is sent in the response. The default value is: default-src
'self'; img-src 'self' data:; style-src 'self' 'unsafe-inline'; object-src
'none';

• report-only: If set, policy violations are only reported and not blocked

• unsafe-resources-policy: An alternate policy string that is used for extensions that
set <about safe-resources="0"> in their definition. The default value is: default-src
'self'; img-src 'self' data:; style-src 'self' 'unsafe-inline'; object-src
'none'; script-src 'self' 'unsafe-inline';

1 http://www.html5rocks.com/en/tutorials/security/content-security-policy/

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

419

Appendix F. jobagent.properties
reference
The jobagent.properties file is the main configuration file for job agents. It is located in the
<basedir>/www/WEB-INF/classes directory.

BASE settings
This section describes the configuration parameters that are used by the job agent to get access
to the BASE server.

agent.user
Required. The BASE user account used by the job agent to log on to the BASE server. The user
account must have sufficient privileges to access jobs and job agents. The Job agent role is a
predefined role with all permissions a job agent needs. There is also a predefined user account
with the user name jobagent. This account is disabled by default and has to be enabled and
given a password before it can be used.

agent.password
Required. The password for the job agent user account.

agent.id
Required. A unique ID that identifies this job agent among other job agents. If multiple job agents
are installed each job agent should have it's own unique ID.

agent.name
Optional. The name of the job agent. If not specified the ID is used. The name is only used when
registering the job agent with the BASE server.

agent.description
Optional. A description of the job agent. This is only used when registering the job agent.

Job agent server settings
This section describes the configuration parameters that affect the job agent server itself.

agent.port
Optional. The port the job agent listens to for control requests. Control requests are used for
starting, stopping, pausing and getting status information from the job agent. It is also used by
the jobagent.sh script to control the local job agent. The default value is 47822.

agent.remotecontrol
Optional. A comma-separated list of IP addresses or names of computers that are allowed to
send control requests to the job agent. If no value is specified, only the local host is allowed to
connect. It is recommended that the web server is added to the list if the job agent is not running
on the same server as the web server.

agent.allowremote.stop
Optional. If the stop command should be accepted from remote hosts specified in the
agent.remotecontrol setting. If false, which is the default value, only the local host is allowed
to stop the job agent.

Note

Once the job agent has been stopped it cannot be started by remote control. You must use
the jobagent.sh script for this.

jobagent.properties reference

420

agent.allowremote.pause
Optional. If the pause command should be accepted from remote hosts specified in the
agent.remotecontrol setting. If false, only the local host is allowed to pause the job agent. The
default value is true.

agent.allowremote.start
Optional, valid only when job agent is paused. If the start command should be accepted from
remote hosts specified in the agent.remotecontrol setting. If false, only the local host is allowed
to start the job agent when it is paused. The default value is true.

Custom request handlers
agent.request-handler.*

Optional. One or more entries for custom remote control handlers. The * should be replaced
with the name of the protocol and the value should be the name of a class implementing the
CustomRequestHandler interface. Requests can then be sent to the agent's remote control port
on the form: foo://custom-data.....

Job execution settings
This section describes the configuration parameters that affect the execution of jobs.

agent.executor.class
The name of the Java class that handles the actual execution of jobs. The default implementation
for a job agent ships three implementations:

• net.sf.basedb.clients.jobagent.executors.ProcessJobExecutor : Executes the job
in an external process. This is the recommended executor and is the default choice if no value
has been specified. With this executor, a misbehaving plugin does not affect the job agent or
other jobs. The drawback is that since a new virtual machine has to be started, more memory
is required and the start up time can be long.

• net.sf.basedb.clients.jobagent.executors.ThreadJobExecutor : Executes the job in
a separate thread. This is only recommended for plugins that are trusted and safe. A misbe-
having plugin can affect the job agent and other jobs, but the start up time is short and less
memory is used.

• net.sf.basedb.clients.jobagent.executors.DummyJobExecutor: Does not execute the
job. It only marks the job as being executed, and after waiting some time, as finished success-
fully. Use it for debugging the job agent.

It is possible to create your own implementation of a job executor. Create a class that implements
the net.sf.basedb.clients.jobagent.JobExecutor interface.

agent.executor.process.java
Optional. The path to the Java executable used by the ProcessJobExecutor . If not specified
the JAVA_HOME environment variable will be checked. As a last resort java is used without path
information to let the operating system find the default installation.

agent.executor.process.options
Optional. Additional command line options to the Java executable. Do not add memory options
(-Mx or -Ms), it will be added automatically by the executor. This setting is used by the Pro-
cessJobExecutor only.

agent.executor.dummy.wait
Optional. Number of seconds the DummyJobExecutor should wait before returning from the
"job execution". The executor first sets the progress to 50% then waits the specified number of
seconds before setting the job to completed. If no value is specified it returns immediately.

jobagent.properties reference

421

agent.checkinterval
Optional. Number of seconds between querying the database for jobs that are waiting for execu-
tion. The default value is 30 seconds.

Slots and priorities
The job agent does not execute an arbitrary number of jobs simultaneously. This would sooner or
later break the server. A slot manager is used to assign jobs to a pre-configured number of slots.

agent.slotmanager.class
The name of the Java class that handles slot assignment to jobs. The standard job agent ships
with three different implementations:

• net.sf.basedb.clients.jobagent.slotmanager.InternalSlotManager : This is the de-
fault slot manager. It uses a simple system with four different slots. Each slot is reserved for
jobs that are estimated to be finished in a certain amount of time. The exception is that a
quick job may use a slot with longer expected time since that will not block the slot very long.
See the table below for default settings.

• net.sf.basedb.clients.jobagent.slotmanager.MasterSlotManager : This is an exten-
sion to the internal slot manager that also accepts requests for slot assignments from other
job agents. The other job agent(s) should be using the RemoteSlotManager. This makes it
possible for a number of job agents to share a common pool of slots to avoid bottlenecks, for
example, at the database level.

• net.sf.basedb.clients.jobagent.slotmanager.RemoteSlotManager : The remote slot
manager connects with another job agent (running with a MasterSlotManager) and asks it
for a slot. When this slot manager is used you need to specify the ip-address/name and port
of the job agent running the master slot manager.

It is possible to create your own implementation of a slot manager. Create a class that imple-
ments the net.sf.basedb.clients.jobagent.slotmanager.SlotManager interface.

agent.slotmanager.remote.server
The ip-adress or name of a job agent running as the master slot manager. This setting is needed
by the RemoteSlotManager.

agent.slotmanager.remote.port
The remote control port number of the job agent running as the master slot manager. Make sure
that the master job agent is accepting connection from this job agent. This setting is needed by
the RemoteSlotManager.

This table lists slot settings for the internal and master slot managers. The remote slot manager
will get slots from another job agent. A thread priority is associated with each slot. The priority is a

value between 1 and 10 as defined by the java.lang.Thread1 class. The priorities are not handled
by the slot managers, but by the job agent core and apply to all job agents, no matter which slot
manager that is selected.

Property Default value Estimated execution time

agent.shortest.slots 1

agent.shortest.priority 4

< 1 minute

agent.short.slots 1

agent.short.priority 4

< 10 minutes

agent.medium.slots 2

agent.medium.priority 3

< 1 hour

1 http://java.sun.com/javase/6/docs/api/java/lang/Thread.html

http://java.sun.com/javase/6/docs/api/java/lang/Thread.html
http://java.sun.com/javase/6/docs/api/java/lang/Thread.html

jobagent.properties reference

422

Property Default value Estimated execution time

agent.long.slots 2

agent.long.priority 3

> 1 hour

423

Appendix G. jobagent.sh reference
The jobagent.sh (or jobagent.bat on Windows) is a command-line utility for controlling the job
agent. The syntax is:

./jobagent.sh [options] command

The options are optional, but a command must always be given. The script is located in the <base-
dir>/bin directory and you must change to that directory to be able to use the script.

Options
-c

The path to the configuration file to use, for example:

./jobagent.sh -c other.config start

The default value is jobagent.properties. The classpath is not searched which means that
it doesn't find the configuration file in <base-dir>/www/WEB-INF/classes/ unless you specify
the path to it. See Appendix F, jobagent.properties reference (page 419) for more information
about job agent configuration files.

Commands
register

Register the job agent with the BASE server. If the job agent already exists this command does
nothing.

unregister
Unregister/delete the job agent from the BASE server. If the job agent does not exist this com-
mand does nothing.

start
Start the job agent. As soon as it is up and running it will check the database for jobs that are
waiting to be executed.

pause
Pause the job agent. The job agent will continue running but does not check the database for
jobs. To start it again use the start command.

stop
Stop the job agent. To start it again use the start command.

info
Get information about the job agent. This will output a string in the form:

Status:Running

Cpu:15

Total memory:8254955520

Used memory:8002252800

Job:42

Job.42.slot:SHORT

Status can be either Running or Paused. There is some information about the current CPU and
memory usage, but this information may not be available on all platforms. For each job that is

jobagent.sh reference

424

currently running, the ID is given. A second entry gives information about the slot the job uses
for execution. In the future, the info command may output more information.

status
Similar to the info command but with less output. The output is either Running, Pauses or
Stopped. In case of an unexpected error, an error message may be displayed instead.

help
Display usage information.

425

Appendix H. Other configuration
files
H.1. mysql-queries.xml and postgres-
queries.xml
TODO

H.2. log4j.properties
TODO

H.3. hibernate.cfg.xml
TODO

H.4. ehcache.xml
TODO

426

Appendix I. API changes that may
affect backwards compatibility
In this document we list all changes to code in the Public API that may be backwards incompatible
with existing client applications and or plug-ins. See Section 28.1, “The Public API of BASE” (page
269) for more information about what we mean with the Public API and backwards compatible.

I.1. BASE 3.3 release
Content security policy
The BASE web client now set a rather strict Content Security Policy that prevent browsers from
executing code (including JavaScript) that is considered unsafe. Some extensions may cease to work
due to this. Go to Administrate � Plug-ins & extensions � Overview (after upgrading) to see if there
are any warnings about this. Read more in Section E.1, “Content security policy” (page 418) for
information about how to relax the policy.

Re-factored JavaScript API
The BASE web client has undergone a major refactoring with respect to the JavaScript API that is
used on the server. A lot of functions have been replaced with new implementations. We have tried
to map the old functions to the new ones, but this has not always been possible. Extentions that
use the BASE JavaScript API must be tested with BASE 3.3 to find out if they are still working or
if modifications are needed.

Avoid in-line event handlers and script

The main reason for the refactoring is to get rid of all in-line event handlers and script sections

since this is a possible entry point for cross-site scripting attacks (see ticket 17121). Extension
developers are encouraged to make the same changes in their applications.

Biomaterial items are now lazy-loading
For performance reasons biomaterial items have been changed from eager-loading to lazy-loading.
This may affect clients and/or plug-ins that expect the parent chain of biomaterials to always be
fully initialized without explicitely having told the BASE core to do so.

Tables can have columns with different sort order
A new feature has been implemented which allows columns in a table to have different sort
order. This is implemented by allowing '+' or '-' as a prefix to properties returned by the
ItemContext.getSortProperty() method. Properties without a prefix still use the global sort or-
der as returned by ItemContext.getSortDirection().

Code that is not aware of the prefixes may fail since '+' and '-' are not allowed in property names.

External authentication has been converted to an ex-
tension point
External authentication plug-ins using the old system are supported through a wrapper extension,
but the recommendation is to update those plug-in to the new system. See Section 26.8.14, “Login
manager” (page 261) for more information.

1 http://base.thep.lu.se/ticket/1712

http://base.thep.lu.se/ticket/1712
http://base.thep.lu.se/ticket/1712

API changes that may af-
fect backwards compatibility

427

Setting parameters for a job no longer set it to
status=WAITING
Added Job.setScheduled() to switch the state from UNCONFIGURED to WAITING. A job can't be
executed before it has entered the WAITING state. The change makes it possible to register a job and
some parameters for it and remain in the UNCONFIGURED state.

I.2. BASE 3.2 release

Derived bioassays can now have multiple parents
Before BASE 3.2 a derived bioassay was restricted to a single parent item. This affects the API
and the DerivedBioAssay.getParent() and DerivedBioAssay.getPhysicalBioAssays() now
always return null. Existing code should be updated to use getPhysicalBioAssays() and get-
Parents() (which return ItemQuery instances) instead. Code that is using queries to filter or sort
on parent items must also be updated since the association names have changed.

BASEfile exporter automatically closes the output
stream
The implementation of the BASEfile exporter has been changed to automatically close the pro-
vided output stream when the export is complete. Clients that need the old behavior should call
BaseFileExporter.setAutoCloseWriters(false) before using it.

Change history logging is now an extension point
The change history logging has been converted to an extension point. The changelog.factory
setting in base.config is no longer used. Existing logging implementations should be updated to
use the extension system. See Section 26.8.9, “Logging managers” (page 258). A temporary solution
is to use one of the debugging action factories to define the extension point:

<extension
 id="id-of-custom-log-manager"
 extends="net.sf.basedb.core.log-manager"
 >
 <about>
 <name>My custom log manager</name>
 <description>
 Temporary solution to allow the old log manager to work with the extension system.
 </description>
 </about>
 <index>1</index>
 <action-factory>
 <factory-class>net.sf.basedb.util.extensions.debug.BeanActionFactory</factory-class>
 <parameters>
 <beanClass>my.custom.LogmangerClass</beanClass>
 </parameters>
 </action-factory>
</extension>

API changes that may af-
fect backwards compatibility

428

I.3. BASE 3.1 release
Web service framework updated to Axis2 1.6
We have updated the web services framework to Axis2 1.6. Clients that use earlier Axis2 versions
may not work when connecting to a BASE 3.1 server. Unfortunately, clients that use the Axis2 1.6
framework may have problems connecting to BASE 3.0 servers so it may be difficult to implement
support for both BASE 3.0 and BASE 3.1 in a single client application.

New GUI look and feel
Taglibs, stylesheets and javscript functions have been changed to create a new look and feel. Plug-ins
and extensions that uses GUI elements from the core BASE installation may need to be updated
for the best user experience. The changes are too numerous so we can't list them here. Please use

the developers mailing list if specific information is needed or see ticket 16552 for some screenshots
and other information.

Per-experiment copy of reporter annotations
A new feature has been implemented that allows a user to make a local copy of reporter annotations
for reporters that are used in an experiment. The existing API will by default use the local copy if one
is available. It is possible to use the master reporter annotations by invoking certain API methods
(for example: DynamicQuery.setUseClonedReporters(false)). Since the copy may include only
a subset of the available reporter annotations this may cause problems for code that is expecting all

annotations to be available. See ReporterCloneTemplate and ticket 16163 for more information.

Annotations can be inherited/pushed from child to
parent item
A new feature has been implemented that allows an item to "push" annotations up to it's parent
in addition to the normal "inherit to child" method. This has been implemented as a change in the
getAnnotatableParents() method defined by the Annotatable interface. This may cause unex-
pected issues with code that is not prepared to handle this situation. Particulary, infinite loops must
be avoided when traversing the "parent" tree of an item (but this should already be in place since it

can already happen due to mistakes when creating items). See ticket 16054 for more information.

I.4. BASE 3.0 release
There are a lot incompatible changes between BASE 3 and any of the BASE 2.x versions. We do
not list list those changes here since we do not expect existing plug-ins, extensions or other client
application to work with BASE 3 without modification. See Chapter 23, Migrating code from BASE
2 to BASE 3 (page 193) for more information.

I.5. All BASE 2.x releases
The list of changes made in the various BASE 2.x releases can be found in the BASE 2.17 docu-

mentation5.

2 http://base.thep.lu.se/ticket/1655
3 http://base.thep.lu.se/ticket/1616
4 http://base.thep.lu.se/ticket/1605
5 http://base.thep.lu.se/chrome/site/2.17/html/appendix/appendix.incompatible.html

http://base.thep.lu.se/ticket/1655
http://base.thep.lu.se/ticket/1616
http://base.thep.lu.se/ticket/1605
http://base.thep.lu.se/chrome/site/2.17/html/appendix/appendix.incompatible.html
http://base.thep.lu.se/chrome/site/2.17/html/appendix/appendix.incompatible.html
http://base.thep.lu.se/ticket/1655
http://base.thep.lu.se/ticket/1616
http://base.thep.lu.se/ticket/1605
http://base.thep.lu.se/chrome/site/2.17/html/appendix/appendix.incompatible.html

429

Appendix J. Things to consider
when updating an existing BASE
installation
This document is a list of things that may have to be considered when updating a BASE installation
to a newer version. The Section 20.1, “Upgrade instructions” (page 149) section only include the most
recent information that is needed for updating the previous BASE version to the current version.

J.1. BASE 3.3

Content security policy
The BASE web client now set a rather strict Content Security Policy that prevent browsers from
executing code (including JavaScript) that is considered unsafe. Some extensions may cease to work
due to this. Go to Administrate � Plug-ins & extensions � Overview (after upgrading) to see if there
are any warnings about this. Read more in Section E.1, “Content security policy” (page 418) for
information about how to relax the policy.

Java SE 7 is required

BASE now require Java SE 71. Servers with Java SE 6 or older should be updated to Java SE 7
before installing BASE 3.3.

Tomcat 7 is required

BASE now require Tomcat 72. Servers with Tomcat 6 or older should be updated to Tomcat 7 before
installing BASE 3.3.

Web services support has been deprecated
The current implementation is most likely not very useful and has limited support for accessing
information in BASE. Therefore it has been decided to remove the web services support in BASE
3.4. If anyone require web services support or similar we recommend using the BASE extensions
mechanism to implement exactly what is needed for that project and we also beleive that a simplier
API such as JSON is preferable.

J.2. BASE 3.2

Custom logging implementations must be updated
The plug-in functionality for custom logging has been converted to an extension point. The default
database logging will continue to function, but custom logging implementations must be converted to
an extension. See Section I.2, “BASE 3.2 release” (page 427) and Section 26.8.9, “Logging managers”
(page 258) for more information.

1 http://www.oracle.com/technetwork/java/javase/downloads/index.html
2 http://tomcat.apache.org/download-70.cgi

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/download-70.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/download-70.cgi

Things to consider
when updating an ex-

isting BASE installation

430

J.3. BASE 3.0
Upgrading to BASE 3 is possible from BASE 2.17 only

If your BASE is an older 2.x version you'll need to upgrade to BASE 2.17 before an upgrade
to BASE 3 is possible. Also note that since BASE 3.3 we no longer actively test the upgrade
script. If upgrading doesn't work for a particular BASE 3.x version (where x > 2) please try to
upgrade to BASE 3.2 first and then from BASE 3.2 to BASE 3.x.

Make sure that you have a recent backup of the BASE 2.17 database

Before starting the upgrade from BASE 2.17 to BASE 3 ensure that you have a recent backup.
If the upgrade fails you must restore the 2.17 database before you can try again. The upgrade
only changes the 'static' part of the database, so you do not have to restore the 'dynamic' part
or the uploaded files.

Old plug-ins and extensions may not work
The BASE API has changed in several places and it is not certain that plug-ins and extensions
developed for BASE 2 works with BASE 3. The upgrade will disable all plug-ins and extensions
that are currently installed. Before you upgrade we recommend that you go through all (external)
plug-ins and check if there is an updated version. The recommended approach is to first upgrade
BASE and then install updated versions of plug-ins and extensions following the instructions in
Section 21.1, “Managing plug-ins and extensions” (page 163).

If there is no updated version of a specific plug-in you may try a manual re-installation of the old
plug-ins. Follow the instructions in Section 21.1.2, “Manual plug-in registration” (page 166).

If there is no updated version and the old plug-in doesn't work with BASE 3, you'll need to decide
if you really need the plug-in or if the upgrade should wait until a new version of the plug-in has
been released.

Batch item importer changes
There are several changes to batch item importers that may affect current workflows and file tem-
plates used for importing data.

• Sample and extract importers: The 'pooled' column is no longer used. Instead a 'parent type' col-
umn should be used with the parent type as a string value (BIOSOURCE, SAMPLE or EXTRACT).
Existing importer configurations and file templates may have to be updated. If no parent type is
specified the sample importer assumes a biosource and the extract importer assumes a sample.

• Labeled extract importer: This has been deprecated and it is recommended that the Extract im-
porter is used instead. We recommend that existing labeled extract importer configurations are
re-created as extract importer configurations. The old labeled extract importer can be re-enabled,
but note that the existing configurations still need to be changed due to the 'pooled' column is
no longer used.

• Hybridization importer: This has been deprecated and we recommend that the Physical bioassay
importer is used instead. Existing hybridization importer configurations should be re-created as
physical bioassay importer configurations.

• Scan importer: This has been deprecated and it is recommended that the Derived bioassay im-
porter is used instead. Existing scan importer configurations should be re-created as derived
bioassay importer configurations.

Note
The deprecated importers can be re-enabled by an administrator from the Administrate � Plug-
ins & extensions � Overview page, but they are lacking features that are available in the new
importers so this is not something that we recommend.

Things to consider
when updating an ex-

isting BASE installation

431

MySQL and PostgreSQL versions
We have only tested BASE 3 with PostgreSQL 9.1. If anyone experiences any issues with earlier
PostgreSQL versions, we recommend an upgrade to PostgreSQL 9.1. This is a change since BASE
2 which was tested with PostgreSQL 8.4. Even though BASE 3 may work with older PostgreSQL
versions, we don't have the resources needed to test and provide support for it.

We have only tested BASE 3 with MySQL 5.1 (no change since BASE 2). If anyone experiences any
issues with earlier (or later) MySQL versions, we recommend an upgrade/downgrade to MySQL 5.1.

J.4. All BASE 2.x releases
We only support updating to BASE 3 from BASE 2.17. If you have an older BASE version and wish
to update to BASE 3, you first have to upgrade to BASE 2.17. BASE 2.17 can be downloaded from

the BASE download page3. Documentation for BASE 2.17 is available as part of the download and
at http://base.thep.lu.se/chrome/site/2.17/html/index.html.

3 http://base.thep.lu.se/wiki/DownloadPage

http://base.thep.lu.se/wiki/DownloadPage
http://base.thep.lu.se/chrome/site/2.17/html/index.html
http://base.thep.lu.se/wiki/DownloadPage

432

Appendix K. File formats
K.1. The BFS (BASE File Set) format
The BASE File Set (BFS) format is a collection of file formats that can be used together to transport
all kinds data. The major use is to send spot data to a plug-in for analysis and then to import the
analyzed results. We have tried to keep the format generic and extendable so it is not unlikely that
the BFS format can be used for other applications in the future.

K.1.1. The basics of BFS
The idea is to use simple, plain-text files with data organised into rows and columns. A single type
of file may not be able to hold all kinds of data, so to begin with we have defined three types of files:

• Metadata files: Holds information about the data that is found in the other files in the file set.

• Annotation files: Column-based files that holds one record per line. The first line is a header line.
The remaining lines are data lines identified by a unique positive ID value in the first column.

• Data files: Pure matrix data files without header lines or ID columns. Data is usually identified
by matching it line-by-line with data in annotation files, or with information in the metadata file.

Character encoding
All files are text-based and should use the UTF-8 character encoding. A newline (\n) is used as
a record separator and a tab (\t) is used a column separator. Data that contains newline or tab
characters need to be escaped. A backslash (\) is used to indicate the start of an escaped sequence.
This means that the backslash character must also be escaped. Since some editors includes a
carriage return (\r) in line breaks, we should also escape carriage return.

Table K.1. Escaped characters in the BFS format

Character Escape sequence

<backslash> \\

<newline> \n

<carriage return> \r

<tab> \t

It is recommended that parsers are forgiving and if an invalid escape sequence is found, eg. a back-
slash followed by anything else than \, n, r or t, the input is taken literally. Strict parsers may throw
exceptions or log warning messages.

Numerical values
Numeric values should use dot (.) as decimal point. Scientific notation is accepted. Null, NaN, In-
finity, and other special values should all be represented by empty string values. It is recommended
that parsers are forgiving and treat invalid numerical data as empty values.

Comments and white-space
Lines starting with # are comment lines and should be ignored. Empty lines should also be ignored.
A line that contains only white-space is considered as empty. White-space=spaces, tabs and other
characters that matches \s in regular expressions.

Note

This can only be used in metadata files. Annotation files and data files doesn't allow comments
or empty lines.

File formats

433

Metadata files
A BASE File Set usually contains one metadata file. This file contains information about the other
files that make up the file set. The metadata file can also hold information that is specific to a use
case.

A metadata file always starts with the beginning-of-file (BOF) marker BFSformat, optionally followed
by a tab and a value indicating the subtype of the file. This must be the first line of the file. Comments
or empty lines are not allowed before the beginning-of-file marker.

All data in a metadata file must be inside a section. A section is started by surrounding a value in
brackets on a line by it's own, for example, [my section]. There is no restriction on the name of the
section as long as it is escaped using the normal rules. Note that there is no need to escape brackets
in the name. For example, [[a\\b]] is a valid section with the name [a\b]. Trailing white-space
after the closing bracket is ignored.

Multiple sections may have the same name, and the order of the sections is usually of no concern.
However, this may be restricted in specific cases if there is need to, for example, require unique
section names or enforce a specific order. Parsers are recommended to provide access to sections
by name and by ordinal number, starting at 0 and writers are recommended to write sections in
the order they are added.

Each section contains data in the form of tab-separated key-value pairs. Keys may not start with
or [since this would interfere with comments and sections. Otherwise, the normal escape rules
should be used for both keys and values. Values are allowed to use non-escaped tab characers,
which makes it possible to use vector-type values.

A key doesn't have to be unique within a section, but specific use cases may require this globally
or on section-per-section basis. The order of the keys are usually not important, except if the use
case requires it. Parser implementations are recommended to provide access to keys by name and
by ordinal number, starting at 0. Generic writers implementations are recommended to write keys
and values in the order they are added to each section.

If the file set includes more files than the metadata file, those files should be listed in the [files]
section. Keys should be unique, but there are no other restrictions. The value is the file name
without path information. The files are expected to be located in the same container as the current
metadata file. A container could for example be a folder in the file system, a zip-file, or any other
logical item that group files. Metadata about the files and file content is not part of the generic BFS
specification. This is left to specific use cases.

Note
Files doesn't have to be other BFS file types. It can be any type of files, like pdf files, images, etc.

Example K.1. Example BFS metadata file

BFSformat subtype
The 'BFSformat' must be on the the first line, subtype is optional
A comment line starts with '#'. Empty lines are ignored

A section is started by enclosing the section name in brackets
Section entries are key/value pairs separated by tab
Vector-type values are allowed. Duplicate keys may or may
not be allowed depending on the use case.
[settings]
key-1 value1
key-2 value2a value2b

The 'files' section points to additional files in the file set
Keys should be unique
[files]
report report.txt
table tabla-data.txt
plot plotted-data.png

File formats

434

Annotation files
The first line is a header line containing the column names for each column. The first column is
required and must always be ID. Other columns are optional, but must have unique names. Column
names are separated with tabs and are encoded using the normal rules. All other lines are data
lines. Each line must have exactly the same number of columns as the header line. Comment
lines and empty lines are not supported, but a column may have an empty value.

The ID column holds a unique identifier used internally by BASE. A given ID should only be used
once and may not be repeated later in the file. The ID is a numeric positive integer value. Zero,
negative or empty values are not allowed. There is no special ordering (unless a specific use-case
require this). Note that the ID values are not indexes. They don't have to start at 1 and there may be
"holes" in the range of values used. Some use-cases may use ID values with some specific meaning,
other use-cases may simple enumerate the rows using a counter.

Data files
A data file is a matrix containing one data value for each row-column element. Data starts on the
first line. There is no header line. All data lines must have the same number of columns. The
number of rows and columns and their order are defined by other, use-case specfic, information in
the metadata file or in annotation file(s). Comment lines and empty lines are not supported, but a
column may hold an empty value.

K.1.2. Using BFS for spotdata to and from external
plug-ins
The use case is to use BFS to transport data to and from an external analysis plug-in. The general
outline is:

1. Export bioassay set data to BFS.

2. Execute the external plug-in which process the data and generates a new BFS.

3. Import the transformed data to BASE.

The export will generate at least two files. One metadata file and one data file. It is also possible
to export reporter and assay annotations if the plug-in needs it. Note that reporter and assay an-
notation files are always needed if new spot data is going to be imported so in most cases at least
four files will be created.

The metadata file
There are two subtypes:

• serial: One data file is required for each assay. The columns in the data files represents different
spot data values, eg. first column = Ch 1, second column = Ch 2, etc.

• matrix: One data file is required for each spot data value. The columns in the data files represents
assays.

For both subtypes the [files] section is used to name the files holding data and annotations. The
following entries should be used:

• rdata: The filename of the file containing reporter annotations

• pdata: The filename of the file containing assay annotations

• sdata1, sdata2, ..., sdataN: N entries, numbered from 1 to N, with the filenames of the files con-
taining spot data. If the serial subtype is used there should be one file for each assay in the bioas-
sayset. If the matrix subtype is used, there should be one file for each entry in the [sdata] section.

File formats

435

Other files may be included if they use x- as a prefix.

Example:

BFSformat serial
[files]
rdata reporters.txt
pdata assays.txt
sdata1 Assay 1.txt
sdata2 Assay 2.txt
x-custom custom.txt

The [sdata] section contains information about the spot data that is found in the sdataX files.
The key of each entry is the name or title of the data that is exported. The value describes the data
type and can be either text, float or int.

The order in this section is important. If the matrix subtype is used, the entries in this section must
match the sdataX entries in the [files] section. Eg. the data that corresponds to the first entry
in this section is found in the sdata1 file. The number of entries in this section must be the same
as the number of sdataX entries in the [files] section.

If the serial subtype is used the entries in this section must match the column order in each of
the sdataX files. Eg. the data that corresponds to the first entry in this section is found in the
first column in all sdataX files. The number of entries in this section must match the number of
columns in the sdataX files.

Example:

[sdata]
Ch 1 float
Ch 2 float
Weight float
Flag int

The [parameters] section contains extra parameters needed by the plug-in. Keys and values are
defined by the plug-in and/or job configuration. Duplicate keys are not allowed, and order is not
important. Multiple values for the same parameter are separated with a tab character.

Example:

[parameters]
beta 0.5
length 100
vector 10 10.3 23
median true

Reporter and assay annotations
The file used for reporter annotations is given by the rdata entry in the [files] section. This file is
optional when exporting but required when importing. The only required column is the ID column,
which holds the internal spot position values. All sdataX files must have the same number of rows
as this file (not counting the header line) and data should be sorted in the same order. Additional
columns may be included in the export.

Note that the same underlying reporter may be assigned to more than one position. If the plug-in
needs to operate on merged-per-reporter data the export should include either the internal or ex-
ternal reporter id in an additional column so that the plug-in can use this information to determine
what should be merged. The exporter has no support for exporting merged data.

The file used for assay annotations is given by the pdata entry in the [files] section. This file is
optional when exporting but required when importing. The only required column is the ID column,

File formats

436

which holds the interal bioassay id values. If the matrix subtype is used the columns in the sdataX
files must be in the same order as the assays appear in this file. The number of columns in the data
files must be the same as the number of rows in this file (not counting the header line).

If the serial subtype is used, the sdata1 file has data for the assay that is described in the first
line in this file, the sdata2 file has data for the second assay, etc. The number of data files must
match the number of lines in this file.

Data files

Data files contains data in matrix format. More than one data file may be required. The organisation
of the data depends on the BFS subtype. In both subtypes the number and order of the rows must
match the number and order of rows in the reporter annotations file.

If the matrix subtype is used, the columns in the data files corresponds to assays. The number of
columns and their order must match the lines in the assay annotations file. The number of data
files and their content is defined by the entries in the [sdata] section.

If the serial subtype is used, the the number of columns and their order must match the entries
in the [sdata] section. Each data file has data from one assay. The number of sdata files in the
[files] section must match the number of lines in the assay annotations file.

Importing spot data

The above information is mostly true for both export and import, but there are a few additional
things that a plug-in should know about when generating data that is going to be imported. The
most important thing is that both reporter and assay annotation files are required for importing
spot data. If the program only generates extra files the [sdata] section should not be included and
no data or annoatation files are need. All files are specified in the [files] section in the same
way as for the export. File entries starting with x- will be uploaded to BASE and linked with the
new bioassay set.

Note

The importer currently supports importing spot data intensity values and extra files. Posi-
tion/reporter mapping and child/parent assay mapping may remain the same or they may be
changed. The importer can also upload additional files generated by the plug-in, for example
plots. The importer has no support for importing extra values, reporter lists or annotations.

In the metadata file, a [settings] section may be included to control certain aspects of the import.
The following entries can be used:

• new-data-cube: If this is set, the data is imported into a new data cube. A new data cube is
needed whenever the position/reporter mappings has changed or when parent assays has been
merged. This setting requires that the reporter annotations file contains information about the
new mapping. It needs to include either Internal ID or External ID columns so that the
importer can map the new position to the correct reporter. The reporter must already exist in the
database. The position values have no relation to the position values in the old bioassay set. We
recommend that a plug-in simply starts enumerates the lines starting at 1.

• multi-assay-parents: If this is set, a child assay may have more than one parent assay (for
example, due to a merge). A new data cube is needed and this setting is ignored unless new-da-
ta-cube is also set. This setting requires that the assay annotations file has a Parent ID column
which holds a comma-separated list with the ID:s of the parent assays.

• transform: If not specified, the child spot data is assumed to use the same intensity transform as
the parent data. To force a specific a specific intensity transform for the child bioassay set include
this setting and choose one fo the values: none, log2, log10.

In the metadata file, the precense of an [sdata] section indicates that spot data should be imported.
If this section is not present only extra files are uploaded to BASE and they are attached to the

File formats

437

transformation instead of a child bioassay set. If the [sdata] section is present it must include one
entry for each channel with names like, Ch 1, Ch 2, and so on. The value is always float. All other
entries in this section are ignored.

In the reporter annotations file, the ID column should hold the position values. Values must be
positive integers and duplicates are not allowed. The order of the values doesn't matter. If importing
data to a new data cube the reporter annotations file also needs either Internal ID or External
ID columns.

In the assay annotations file, the ID column usually holds the internal assay id of the parent assay.
The exception is if the multi-assay-parents options has been enabled. In this case the id values
have no special meaning, but the Parent ID column must have a comma-separated list with id
values instead.

The assay annotations file may optionally have a Name column. If present, the values in this columns
are used as names on the child assays. Otherwise, they are given default names (usually the same
name as the parent assay).

K.2. The BASEfile format
K.2.1. To be done

	BASE 3.3.1 Documentation
	Table of Contents
	Part I. Overview
	Chapter 1. Why use BASE
	1.1. Case I: The SCAN-B BASE installation at Department of Oncology, Lund University
	1.2. Case II: The BASE installation at SCIBLU, Department of Oncology, Lund University

	Chapter 2. BASE features
	2.1. Web interface
	2.2. Information and annotation management
	2.3. Data sharing and privacy
	2.4. File and directory structure
	2.5. Plugin and extension infrastructure
	2.6. Batch upload and download of data
	2.7. Supported array platforms and raw data formats
	2.7.1. Vendor specific and custom printing array platforms
	2.7.2. Available raw data types

	2.8. Supported sequencing applications
	2.9. Repository and standards

	Chapter 3. Resources
	3.1. BASE project site
	3.1.1. Download
	3.1.2. Ticket system
	3.1.3. Roadmap
	3.1.4. Documentation

	3.2. BASE plug-ins site
	3.3. Demo server
	3.4. Mailing lists
	3.5. BASE-hacks

	Part II. User documentation
	Chapter 4. Overview of user documentation
	4.1. Working environment
	4.2. Start working with BASE
	4.2.1. Administrative tasks
	4.2.2. User tasks

	Chapter 5. Using the web client
	5.1. Introduction
	5.1.1. Logging in
	5.1.2. Forgotten password
	5.1.3. The home page
	5.1.4. Using the menu bar
	5.1.5. Getting help

	5.2. Configuring your account
	5.2.1. Contact information
	5.2.2. Other information
	5.2.3. Changing password
	5.2.4. Preferences
	The Appearance tab
	The Plugins tab
	The Recent items tab

	5.3. Working with items
	5.3.1. Create a new item
	5.3.2. Edit an existing item
	5.3.3. Delete items
	5.3.4. Restore deleted items
	5.3.5. Share items to other users
	5.3.6. Change owner of items

	5.4. Listing items
	5.4.1. Ordering the list
	5.4.2. Filtering the list
	Units

	5.4.3. Configuring which columns to show
	5.4.4. Presets
	Save a preset
	Manage presets

	5.5. Trashcan
	5.5.1. Delete items permanently
	Empty trashcan

	5.5.2. View dependencies of a trashed item

	5.6. Item overview
	5.6.1. Validation options
	5.6.2. Fixing validation failures

	Chapter 6. Projects and the permission system
	6.1. The permission system
	6.1.1. Permission levels
	6.1.2. Getting access to an item
	6.1.3. Plug-in permissions

	6.2. Projects
	6.2.1. Creating a project
	6.2.2. The active project
	Selecting an active project
	Default permissions for the active project

	6.2.3. How to give other users access to your project
	6.2.4. Default items
	6.2.5. Working with the items in the project

	6.3. Permission templates

	Chapter 7. File management
	7.1. File system
	7.1.1. Disk space quota

	7.2. Handling files
	7.2.1. Upload a new file
	Replace an existing file

	7.2.2. External files
	7.2.3. File servers
	7.2.4. Edit a file
	7.2.5. Move files
	To another directory
	Offline
	To the secondary storage

	7.2.6. Viewing and downloading files
	Download a file
	View the contents of file
	Download/compress multiple files

	7.2.7. Directories

	Chapter 8. Jobs
	Chapter 9. Reporters
	9.1. Reporter types
	9.2. Reporters
	9.2.1. Import/update reporter from files
	9.2.2. Manual management of reporters
	9.2.3. Deleting reporters
	Batch deletion

	9.3. Reporter lists
	9.3.1. Merging reporter lists

	Chapter 10. Annotations
	10.1. Annotation Types
	10.1.1. Properties
	10.1.2. Options
	10.1.3. Item types
	10.1.4. Units
	10.1.5. Categories

	10.2. Annotating items
	10.2.1. Inheriting annotations from other items
	10.2.2. Mass annotation import plug-in

	Chapter 11. Experimental platforms and data file types
	11.1. Platforms
	11.2. Platform variants
	11.3. Data file types
	11.4. Selecting files for an item

	Chapter 12. Item subtypes
	12.1. Item subtype properties
	12.2. File types

	Chapter 13. Protocols
	13.1. Protocol parameters

	Chapter 14. Hardware and software
	14.1. Hardware
	14.2. Software

	Chapter 15. Array LIMS
	15.1. Array designs
	15.1.1. Properties
	15.1.2. Importing features to an array design

	15.2. Array batches
	15.3. Array slides
	15.3.1. Creating array slides
	15.3.2. Multiple slides wizard

	Chapter 16. Biomaterial LIMS
	16.1. Biosources
	16.2. Samples
	16.2.1. Create sample
	16.2.2. Sample properties
	16.2.3. Sample parents

	16.3. Extracts
	16.3.1. Create extract
	16.3.2. Extract properties
	16.3.3. Extract parents

	16.4. Tags
	16.5. Bioplates
	16.5.1. Bioplate properties
	16.5.2. Biowells
	16.5.3. Bioplate types
	16.5.4. Bioplate events
	The place-on-plate event
	The move biomaterials event
	The create child plate event

	16.6. Biomaterial lists
	16.7. Physical bioassays
	16.7.1. Create physical bioassays
	16.7.2. Bioassay properties
	16.7.3. Parent extracts

	Chapter 17. Experiments and analysis
	17.1. Derived bioassays
	17.1.1. Create derived bioassays
	17.1.2. Derived bioassay properties

	17.2. Raw bioassays
	17.2.1. Create raw bioassays
	17.2.2. Raw bioassay properties
	17.2.3. Import raw data
	17.2.4. Raw data types
	File-only platforms

	17.2.5. Spot images

	17.3. Experiments
	17.3.1. Experiment properties
	The publication tab

	17.3.2. Experimental factors

	17.4. Analysing data within BASE
	17.4.1. Transformations and bioassay sets
	The root bioassay set
	Overview plots

	17.4.2. Filtering data
	Formulas

	17.4.3. Normalizing data
	17.4.4. Other analysis plug-ins
	17.4.5. The plot tool
	Scatter plots
	Histogram plots
	Filtering plots
	Save plots

	17.4.6. Experiment explorer
	Reporter view
	Reporter search

	Chapter 18. Import of data
	18.1. General import procedure
	18.1.1. Select plug-in and file format
	The auto detect function

	18.1.2. Specify plug-in parameters
	18.1.3. Add the import job to the job queue

	18.2. Batch import of data
	18.2.1. File format
	18.2.2. Running the item batch importer
	18.2.3. Comments on the item batch importers

	Chapter 19. Export of data
	19.1. Select plug-in and configuration
	19.2. Specify plug-in parameters
	Immediate download of the exported data
	Saving the exported data in the BASE file system

	19.3. The table exporter plug-in

	Part III. Admin documentation
	Chapter 20. Installation and upgrade instructions
	20.1. Upgrade instructions
	20.2. Installation instructions
	20.3. Installing job agents
	20.3.1. BASE application server side setup
	20.3.2. Database server setup
	20.3.3. Job agent client setup
	20.3.4. Configuring the job agent

	20.4. Server configurations
	20.4.1. Sending a broadcast message to logged in users

	20.5. Migrating from MySQL to PostgreSQL

	Chapter 21. Plug-ins and extensions
	21.1. Managing plug-ins and extensions
	21.1.1. Automatic installation wizard
	21.1.2. Manual plug-in registration
	21.1.3. BASE version 1 plug-ins
	21.1.4. Installing the X-JSP compiler
	21.1.5. Disable/enable plug-ins and extensions
	21.1.6. Plug-in permissions

	21.2. Plug-in configurations
	21.2.1. Configuring plug-in configurations
	21.2.2. Importing and exporting plug-in configurations
	21.2.3. The Test with file function

	Chapter 22. Account administration
	22.1. Users administration
	22.1.1. Edit user
	Properties
	Contact information
	Additional information
	Group and role membership

	22.1.2. Default group and role membership

	22.2. Groups administration
	22.2.1. Edit group
	Properties
	Group members

	22.3. Roles administration
	22.3.1. Pre-defined system roles
	22.3.2. Edit role
	Properties
	Permissions
	Members

	22.4. Disk space/quota
	22.4.1. Edit quota
	Properties

	22.4.2. Disk usage

	Part IV. Developer documentation
	Chapter 23. Migrating code from BASE 2 to BASE 3
	23.1. Compiling the code against BASE 3
	23.2. Core API changes
	23.3. Packaging your plug-in so that it installs in BASE 3

	Chapter 24. Developer overview of BASE
	24.1. Fixed vs. dynamic database
	24.2. Hibernate and the DbEngine
	24.3. The Batch API
	24.4. Data classes vs. item classes
	24.5. The Query API
	24.6. The Controller API
	24.7. The Extensions API
	24.8. Plug-ins
	24.9. Client applications

	Chapter 25. Plug-in developer
	25.1. How to organize your plug-in project
	25.1.1. Using Ant
	Directory and file layout
	The build file
	Building the plug-in

	25.1.2. Make the plug-in compatible with the auto-installation wizard
	Installing plug-in configurations

	25.2. The Plug-in API
	25.2.1. The main plug-in interfaces
	The net.sf.basedb.core.plugin.Plugin interface
	The net.sf.basedb.core.plugin.InteractivePlugin interface

	25.2.2. How the BASE core interacts with the plug-in when...
	Installing a plug-in
	Configuring a plug-in
	Checking if a plug-in can be used in a given context
	Creating a new job
	Executing a job

	25.2.3. Abort a running a plug-in
	25.2.4. Using custom JSP pages for parameter input

	25.3. Import plug-ins
	25.3.1. Autodetect file formats
	The net.sf.basedb.core.plugin.AutoDetectingImporter interface
	Call sequence during autodetection

	25.3.2. The AbstractFlatFileImporter superclass
	Configure by example

	25.4. Export plug-ins
	25.4.1. Immediate download of exported data
	The ImmediateDownloadExporter interface
	The ExportOutputStream class
	Call sequence during immediate download

	25.4.2. The AbstractExporterPlugin class

	25.5. Analysis plug-ins
	25.5.1. The AbstractAnalysisPlugin class
	25.5.2. The AnalysisFilterPlugin interface

	25.6. Other plug-ins
	25.6.1. Authentication plug-ins
	25.6.2. Secondary file storage plugins
	Primary vs. secondary storage
	The SecondaryStorageController interface
	Configuration settings

	25.6.3. File unpacker plug-ins
	25.6.4. File packer plug-ins

	25.7. How BASE load plug-in classes
	25.8. Example plug-ins (with download)

	Chapter 26. Extensions developer
	26.1. Overview
	26.1.1. Download code examples
	26.1.2. Terminology

	26.2. Hello world as an extension
	26.2.1. Extending multiple extension points with a single extension

	26.3. Custom action factories
	26.4. Custom images, JSP files, and other resources
	26.4.1. Javascript and stylesheets
	26.4.2. X-JSP files

	26.5. Custom renderers and renderer factories
	26.6. Extension points
	26.6.1. Error handlers

	26.7. Custom servlets
	26.8. Extension points defined by BASE
	26.8.1. Menu: extensions
	26.8.2. Toolbars
	26.8.3. Edit dialogs
	26.8.4. Bioassay set: Tools
	26.8.5. Bioassay set: Overview plots
	26.8.6. Services
	26.8.7. Connection managers
	26.8.8. Fileset validators
	26.8.9. Logging managers
	The LogManagerFactory interface
	The LogManager interface
	The EntityLogger interface

	26.8.10. Item overview loaders
	26.8.11. Item overview validation
	26.8.12. Item overview information
	26.8.13. Table list columns
	26.8.14. Login manager
	Internal vs. external authentation
	Configuration settings

	26.8.15. Login form

	Chapter 27. Web services
	27.1. Available services
	27.1.1. Services

	27.2. Client development
	27.2.1. Receiving files

	27.3. Services development
	27.3.1. Generate WSDL-files

	27.4. Example web service client (with download)

	Chapter 28. The BASE API
	28.1. The Public API of BASE
	28.1.1. What is backwards compatibility?
	Binary compatibility
	Contract compatibility
	Source code compatibility

	28.2. The Data Layer API
	28.2.1. Basic classes and interfaces
	Classes
	Interfaces

	28.2.2. User authentication and access control
	Users and passwords
	Groups, roles, projects and permission template
	Keys
	Permissions

	28.2.3. Reporters
	Reporters
	Reporter lists

	28.2.4. Quota and disk usage
	Quota
	Disk usage

	28.2.5. Client, session and settings
	Clients
	Sessions
	Settings

	28.2.6. Files and directories
	28.2.7. Experimental platforms and item subtypes
	Platforms
	Item subtypes
	FileStoreEnabled items and data files

	28.2.8. Parameters
	28.2.9. Annotations
	Annotations
	Annotation types
	Units
	Categories

	28.2.10. Protocols, hardware and software
	Protocols
	Parameters
	Hardware and software

	28.2.11. Plug-ins, jobs and job agents
	Plug-ins
	Jobs
	Job agents

	28.2.12. Biomaterial LIMS
	Biomaterials
	Bioplates and plate types
	Biomaterial and plate events

	28.2.13. Array LIMS - plates
	Plates
	Plate events
	Plate mappings

	28.2.14. Array LIMS - arrays
	Array designs
	Array slides

	28.2.15. Bioassays and raw data
	Physical bioassays
	Raw data
	Spot images

	28.2.16. Experiments and analysis
	Experiments
	Bioassay sets, bioassays and transformations
	Virtual databases, datacubes, etc.
	The dynamic database

	28.2.17. Other classes

	28.3. The Core API
	28.3.1. Authentication and sessions
	28.3.2. Access permissions
	28.3.3. Data validation
	28.3.4. Transaction handling
	28.3.5. Create/read/write/delete operations
	28.3.6. Batch operations
	28.3.7. Quota
	28.3.8. Plugin execution / job queue
	28.3.9. Using files to store data
	Diagram of classes and methods
	Use case: Asking the user for files for a given item
	Use case: Link, validate and extract metadata from the selected files
	Use case: Import data into the database
	Use case: Using raw data from files in an experiment

	28.3.10. Sending signals (to plug-ins)
	Diagram of classes and methods

	28.4. The Query API
	28.5. The Dynamic API
	28.6. The Extensions API
	28.6.1. The core part
	28.6.2. The web client part

	28.7. Other useful classes and methods

	Chapter 29. Write documentation
	29.1. User, administrator and developer documentation with Docbook
	29.1.1. Documentation layout
	29.1.2. Getting started
	Organization of source files
	Create new chapter/file
	Controlling chunking
	The id attribute
	Help text for the BASE web client
	Skip parts of a help text
	Link to other help texts
	Import help texts into BASE

	Build the documentation

	29.1.3. Docbook tags to use
	Text elements
	Code elements
	Gui elements
	Images and figures
	Examples and program listing
	Admonitions
	Lists
	Link elements

	29.2. Create UML diagrams with MagicDraw
	29.2.1. Organisation
	29.2.2. Classes
	Data layer classes
	Core layer classes

	29.2.3. Diagrams
	Create a new diagram
	Visual appearance and style
	Save diagram as image

	29.3. Javadoc
	29.3.1. Writing Javadoc

	Chapter 30. Core developer reference
	30.1. Publishing a new release
	30.2. Subversion / building BASE
	30.3. Coding rules and guidelines
	30.3.1. Development process and other important procedures
	30.3.2. General coding style guidelines
	Naming
	Layout and comments
	Statements

	30.3.3. API changes and backwards compatibility
	30.3.4. Data-layer rules
	30.3.5. Item-class rules
	Basic class and interface hierarchy
	Access permissions
	Data validation
	Participating in transactions
	Template code for item classes

	30.3.6. Batch-class rules
	30.3.7. Test-class rules

	Part V. FAQ
	Chapter 31. Frequently Asked Questions with answers
	31.1. Reporter related questions with answers
	31.2. Array design related questions with answers
	31.3. Biomaterial, Protocol, Hardware, Software related questions with answers
	31.4. Data Files and Raw Data related questions with answers
	31.5. Analysis related questions with answers

	Part VI. Appendix
	Appendix A. Core plug-ins shipped with BASE
	A.1. Core analysis plug-ins
	A.2. Core export plug-ins
	A.3. Core import plug-ins
	A.3.1. Core batch import plug-ins

	A.4. Core intensity plug-ins
	A.5. Uncategorized core plug-ins

	Appendix B. base.config reference
	Appendix C. extended-properties.xml reference
	Appendix D. Platforms and raw-data-types.xml reference
	D.1. Default platforms and variants installed with BASE
	D.2. raw-data-types.xml reference

	Appendix E. web.xml reference
	E.1. Content security policy

	Appendix F. jobagent.properties reference
	Appendix G. jobagent.sh reference
	Appendix H. Other configuration files
	H.1. mysql-queries.xml and postgres-queries.xml
	H.2. log4j.properties
	H.3. hibernate.cfg.xml
	H.4. ehcache.xml

	Appendix I. API changes that may affect backwards compatibility
	I.1. BASE 3.3 release
	I.2. BASE 3.2 release
	I.3. BASE 3.1 release
	I.4. BASE 3.0 release
	I.5. All BASE 2.x releases

	Appendix J. Things to consider when updating an existing BASE installation
	J.1. BASE 3.3
	J.2. BASE 3.2
	J.3. BASE 3.0
	J.4. All BASE 2.x releases

	Appendix K. File formats
	K.1. The BFS (BASE File Set) format
	K.1.1. The basics of BFS
	Character encoding
	Numerical values
	Comments and white-space
	Metadata files
	Annotation files
	Data files

	K.1.2. Using BFS for spotdata to and from external plug-ins
	The metadata file
	Reporter and assay annotations
	Data files
	Importing spot data

	K.2. The BASEfile format
	K.2.1. To be done

